JP2012107982A - Power supply voltage determination circuit - Google Patents

Power supply voltage determination circuit Download PDF

Info

Publication number
JP2012107982A
JP2012107982A JP2010256833A JP2010256833A JP2012107982A JP 2012107982 A JP2012107982 A JP 2012107982A JP 2010256833 A JP2010256833 A JP 2010256833A JP 2010256833 A JP2010256833 A JP 2010256833A JP 2012107982 A JP2012107982 A JP 2012107982A
Authority
JP
Japan
Prior art keywords
voltage
power supply
circuit
dividing circuit
supply voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010256833A
Other languages
Japanese (ja)
Inventor
Hidetoshi Sugiyama
秀俊 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2010256833A priority Critical patent/JP2012107982A/en
Publication of JP2012107982A publication Critical patent/JP2012107982A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a power supply voltage determination circuit with which the current consumption is suppressed.SOLUTION: A power supply voltage determination circuit 50 is provided between a high power source VDD and a reference power source VSS and has a first partial pressure circuit 51 in which a capacity element Cfe51 with voltage dependency that the capacity changes according to voltage applied and a capacity element Cdp51 without voltage dependency are connected in serial manner, a second partial pressure circuit 52 which is connected to the first partial pressure circuit 51 in parallel manner, and a comparator 53 for making comparison of the partial pressure P51 between the capacity elements of the first partial pressure circuit 51 with the partial pressure P52 of the second partial pressure circuit 52.

Description

本発明は,電源電圧判定回路に関する。   The present invention relates to a power supply voltage determination circuit.

近年のLSIにおいては,CPU,デジタル回路,アナログ回路,メモリなどを1つのチップ上に搭載してシステムを構成するシステムオンチップ(System On Chip)化が進んでいる。また最近では,LSI本体に設けられている接続インターフェイスに対して着脱自在の小型メモリカードやインクカートリッジICがある。   In recent LSIs, a system-on-chip (System On Chip) is being developed in which a CPU, digital circuit, analog circuit, memory, and the like are mounted on one chip to constitute a system. Recently, there are small memory cards and ink cartridge ICs that can be attached to and detached from the connection interface provided in the LSI body.

ところで,外部の電源からLSIに供給される電源電圧が低下してLSI動作仕様規格以下の電圧に低下するとLSIが誤作動することがある。そこで,LSIは,電源電圧が動作仕様規格以下の電圧に低下したことを高精度に判定(検出)し,電源電圧が動作仕様規格以下の電圧に低下すると,チップリセット等の動作制限を実行するフェイルセーフ機能を備える必要がある。ここで,動作仕様規格の電圧とは,例えば1.8V〜3.0Vである。   By the way, if the power supply voltage supplied to the LSI from an external power supply is lowered to a voltage below the LSI operation specification standard, the LSI may malfunction. Therefore, the LSI accurately determines (detects) that the power supply voltage has fallen to a voltage lower than the operation specification standard, and executes an operation restriction such as chip reset when the power supply voltage drops to a voltage lower than the operation specification standard. It is necessary to provide a fail-safe function. Here, the voltage of the operation specification standard is, for example, 1.8V to 3.0V.

電源電圧が動作仕様規格以下の電圧に低下したことを判定する方法としては,抵抗素子を直列接続した分圧回路の分圧電圧が,動作範囲外電圧に対応する基準電圧以下になるとその旨を示す信号を出力する方法がある。   As a method of determining that the power supply voltage has dropped to a voltage below the operating specification standard, the fact that the divided voltage of the voltage dividing circuit in which the resistance elements are connected in series is below the reference voltage corresponding to the voltage outside the operating range is indicated. There is a method of outputting the signal shown.

特開2005−24502号公報Japanese Patent Laid-Open No. 2005-24502

しかし,この判定方法は分圧回路に抵抗を用いているので,分圧回路の抵抗に常時電流が流れる電流パスが形成され消費電流が増える。   However, since this determination method uses a resistor in the voltage dividing circuit, a current path through which a current always flows is formed in the resistor of the voltage dividing circuit, resulting in an increase in current consumption.

そこで,本発明の目的は,消費電流を抑制する電源電圧判定回路を提供することにある。   Therefore, an object of the present invention is to provide a power supply voltage determination circuit that suppresses current consumption.

電源電圧判定回路の第1の側面は,高電源VDDと基準電源VSSとの間に設けられ,印加電圧に応じて容量が変化する電圧依存特性を持つ容量素子と前記電圧依存特性を持たない容量素子とが直列接続した第1の分圧回路と,
前記高電源VDDと前記基準電源VSSとの間に設けられ,前記第1の分圧回路に並列接続した第2の分圧回路と,
前記第1の分圧回路における前記容量素子間の分圧電圧と,前記第2の分圧回路の分圧電圧とを比較する比較器とを有する。
A first aspect of the power supply voltage determination circuit is provided between the high power supply VDD and the reference power supply VSS, and has a capacitor element having a voltage dependency characteristic whose capacitance changes according to the applied voltage and a capacitor not having the voltage dependency characteristic. A first voltage dividing circuit connected in series with the element;
A second voltage dividing circuit provided between the high power supply VDD and the reference power supply VSS and connected in parallel to the first voltage dividing circuit;
A comparator for comparing a divided voltage between the capacitive elements in the first voltage dividing circuit with a divided voltage of the second voltage dividing circuit;

第1の側面によれば,電源電圧判定回路の消費電流を抑制することができる。   According to the first aspect, the current consumption of the power supply voltage determination circuit can be suppressed.

本実施の形態に関連する電源電圧判定回路を有するLSIを説明する図である。It is a figure explaining LSI which has a power supply voltage determination circuit relevant to this Embodiment. 電源電圧判定回路の一例を示す図である。It is a figure which shows an example of a power supply voltage determination circuit. 図2の電源電圧判定回路の動作を説明する図である。It is a figure explaining operation | movement of the power supply voltage determination circuit of FIG. 電源電圧判定回路の他の例を示す図である。It is a figure which shows the other example of a power supply voltage determination circuit. 第1実施形態の電源電圧判定回路を説明する図である。It is a figure explaining the power supply voltage determination circuit of 1st Embodiment. 図5の電源電圧判定回路の動作を説明する図である。It is a figure explaining operation | movement of the power supply voltage determination circuit of FIG. 強誘電体容量素子,常誘電体容量素子の電圧依存特性を説明するグラフである。It is a graph explaining the voltage dependence characteristic of a ferroelectric capacitor element and a paraelectric capacitor element. 第1,第2の分圧回路を示す図である。It is a figure which shows the 1st, 2nd voltage dividing circuit. 電源電圧判定回路,バイアス回路,バッファの回路図である。It is a circuit diagram of a power supply voltage determination circuit, a bias circuit, and a buffer. 第2実施形態の電源電圧判定回路を説明する図である。It is a figure explaining the power supply voltage determination circuit of 2nd Embodiment. 図10の電源電圧判定回路の動作を説明する図である。It is a figure explaining operation | movement of the power supply voltage determination circuit of FIG. 第3実施形態の電源電圧判定回路を説明する図である。It is a figure explaining the power supply voltage determination circuit of 3rd Embodiment. 図12の電源電圧判定回路の動作を説明する図である。It is a figure explaining operation | movement of the power supply voltage determination circuit of FIG.

図1は,本実施の形態に関連する電源電圧判定回路を有するLSIを説明する図である。LSI10は,電源電圧が動作仕様規格以下の電圧に低下したことを高精度に判定し,低電圧下での動作を制限するフェイルセーフ機能を有する。   FIG. 1 is a diagram illustrating an LSI having a power supply voltage determination circuit related to the present embodiment. The LSI 10 has a fail-safe function that determines with high accuracy that the power supply voltage has dropped to a voltage lower than the operation specification standard, and restricts the operation under a low voltage.

LSI10は,端子Tの端子VDDから入力される電源電圧VDDが動作仕様規格以下の電圧に低下したことを判定する電源電圧判定回路11と,画像処理,転送処理,暗号化処理などの各種処理を実行する処理回路12と,メモリ13と,電源電圧判定回路11,処理回路12,メモリ13を制御する制御回路14とを有する。なお,処理回路12は,アナログ回路も含む。電源電圧判定回路11,処理回路12,メモリ13,制御回路14は,接地用端子である端子VSSに接続される。   The LSI 10 performs a power supply voltage determination circuit 11 that determines that the power supply voltage VDD input from the terminal VDD of the terminal T has decreased to a voltage that is less than or equal to the operation specification standard, and various processes such as image processing, transfer processing, and encryption processing. A processing circuit 12 to be executed, a memory 13, a power supply voltage determination circuit 11, a processing circuit 12, and a control circuit 14 for controlling the memory 13 are included. The processing circuit 12 includes an analog circuit. The power supply voltage determination circuit 11, the processing circuit 12, the memory 13, and the control circuit 14 are connected to a terminal VSS that is a ground terminal.

電源電圧判定回路11は,電源電圧VDDが動作仕様規格以下の電圧に低下すると,その旨を示す例えばローレベルの信号VDETを制御回路14に出力する。電源電圧VDDが動作仕様規格以下の電圧に低下する理由としては以下の理由がある。例えば,LSI10の要求電力,すなわちLSI10の負荷が重くなり,電源がこの要求電力を満たすだけの電力を供給することができなくなる。その結果,電源電圧VDDが低下する。また,外部電源と端子VDDとの接続不良が原因で,内部の電源電圧VDDが低下する。また,電源を制御するICが,電源をオン,オフする制御を行う仕様の場合,このICが電源をオフすることにより,電源電圧VDDが低下する。また,外部ノイズにより電源の動作が不安定になり,電源電圧VDDが低下する。なお,他にも様々な理由により,電源電圧VDDが動作仕様規格以下の電圧に低下する。   When the power supply voltage VDD drops to a voltage below the operation specification standard, the power supply voltage determination circuit 11 outputs, for example, a low level signal VDET indicating that to the control circuit 14. The reason why the power supply voltage VDD decreases to a voltage lower than the operation specification standard is as follows. For example, the required power of the LSI 10, that is, the load on the LSI 10 becomes heavy, and the power supply cannot supply enough power to satisfy the required power. As a result, the power supply voltage VDD decreases. In addition, the internal power supply voltage VDD decreases due to poor connection between the external power supply and the terminal VDD. In addition, when the IC that controls the power supply has a specification that performs control to turn on and off the power supply, the power supply voltage VDD is lowered by turning off the power supply of the IC. Further, the operation of the power supply becomes unstable due to external noise, and the power supply voltage VDD decreases. Note that, for various other reasons, the power supply voltage VDD is lowered to a voltage lower than the operation specification standard.

制御回路14は,電源電圧VDDが動作仕様規格以下の電圧に低下したことを示すローレベルの信号VDETに応答して,フェイルセーフ処理を実行する。例えば,LSIをリセットする。電源電圧VDDが低下しLSI10の動作状態が不安定になることを通知する信号Ctr1を外部接続先のホスト装置(図示しない)に出力する。なお,ホスト装置は端子Tを介してLSI10と接続している。また,制御回路14は,パワーマネージメントを実行するため,内部クロックの分周比を大きくして動作電流を削減する。また,処理回路12が消費電力の大きい回路,例えば暗号回路の場合,制御回路14は,処理中止を指示する信号Ctr2を処理回路12に出力する。また,制御回路14は,メモリ13に対するアクセス回数を制限する。   The control circuit 14 executes fail-safe processing in response to a low level signal VDET indicating that the power supply voltage VDD has dropped to a voltage equal to or lower than the operation specification standard. For example, the LSI is reset. A signal Ctr1 for notifying that the power supply voltage VDD decreases and the operation state of the LSI 10 becomes unstable is output to a host device (not shown) at an external connection destination. Note that the host device is connected to the LSI 10 via a terminal T. Further, since the control circuit 14 performs power management, it increases the frequency division ratio of the internal clock to reduce the operating current. When the processing circuit 12 is a circuit with high power consumption, for example, an encryption circuit, the control circuit 14 outputs a signal Ctr2 instructing to stop the processing to the processing circuit 12. The control circuit 14 limits the number of accesses to the memory 13.

このような制御回路14の動作制御(フェイルセーフ)を可能にするため,電源電圧判定回路11は,電源電圧VDDが動作仕様規格以下の電圧に低下したことを高精度に判定しなければならない。   In order to enable such operation control (fail safe) of the control circuit 14, the power supply voltage determination circuit 11 must determine with high accuracy that the power supply voltage VDD has dropped to a voltage equal to or lower than the operation specification standard.

次に,電源電圧判定回路11について,図2〜図4を用いて説明する。   Next, the power supply voltage determination circuit 11 will be described with reference to FIGS.

図2は,電源電圧判定回路11の一例を示す図である。図2の電源電圧判定回路20は,基準電圧VREFを出力するBGR(Band Gap Reference)回路21と,電源電圧VDDを分圧して分圧電圧LVRを出力する分圧回路22と,基準電圧VREFと分圧電圧LVRとを比較し信号VDETを出力する比較器23と,BGR21,比較器23にバイアス電圧Vbiasを供給するバイアス回路24を有する。比較器23の反転入力端子(−端子)には基準電圧VREFが入力され,非反転入力端子(+端子)には分圧電圧LVRが入力される。   FIG. 2 is a diagram illustrating an example of the power supply voltage determination circuit 11. 2 includes a BGR (Band Gap Reference) circuit 21 that outputs a reference voltage VREF, a voltage dividing circuit 22 that divides the power supply voltage VDD and outputs a divided voltage LVR, and a reference voltage VREF. A comparator 23 that compares the divided voltage LVR and outputs a signal VDET, and a bias circuit 24 that supplies a bias voltage Vbias to the BGR 21 and the comparator 23 are provided. The reference voltage VREF is input to the inverting input terminal (− terminal) of the comparator 23, and the divided voltage LVR is input to the non-inverting input terminal (+ terminal).

図3は,電源電圧判定回路20の動作を説明する図である。分圧電圧LVRが基準電圧VREFよりも大きい場合,比較器23は,ハイレベルの信号VDETを出力する。ここで,電源電圧VDDが低下するとこの低下に従い分圧電圧LVRも低下する。そして,分圧電圧LVRが基準電圧VREF以下になると,比較器23は,信号VDETを立ち下げてローレベルの信号VDETを図1の制御回路14に出力する。このローレベルの信号VDETが,電源電圧VDDが動作仕様規格以下の電圧に低下したことを示す。   FIG. 3 is a diagram for explaining the operation of the power supply voltage determination circuit 20. When the divided voltage LVR is higher than the reference voltage VREF, the comparator 23 outputs a high level signal VDET. Here, when the power supply voltage VDD decreases, the divided voltage LVR also decreases as the power supply voltage VDD decreases. When the divided voltage LVR becomes equal to or lower than the reference voltage VREF, the comparator 23 lowers the signal VDET and outputs a low level signal VDET to the control circuit 14 in FIG. This low level signal VDET indicates that the power supply voltage VDD has dropped to a voltage below the operating specification standard.

電源電圧判定回路20は,基準電圧VREFを生成するBGR回路21を用いることで,半導体装置製造過程におけるプロセスばらつきや,温度依存に強く,電源電圧VDDが動作仕様規格以下の電圧に低下したことを高精度に判定することができる。しかし,BGR回路21の回路規模は大きく,チップサイズが大きくなり,コストが高くなる。また,電源VDDと電源VSS(グランド)との間にシリーズ抵抗を有する分圧回路を設けているので,シリーズ抵抗に常時電流が流れる電流パスが形成され電源電圧判定回路20の動作時電流(消費電流)が大きくなってしまう。   By using the BGR circuit 21 that generates the reference voltage VREF, the power supply voltage determination circuit 20 is resistant to process variations and temperature dependence in the manufacturing process of the semiconductor device, and the power supply voltage VDD is reduced to a voltage below the operation specification standard. It can be determined with high accuracy. However, the circuit scale of the BGR circuit 21 is large, the chip size is increased, and the cost is increased. Further, since a voltage dividing circuit having a series resistance is provided between the power supply VDD and the power supply VSS (ground), a current path through which a current always flows is formed in the series resistance, and the operating current (consumption) of the power supply voltage determination circuit 20 Current) becomes large.

図4は,電源電圧判定回路11の他の例を説明する図である。図4の電源電圧判定回路40は,トランジスタTr43〜Tr45のゲートに電源電圧VDDの分圧電圧LVR2を入力するシリーズ抵抗からなる分圧回路41と,トランジスタTr42とトランジスタTr43との接続点N41の電圧レベルを反転するインバータ(INV)46と,バッファ(BUF)47とを有する。トランジスタTr42はPMOSトランジスタ,トランジスタTr43〜Tr45はNMOSトランジスタである。なお,トランジスタTr43〜Tr45を直列接続しているのは,トランジスタTr43のスレッショルド電圧Vthを大きくするためである。このスレッショルド電圧Vthが基準電圧に対応する。   FIG. 4 is a diagram for explaining another example of the power supply voltage determination circuit 11. The power supply voltage determination circuit 40 in FIG. 4 includes a voltage dividing circuit 41 formed of a series resistor that inputs the divided voltage LVR2 of the power supply voltage VDD to the gates of the transistors Tr43 to Tr45, and a voltage at a connection point N41 between the transistor Tr42 and the transistor Tr43. An inverter (INV) 46 for inverting the level and a buffer (BUF) 47 are provided. The transistor Tr42 is a PMOS transistor, and the transistors Tr43 to Tr45 are NMOS transistors. The reason why the transistors Tr43 to Tr45 are connected in series is to increase the threshold voltage Vth of the transistor Tr43. This threshold voltage Vth corresponds to the reference voltage.

電源電圧判定回路40の動作を説明する。PMOSトランジスタTr42のソースには電源電圧VDDが印加されゲートには電源電圧VSS(接地)が印加されているので,トランジスタTr42はオン状態である。電源電圧VDDが適切な電位にあると分圧電圧LVR2がトランジスタTr43のスレッショルド電圧Vthより高くなり,トランジスタTr43〜Tr45はオン状態になる。そのため,接続点N41の電圧は電源電圧VSS(接地)になり,インバータ46によりハイレベルの信号VDETが出力される。電源電圧VDDが低下して分圧電圧LVR2がトランジスタTr43のスレッショルド電圧Vthより低くなると,トランジスタTr43〜Tr45はオフ状態になる。そのため,接続点N41の電圧は電源電圧VDDになり,インバータ46によりローレベルの信号VDETが出力される。   The operation of the power supply voltage determination circuit 40 will be described. Since the power supply voltage VDD is applied to the source of the PMOS transistor Tr42 and the power supply voltage VSS (ground) is applied to the gate, the transistor Tr42 is on. When the power supply voltage VDD is at an appropriate potential, the divided voltage LVR2 becomes higher than the threshold voltage Vth of the transistor Tr43, and the transistors Tr43 to Tr45 are turned on. Therefore, the voltage at the node N41 becomes the power supply voltage VSS (ground), and the high level signal VDET is output by the inverter 46. When the power supply voltage VDD decreases and the divided voltage LVR2 becomes lower than the threshold voltage Vth of the transistor Tr43, the transistors Tr43 to Tr45 are turned off. Therefore, the voltage at the connection point N41 becomes the power supply voltage VDD, and the inverter 46 outputs the low level signal VDET.

電源電圧判定回路40は,トランジスタ,抵抗,インバータ,バッファを有するだけであり,図2の電源電圧判定回路20と比べて回路構成は単純であり,素子削減(プロセス工程の削減)によるコストダウンが期待できる回路である。しかし,NMOSトランジスタの製造プロセスばらつきや,温度依存に弱く,電源電圧VDDが動作仕様規格以下の電圧に低下したことを高精度に判定することができない。また,分圧回路41による電流パス,そして,PMOSトランジスタTr42とNMOSトランジスタTr43〜Tr45とが同時にオン状態になることによる貫通電流により,電源電圧判定回路40の動作時電流が大きくなる。   The power supply voltage determination circuit 40 has only a transistor, a resistor, an inverter, and a buffer. The circuit configuration is simpler than that of the power supply voltage determination circuit 20 in FIG. 2, and the cost can be reduced by reducing the number of elements (reducing process steps). It is a circuit that can be expected. However, it is weak to variations in the manufacturing process of NMOS transistors and temperature dependence, and it cannot be determined with high accuracy that the power supply voltage VDD has dropped to a voltage below the operating specification standard. Further, the current during operation of the power supply voltage determination circuit 40 increases due to the current path by the voltage dividing circuit 41 and the through current due to the PMOS transistor Tr42 and the NMOS transistors Tr43 to Tr45 being simultaneously turned on.

以上説明したように,図2の電源電圧判定回路20によれば,電源電圧が動作仕様規格以下の電圧に低下したことを高精度に判定できるが,回路規模が大きくなり,分圧回路の電流パスにより消費電力が大きくなるという問題がある。また,図4の電源電圧判定回路40によれば,回路規模が小さくなるが,電源電圧が動作仕様規格以下の電圧に低下したことを高精度に判定できず,分圧回路の電流パス,トランジスタの貫通電流により消費電力が大きくなるという問題がある。そこで,上記の課題を解決した電源電圧判定回路を提供する。   As described above, according to the power supply voltage determination circuit 20 of FIG. 2, it can be determined with high accuracy that the power supply voltage has dropped to a voltage lower than the operation specification standard, but the circuit scale increases and the current of the voltage divider circuit increases. There is a problem that power consumption increases due to the path. Further, according to the power supply voltage determination circuit 40 of FIG. 4, although the circuit scale is reduced, it cannot be determined with high accuracy that the power supply voltage has dropped to a voltage lower than the operation specification standard. There is a problem that the power consumption increases due to the through current. Therefore, a power supply voltage determination circuit that solves the above problems is provided.

(第1実施形態)
図5は,第1実施形態の電源電圧判定回路を説明する図である。電源電圧判定回路50は,第1の分圧回路51と,第1の分圧回路51に並列接続する第2の分圧回路52と,第1の分圧回路51の接続点N51の分圧電圧P51と第2の分圧回路52の接続点N52の分圧電圧P52とを比較する比較器53とを有する。
(First embodiment)
FIG. 5 is a diagram illustrating the power supply voltage determination circuit according to the first embodiment. The power supply voltage determination circuit 50 includes a first voltage dividing circuit 51, a second voltage dividing circuit 52 connected in parallel to the first voltage dividing circuit 51, and a voltage dividing point N51 of the first voltage dividing circuit 51. The comparator 53 compares the voltage P51 with the divided voltage P52 at the connection point N52 of the second voltage dividing circuit 52.

第1の分圧回路51は,高電源VDDと基準電源VSSとの間に設けられ,印加電圧に応じて容量が変化する電圧依存特性を持つ第1の容量素子である例えば強誘電体容量素子Cfe51と電圧依存特性を持たない第2の容量素子である例えば常誘電体容量素子Cdp51とが直列接続する構成である。強誘電体容量素子Cfe51は高電源VDD側に接続し,常誘電体容量素子Cdp51は基準電源VSS側に接続する。   The first voltage dividing circuit 51 is provided between the high power supply VDD and the reference power supply VSS, and is a first capacitive element having a voltage-dependent characteristic whose capacitance changes according to the applied voltage. For example, a ferroelectric capacitive element In this configuration, Cfe51 is connected in series with, for example, a paraelectric capacitor Cdp51, which is a second capacitor having no voltage-dependent characteristics. The ferroelectric capacitor element Cfe51 is connected to the high power supply VDD side, and the paraelectric capacitor element Cdp51 is connected to the reference power supply VSS side.

第2の分圧回路52は,高電源VDDと基準電源VSSとの間に設けられ,電圧依存特性を持たない第3の容量素子である例えば常誘電体容量素子Cdp52と電圧依存特性を持つ第4の容量素子である強誘電体容量素子Cfe52とが直列接続する構成である。常誘電体容量素子Cdp52は高電源VDD側に接続し,強誘電体容量素子Cfe52は基準電源VSS側に接続する。   The second voltage dividing circuit 52 is provided between the high power supply VDD and the reference power supply VSS, and is a third capacitor element having no voltage dependency characteristics, for example, a paraelectric capacitor element Cdp52 and a first capacitor having voltage dependency characteristics. 4 is a configuration in which a ferroelectric capacitor Cfe52, which is a capacitor of No. 4, is connected in series. The paraelectric capacitor Cdp52 is connected to the high power supply VDD side, and the ferroelectric capacitor Cfe52 is connected to the reference power supply VSS side.

比較器53は,反転入力端子(−端子)に入力された電圧P51と非反転入力端子(+端子)に入力された電圧P52とを比較する。電圧P52が電圧P51よりも高い場合,比較器53は,ハイレベルの信号VDETを出力する。電圧P52が電圧P51よりも低い場合,比較器53は,ローレベルの信号VDETを出力する。なお,信号VDETは,図8で説明するバッファ回路によりバッファリングされてもよい。   The comparator 53 compares the voltage P51 input to the inverting input terminal (− terminal) with the voltage P52 input to the non-inverting input terminal (+ terminal). When the voltage P52 is higher than the voltage P51, the comparator 53 outputs a high level signal VDET. When the voltage P52 is lower than the voltage P51, the comparator 53 outputs a low level signal VDET. The signal VDET may be buffered by a buffer circuit described with reference to FIG.

バイアス回路54は,バイアス電圧Vbiasを比較器53に供給するもので,PMOSトランジスタTr54と抵抗R54とを有する。トランジスタTr54のソースは高電源VDDに接続しドレインが抵抗R54の一端に接続する。抵抗R54の他端は基準電源VSSに接続する。   The bias circuit 54 supplies a bias voltage Vbias to the comparator 53, and includes a PMOS transistor Tr54 and a resistor R54. The source of the transistor Tr54 is connected to the high power supply VDD, and the drain is connected to one end of the resistor R54. The other end of the resistor R54 is connected to the reference power supply VSS.

図5の電源電圧判定回路50においては,第1の分圧回路51の分圧電圧P51と第2の分圧回路52の分圧電圧P52とが等しくなる電圧が図2で説明した基準電圧VREFになるように,強誘電体容量素子Cfe51,常誘電体容量素子Cdp51,常誘電体容量素子Cdp52,強誘電体容量素子Cfe52のパラメータを定める。そして,分圧電圧P51と分圧電圧P52とが等しくなると,電源電圧VDDが規格外電圧に低下したとして,その旨を示す信号VDETを出力する。分圧電圧P51と分圧電圧P52が等しくなる電圧は,図2のBGR回路21が生成する基準電圧VREFに対応するものである。   In the power supply voltage determination circuit 50 of FIG. 5, the voltage at which the divided voltage P51 of the first voltage dividing circuit 51 is equal to the divided voltage P52 of the second voltage dividing circuit 52 is the reference voltage VREF described in FIG. The parameters of the ferroelectric capacitor element Cfe51, the paraelectric capacitor element Cdp51, the paraelectric capacitor element Cdp52, and the ferroelectric capacitor element Cfe52 are determined. When the divided voltage P51 becomes equal to the divided voltage P52, the signal VDET indicating that the power supply voltage VDD has fallen to a non-standard voltage is output. The voltage at which the divided voltage P51 and the divided voltage P52 are equal corresponds to the reference voltage VREF generated by the BGR circuit 21 of FIG.

図6は,電源電圧判定回路50の動作を説明する図で,電源電圧VDDと,第1の分圧回路51の分圧電圧P51と,第2の分圧回路52の分圧電圧P52と,比較器53の信号VDETを示したグラフである。図6のグラフでは電源電圧VDDが低下すると共に,電圧P51,P52が低下する様子を示している。   FIG. 6 is a diagram for explaining the operation of the power supply voltage determination circuit 50. The power supply voltage VDD, the divided voltage P51 of the first voltage dividing circuit 51, the divided voltage P52 of the second voltage dividing circuit 52, 6 is a graph showing a signal VDET of the comparator 53. The graph of FIG. 6 shows how the power supply voltage VDD decreases and the voltages P51 and P52 decrease.

図6に示すように,時間T0からT1の間は,電圧VDDが低下すると電圧P51と電圧P52が徐々に低下する。しかし,電源電圧VDDの低下率(単位時間当たりの電圧低下量)と,電圧P51の低下率,電圧P52の低下率とは異なる。そして,時間T1付近以後は,電圧P52の低下率は電圧P51の低下率に比べて大きくなる。すなわち,電圧VDDが低下すると電圧P52が急激に低下するが,電圧P51はこのように急激に低下しない。換言すれば,電圧P51の単位時間当たりの電圧変化量(dv/dt)と電圧P52の単位時間当たりの電圧変化量とが異なる。その結果,時間T2において,電圧P51と電圧P52とが交差(クロス)する。この時間T2における,交差時の電圧Vcが前述した基準電圧VREFに対応するものである。また,この時間T2以降における電源電圧VDD0以下の電圧が動作仕様規格以下の電圧に対応する。   As shown in FIG. 6, between time T0 and T1, when the voltage VDD decreases, the voltage P51 and the voltage P52 gradually decrease. However, the decrease rate of the power supply voltage VDD (voltage decrease amount per unit time) is different from the decrease rate of the voltage P51 and the decrease rate of the voltage P52. After the time T1, the rate of decrease of the voltage P52 becomes larger than the rate of decrease of the voltage P51. That is, when the voltage VDD decreases, the voltage P52 rapidly decreases, but the voltage P51 does not decrease rapidly. In other words, the voltage change amount (dv / dt) per unit time of the voltage P51 is different from the voltage change amount per unit time of the voltage P52. As a result, at time T2, the voltage P51 and the voltage P52 intersect (cross). The voltage Vc at the time of crossing at time T2 corresponds to the reference voltage VREF described above. Further, the voltage below the power supply voltage VDD0 after this time T2 corresponds to the voltage below the operation specification standard.

このように,交差時の電圧Vcが基準電圧VREFになるように,強誘電体容量素子Cfe51,常誘電体容量素子Cdp51,常誘電体容量素子Cdp52,強誘電体容量素子Cfe52のパラメータが定められている。   As described above, the parameters of the ferroelectric capacitor Cfe51, the paraelectric capacitor Cdp51, the paraelectric capacitor Cdp52, and the ferroelectric capacitor Cfe52 are determined so that the voltage Vc at the time of crossing becomes the reference voltage VREF. ing.

時間T0から時間T2の間は,電圧P52>電圧P51なので,比較器53はハイレベルの信号VDETを出力する。電圧P52<電圧P51になると(時間T2に至ると),比較器53はハイレベルの信号を立ち下がらせてローレベルの信号VDETを出力する。このローレベルの信号VDETが,電源電圧VDDが動作仕様規格以下の電圧に低下したことを示す信号である。   From time T0 to time T2, since voltage P52> voltage P51, the comparator 53 outputs a high level signal VDET. When the voltage P52 <the voltage P51 (when the time T2 is reached), the comparator 53 causes the high level signal to fall and outputs the low level signal VDET. This low level signal VDET is a signal indicating that the power supply voltage VDD has dropped to a voltage below the operating specification standard.

次に,電圧P51の単位時間当たりの電圧変化量(dv/dt)と電圧P52の単位時間当たりの電圧変化量とが異なる理由について図7,図8を用いて説明する。   Next, the reason why the voltage change amount (dv / dt) per unit time of the voltage P51 and the voltage change amount per unit time of the voltage P52 are different will be described with reference to FIGS.

図7は,強誘電体容量素子,常誘電体容量素子の電圧依存特性を説明するグラフである。横軸は容量素子の電極間の電圧,縦軸がこの電圧における強誘電体容量素子,常誘電体容量素子の容量(キャパシタンス)を示す。強誘電体容量素子の容量は,素子の電極間電圧が低下するとそれに従い大きくなる。しかし,常誘電体容量素子の容量は,電圧変化に対して変化せず一定である。電圧Vaは強誘電体容量素子の容量と常誘電体容量素子の容量が一致する電圧を示している。   FIG. 7 is a graph for explaining the voltage dependence characteristics of the ferroelectric capacitor and the paraelectric capacitor. The horizontal axis represents the voltage between the electrodes of the capacitive element, and the vertical axis represents the capacitance (capacitance) of the ferroelectric capacitive element and the paraelectric capacitive element at this voltage. The capacitance of the ferroelectric capacitor increases as the voltage between the electrodes of the element decreases. However, the capacitance of the paraelectric capacitor does not change with voltage change and is constant. The voltage Va indicates a voltage at which the capacitance of the ferroelectric capacitor and the capacitance of the paraelectric capacitor match.

図8は,第1の分圧回路51の電圧P51の変化,第2の分圧回路52の電圧P52の変化を説明する図で,図8(A)は第1の分圧回路51を示し,図8(B)は第2の分圧回路52を示す図である。   FIG. 8 is a diagram for explaining a change in the voltage P51 of the first voltage dividing circuit 51 and a change in the voltage P52 of the second voltage dividing circuit 52. FIG. 8A shows the first voltage dividing circuit 51. FIG. FIG. 8B is a diagram illustrating the second voltage dividing circuit 52.

図8(A)の電圧V1は,強誘電体容量素子Cfe51の電極板間の電圧,電圧V2は常誘電体容量素子Cdp51の電極板間の電圧を示す。電圧V2は電圧P51である。図8(B)の電圧V3は,常誘電体容量素子Cdp52の電極板間の電圧,電圧V4は強誘電体容量素子Cfe52の電極板間の電圧を示す。電圧V4は電圧P52である。   The voltage V1 in FIG. 8A indicates the voltage between the electrode plates of the ferroelectric capacitor Cfe51, and the voltage V2 indicates the voltage between the electrode plates of the paraelectric capacitor Cdp51. The voltage V2 is the voltage P51. The voltage V3 in FIG. 8B indicates the voltage between the electrode plates of the paraelectric capacitor Cdp52, and the voltage V4 indicates the voltage between the electrode plates of the ferroelectric capacitor Cfe52. The voltage V4 is the voltage P52.

強誘電体容量素子Cfe51の容量をC1,常誘電体容量素子Cdp51の容量をC2とすると,
C1:C2=V2:V1…(式1)
である。ここで,電源電圧VDDが図7の電圧Va,例えばC1=C2=1の場合を想定すると,V2:V1=1:1である。電源電圧VDDがVaから低下すると,容量C2は一定であるが容量C1は大きくなる。ここで,電源電圧VDDがVaから低下して,容量C1が容量C2のN倍になるとすると,(式1)より,
V2:V1=N:1…(式2)となる。ここで,Nは,N>1である。
When the capacitance of the ferroelectric capacitor Cfe51 is C1, and the capacitance of the paraelectric capacitor Cdp51 is C2,
C1: C2 = V2: V1 (Formula 1)
It is. Here, assuming that the power supply voltage VDD is the voltage Va in FIG. 7, for example, C1 = C2 = 1, V2: V1 = 1: 1. When the power supply voltage VDD decreases from Va, the capacity C2 is constant, but the capacity C1 increases. Here, if the power supply voltage VDD decreases from Va and the capacity C1 becomes N times the capacity C2, then from (Equation 1),
V2: V1 = N: 1 (Expression 2) Here, N is N> 1.

常誘電体容量素子Cdp52の容量をC3,強誘電体容量素子Cfe52の容量をC4とすると,
C3:C4=V4:V3…(式3)
である。ここで,電源電圧VDDが図7の電圧Va,例えばC3=C4=1の場合を想定すると,V4:V3=1:1である。電源電圧VDDがVaから低下すると,容量C3は一定であるが容量C4は大きくなる。ここで,電源電圧VDDがVaから低下して,容量C4が容量C3のN倍になるとすると,(式3)より,
V4:V3=1:N…(式4)となる。なお,Nは,N>1である。
If the capacitance of the paraelectric capacitor Cdp52 is C3 and the capacitor of the ferroelectric capacitor Cfe52 is C4,
C3: C4 = V4: V3 (Formula 3)
It is. Here, assuming that the power supply voltage VDD is the voltage Va in FIG. 7, for example, C3 = C4 = 1, V4: V3 = 1: 1. When the power supply voltage VDD decreases from Va, the capacitance C3 is constant, but the capacitance C4 increases. Here, when the power supply voltage VDD decreases from Va and the capacity C4 becomes N times the capacity C3, from (Equation 3),
V4: V3 = 1: N (Expression 4) N is N> 1.

(式2),(式4)に示すように,電源電圧VDD低下に伴う電圧V2(電圧P51)の電圧変化率と電圧V4(電圧P52)の電圧変化率とが異なり,電圧V2の低下率より電圧V4の低下率の方が大きい。   As shown in (Equation 2) and (Equation 4), the voltage change rate of the voltage V2 (voltage P51) and the voltage change rate of the voltage V4 (voltage P52) accompanying the decrease in the power supply voltage VDD are different, and the decrease rate of the voltage V2 The decrease rate of the voltage V4 is larger.

より詳しく説明する。電源電圧VDD=電圧V1+電圧V2であるから,(式1)を変形すると,
V2=(C1/(C1+C2))×VDD…(式5)
となる。また,電源電圧VDD=電圧V3+電圧V4であるから,(式3)を変形すると,
V4=(C3/(C3+C4))×VDD…(式6)
となる。
(式5),(式6)における常誘電体容量のC2,C3は,図7で説明したように電源電圧VDDの変化にかかわらず一定であるが,強誘電体容量のC1,C4は,図7で説明したように電源電圧VDDが低下するとそれに従い大きくなる。
This will be described in more detail. Since the power supply voltage VDD = the voltage V1 + the voltage V2, when (Equation 1) is modified,
V2 = (C1 / (C1 + C2)) × VDD (Formula 5)
It becomes. In addition, since the power supply voltage VDD = the voltage V3 + the voltage V4,
V4 = (C3 / (C3 + C4)) × VDD (Formula 6)
It becomes.
The paraelectric capacitors C2 and C3 in (Equation 5) and (Equation 6) are constant regardless of the change in the power supply voltage VDD as described in FIG. 7, but the ferroelectric capacitors C1 and C4 are As described with reference to FIG. 7, when the power supply voltage VDD decreases, the power supply voltage VDD increases accordingly.

電源電圧VDDが低下すると,容量C1が大きくなるが(式5)に示すように,容量C1は分母および分子にあり,容量C1の変化がキャンセルされる。一方,電源電圧VDDが低下すると,容量C4が大きくなるが(式6)に示すように,容量C4は分母のみにあるので,容量C4が大きくなるに反比例して(C3/(C3+C4))は小さくなる。   When the power supply voltage VDD decreases, the capacity C1 increases. As shown in (Equation 5), the capacity C1 is in the denominator and numerator, and the change in the capacity C1 is cancelled. On the other hand, when the power supply voltage VDD decreases, the capacitance C4 increases. However, since the capacitance C4 is only in the denominator as shown in (Equation 6), (C3 / (C3 + C4)) is inversely proportional to the increase in the capacitance C4. Get smaller.

(式5),(式6)で説明したように,電源電圧VDDが低下すると,電圧V2(電圧P51)の低下率に比べて電圧V4(電圧P52)の低下率が大きいことがわかる。   As described in (Equation 5) and (Equation 6), it can be seen that when the power supply voltage VDD decreases, the decrease rate of the voltage V4 (voltage P52) is larger than the decrease rate of the voltage V2 (voltage P51).

本実施形態では,この電圧P51,電圧P52の変化の特性を利用して,電圧P51と電圧P52のクロスポイントを作る。そして,このクロスポイントの電圧Vcが基準電圧VREFになるように,すなわち,このクロスポイントの時点(図6の時間T2)で,電源電圧VDDが動作仕様規格以下の電圧VDD0に低下したと見なせるように,強誘電体容量素子Cfe51,常誘電体容量素子Cdp51,強誘電体容量素子Cfe52,常誘電体容量素子Cdp52のパラメータが調整されている。   In the present embodiment, a cross point between the voltage P51 and the voltage P52 is created using the characteristics of the changes of the voltage P51 and the voltage P52. Then, the voltage Vc at the cross point becomes the reference voltage VREF, that is, at the time of the cross point (time T2 in FIG. 6), it can be considered that the power supply voltage VDD has decreased to the voltage VDD0 below the operation specification standard. In addition, parameters of the ferroelectric capacitor element Cfe51, the paraelectric capacitor element Cdp51, the ferroelectric capacitor element Cfe52, and the paraelectric capacitor element Cdp52 are adjusted.

図6〜図8の例では,電源電圧VDDが動作仕様規格以下の電圧VDD0よりも高い時,すなわち電圧P52>電圧P51の時には,C1:C2=V2(P51):V1=N:1,C3:C4=V4(P52):V3=Na:1(Na>N)となり,そして,電源電圧VDDが動作仕様規格以下の電圧VDD0と同じ時,すなわち電圧P52=電圧P51=基準電圧VREFの時には,C1:C2=C3:C4となるように,強誘電体容量素子Cfe51,常誘電体容量素子Cdp51,強誘電体容量素子Cfe52,常誘電体容量素子Cdp52のパラメータを調整する。   In the example of FIGS. 6 to 8, when the power supply voltage VDD is higher than the voltage VDD0 below the operation specification standard, that is, when the voltage P52> the voltage P51, C1: C2 = V2 (P51): V1 = N: 1, C3 : C4 = V4 (P52): V3 = Na: 1 (Na> N), and when the power supply voltage VDD is the same as the voltage VDD0 below the operation specification standard, that is, when the voltage P52 = the voltage P51 = the reference voltage VREF, The parameters of the ferroelectric capacitor Cfe51, the paraelectric capacitor Cdp51, the ferroelectric capacitor Cfe52, and the paraelectric capacitor Cdp52 are adjusted so that C1: C2 = C3: C4.

図9は,図5で説明した電源電圧判定回路50,バイアス回路54,バッファ81の回路図である。   FIG. 9 is a circuit diagram of the power supply voltage determination circuit 50, the bias circuit 54, and the buffer 81 described in FIG.

比較器53は,バイアス電圧Vbiasがゲートに印加され定電流を生成するカレントミラー回路を構成するPチャネルトランジスタTr60,Tr61と,分圧電圧P51,分圧電圧P52がそれぞれゲートに印加されるPチャネルトランジスタTr62,Tr63と,カレントミラー回路を構成するNチャネルトランジスタTr64,Tr65と,トランジスタTr65のドレインがゲートに接続されたNチャネルトランジスタTr66とを有する。トランジスタTr62,Tr63は,各ゲートに印加される分圧電圧を比較する。分圧電圧P52>分圧電圧P51の場合,トランジスタTr66がオフ状態になり接続点N53がハイレベルになる。分圧電圧P52<分圧電圧P51の場合,トランジスタTr63がよりオン状態,トランジスタTr62がよりオフ状態になり,接続点N54の電圧レベルが上昇する。その結果,トランジスタTr66がオン状態になり接続点N53がローレベルになる。   The comparator 53 includes P-channel transistors Tr60 and Tr61 that form a current mirror circuit that generates a constant current when a bias voltage Vbias is applied to a gate, and a P-channel that receives a divided voltage P51 and a divided voltage P52, respectively. Transistors Tr62 and Tr63, N-channel transistors Tr64 and Tr65 constituting a current mirror circuit, and an N-channel transistor Tr66 having a drain connected to the gate of the transistor Tr65. The transistors Tr62 and Tr63 compare the divided voltages applied to the gates. When the divided voltage P52> the divided voltage P51, the transistor Tr66 is turned off and the connection point N53 is set to the high level. When the divided voltage P52 <the divided voltage P51, the transistor Tr63 is turned on, the transistor Tr62 is turned off, and the voltage level at the node N54 increases. As a result, the transistor Tr66 is turned on and the connection point N53 becomes low level.

バッファ81は,インバータを構成するPチャンネルトランジスタTr70,Nチャンネルトランジスタ71と,同PチャンネルトランジスタTr72,Nチャンネルトランジスタ73とを有し,接続点N53の電圧をバッファリングし,信号VDETを出力する。   The buffer 81 includes a P-channel transistor Tr70 and an N-channel transistor 71 that constitute an inverter, and a P-channel transistor Tr72 and an N-channel transistor 73. The buffer 81 buffers the voltage at the connection point N53 and outputs a signal VDET.

なお,第1の分圧回路51と,第2の分圧回路52を入れ替えてもよい。例えば,第1の分圧回路51の高電源VDD側に接続している強誘電体容量素子Cfe51を基準電源VSS側に接続して常誘電体容量素子Cdp51を高電源VDD側に接続する。そして,第2の分圧回路52の高電源VDD側に接続している常誘電体容量素子Cdp52を基準電源VSS側に接続して強誘電体容量素子Cfe52を高電源VDD側に接続してもよい。このように入れ替えると,比較器53の比較信号VDETが逆論理になる。そこで,第1の分圧回路51の分圧電圧P51を比較器53の非反転入力端子に入力し,第2の分圧回路52の分圧電圧P52を比較器53の反転入力端子に入力する。他にも,比較器53の後段のバッファ81(図9参照)をインバータにしてもよい。   Note that the first voltage dividing circuit 51 and the second voltage dividing circuit 52 may be interchanged. For example, the ferroelectric capacitor Cfe51 connected to the high power supply VDD side of the first voltage dividing circuit 51 is connected to the reference power supply VSS side, and the paraelectric capacitor Cdp51 is connected to the high power supply VDD side. Even if the paraelectric capacitor Cdp52 connected to the high power supply VDD side of the second voltage dividing circuit 52 is connected to the reference power supply VSS side and the ferroelectric capacitor Cfe52 is connected to the high power supply VDD side. Good. If switched in this way, the comparison signal VDET of the comparator 53 becomes reverse logic. Therefore, the divided voltage P51 of the first voltage dividing circuit 51 is input to the non-inverting input terminal of the comparator 53, and the divided voltage P52 of the second voltage dividing circuit 52 is input to the inverting input terminal of the comparator 53. . In addition, the buffer 81 (see FIG. 9) at the subsequent stage of the comparator 53 may be an inverter.

以上説明したように,基準電圧VREFに対応する電圧Vcを第1の分圧回路51と第2の分圧回路52により生成することができる。この第1の分圧回路51と第2の分圧回路52は,容量素子で構成されており回路構成も単純である。さらに,容量素子を直列接続しているので,高電源VDDから基準電源VSSへの電流パスがなく,消費電流も削減することができる。また,強誘電体容量素子Cfe51のキャパシタンス=強誘電体容量素子Cfe52のキャパシタンス,常誘電体容量素子Cdp51のキャパシタンス=常誘電体容量素子Cdp52のキャパシタンスとすることで,容量素子の製造過程におけるプロセスばらつきを抑えることができる。その結果,基準電圧に対応する電圧Vcを高精度に決定することができ,電源電圧VDDが動作仕様規格以下の電圧に低下したことを高精度に判定することができる。   As described above, the voltage Vc corresponding to the reference voltage VREF can be generated by the first voltage dividing circuit 51 and the second voltage dividing circuit 52. The first voltage dividing circuit 51 and the second voltage dividing circuit 52 are composed of capacitive elements, and the circuit configuration is simple. Furthermore, since the capacitive elements are connected in series, there is no current path from the high power supply VDD to the reference power supply VSS, and current consumption can be reduced. Further, by setting the capacitance of the ferroelectric capacitor element Cfe51 = the capacitance of the ferroelectric capacitor element Cfe52, and the capacitance of the paraelectric capacitor element Cdp51 = the capacitance of the paraelectric capacitor element Cdp52, process variations in the manufacturing process of the capacitor element. Can be suppressed. As a result, the voltage Vc corresponding to the reference voltage can be determined with high accuracy, and it can be determined with high accuracy that the power supply voltage VDD has dropped to a voltage equal to or lower than the operating specification standard.

(第2実施形態)
図10は,第2実施形態の電源電圧判定回路を説明する図である。電源電圧判定回路60は,図5の電源電圧判定回路50の第2の分圧回路52に変えて第2の分圧回路62を用いたものである。なお,他の構成については,図5と同じ符号を振りその説明を省略する。
(Second Embodiment)
FIG. 10 is a diagram illustrating a power supply voltage determination circuit according to the second embodiment. The power supply voltage determining circuit 60 uses a second voltage dividing circuit 62 instead of the second voltage dividing circuit 52 of the power supply voltage determining circuit 50 of FIG. Other components are denoted by the same reference numerals as those in FIG.

第2の分圧回路62は,分圧素子として電圧依存特性を持たない常誘電体容量素子を利用したもので,常誘電体容量素子Cdp62と常誘電体容量素子Cdp62’とを直列接続したものである。   The second voltage dividing circuit 62 uses a paraelectric capacitive element having no voltage-dependent characteristics as a voltage dividing element, and has a paraelectric capacitive element Cdp62 and a paraelectric capacitive element Cdp62 ′ connected in series. It is.

比較器53は,第1の分圧回路51の接続点N51の分圧電圧P51と第2の分圧回路62の接続点N62の分圧電圧P62とを比較する。   The comparator 53 compares the divided voltage P51 at the connection point N51 of the first voltage dividing circuit 51 with the divided voltage P62 at the connection point N62 of the second voltage dividing circuit 62.

図11は,電源電圧判定回路60の動作を説明する図で,電源電圧VDDと,第1の分圧回路51の分圧電圧P51と,第2の分圧回路62の分圧電圧P62と,比較器53の信号VDETを示したグラフである。   FIG. 11 is a diagram for explaining the operation of the power supply voltage determination circuit 60. The power supply voltage VDD, the divided voltage P51 of the first voltage dividing circuit 51, the divided voltage P62 of the second voltage dividing circuit 62, 6 is a graph showing a signal VDET of the comparator 53.

図7で説明したように,常誘電体容量素子は,電圧依存特性を持たないので,容量素子の電極間の電圧が変化しても容量は変化しない。従って,常誘電体容量素子で構成される第2の分圧回路62の分圧電圧P62の低下率は,電源電圧VDDの低下率と同様である。しかし,電圧依存特性を持つ容量素子Cfe51を分圧素子として利用する第1の分圧回路51の分圧電圧P51の低下率は,第2の分圧回路62の分圧電圧P62の低下率と異なる。   As described with reference to FIG. 7, the paraelectric capacitor does not have voltage-dependent characteristics, so that the capacitance does not change even if the voltage between the electrodes of the capacitor changes. Therefore, the rate of decrease of the divided voltage P62 of the second voltage dividing circuit 62 composed of paraelectric capacitance elements is the same as the rate of decrease of the power supply voltage VDD. However, the reduction rate of the divided voltage P51 of the first voltage dividing circuit 51 that uses the capacitive element Cfe51 having voltage dependent characteristics as a voltage dividing element is the same as the rate of reduction of the divided voltage P62 of the second voltage dividing circuit 62. Different.

本実施形態では,この電圧P51,電圧P62の変化の特性を利用して,電圧P51と電圧P62のクロスポイントを作る。そして,このクロスポイントの電圧Vcが基準電圧VREFになるように,すなわち,このクロスポイントの時点(時間T10)で,電源電圧VDDが動作仕様規格以下の電圧に低下したと見なせるように,強誘電体容量素子Cfe51,常誘電体容量素子Cdp51,常誘電体容量素子Cdp62,常誘電体容量素子Cdp62’のパラメータを調整する。このパラメータの調整の具体例については,第1実施形態で説明したので省略する。   In the present embodiment, a cross point between the voltage P51 and the voltage P62 is created by using the change characteristics of the voltage P51 and the voltage P62. Then, the ferroelectric voltage is set so that the voltage Vc at the cross point becomes the reference voltage VREF, that is, at the time of the cross point (time T10), it can be considered that the power supply voltage VDD has decreased to a voltage lower than the operation specification standard. The parameters of the body capacitive element Cfe51, paraelectric capacitive element Cdp51, paraelectric capacitive element Cdp62, and paraelectric capacitive element Cdp62 ′ are adjusted. Since a specific example of the parameter adjustment has been described in the first embodiment, a description thereof will be omitted.

第1の分圧回路51,第2の分圧回路62は,容量素子を直列接続しているので,高電源VDDから基準電源VSSへの電流パスがなく,消費電流も削減することができる。   Since the first voltage dividing circuit 51 and the second voltage dividing circuit 62 have capacitive elements connected in series, there is no current path from the high power supply VDD to the reference power supply VSS, and current consumption can be reduced.

第2実施形態の変形例としては,第1の分圧回路51と第2の分圧回路62とを入れ替えてもよい。また,第1の分圧回路51の高電源VDD側に接続している強誘電体容量素子Cfe51を基準電源VSS側に接続して常誘電体容量素子Cdp51を高電源VDD側に接続する,すなわち,強誘電体容量素子Cfe51と常誘電体容量素子Cdp51を入れ替えてもよい。この入れ替えによって比較器53の比較信号VDETが逆論理になる場合には,第1の分圧回路51の分圧電圧P51を比較器53の非反転入力端子に入力し,第2の分圧回路62の分圧電圧P62を比較器53の反転入力端子に入力する。   As a modification of the second embodiment, the first voltage dividing circuit 51 and the second voltage dividing circuit 62 may be interchanged. Further, the ferroelectric capacitor Cfe51 connected to the high power supply VDD side of the first voltage dividing circuit 51 is connected to the reference power supply VSS side, and the paraelectric capacitor Cdp51 is connected to the high power supply VDD side. The ferroelectric capacitor Cfe51 and the paraelectric capacitor Cdp51 may be interchanged. When the comparison signal VDET of the comparator 53 becomes reverse logic due to this replacement, the divided voltage P51 of the first voltage dividing circuit 51 is input to the non-inverting input terminal of the comparator 53, and the second voltage dividing circuit. The divided voltage P62 of 62 is input to the inverting input terminal of the comparator 53.

(第3実施形態)
図12は,第3実施形態の電源電圧判定回路を説明する図である。電源電圧判定回路70は,図5の電源電圧判定回路50の第2の分圧回路52に変えて第2の分圧回路72を用いたものである。なお,他の構成については,図5と同じ符号を振りその説明を省略する。
(Third embodiment)
FIG. 12 is a diagram illustrating a power supply voltage determination circuit according to the third embodiment. The power supply voltage determination circuit 70 uses a second voltage dividing circuit 72 instead of the second voltage dividing circuit 52 of the power supply voltage determination circuit 50 of FIG. Other components are denoted by the same reference numerals as those in FIG.

第2の分圧回路72は,分圧素子として抵抗素子を利用したもので,抵抗R72,抵抗R72’を直列接続したものである。   The second voltage dividing circuit 72 uses a resistance element as a voltage dividing element, and has a resistor R72 and a resistor R72 'connected in series.

比較器53は,第1の分圧回路51の接続点N51の分圧電圧P51と第2の分圧回路72の接続点N72の分圧電圧P72とを比較する。   The comparator 53 compares the divided voltage P51 at the connection point N51 of the first voltage dividing circuit 51 with the divided voltage P72 at the connection point N72 of the second voltage dividing circuit 72.

図13は,電源電圧判定回路70の動作を説明する図で,電源電圧VDDと,第1の分圧回路51の分圧電圧P51と,第2の分圧回路72の分圧電圧P72と,比較器53の信号VDETを示したグラフである。   FIG. 13 is a diagram for explaining the operation of the power supply voltage determination circuit 70. The power supply voltage VDD, the divided voltage P51 of the first voltage dividing circuit 51, the divided voltage P72 of the second voltage dividing circuit 72, 6 is a graph showing a signal VDET of the comparator 53.

抵抗R72,R72’は電圧依存特性を持たないので,第2の分圧回路72の分圧電圧P72の低下率は,電源電圧VDDの低下率と同様である。しかし,電圧依存特性を持つ容量素子Cfe51を分圧素子として利用する第1の分圧回路51の分圧電圧P51の低下率は,第2の分圧回路72の分圧電圧P72の低下率と異なる。   Since the resistors R72 and R72 'have no voltage dependence characteristics, the rate of decrease of the divided voltage P72 of the second voltage dividing circuit 72 is the same as the rate of decrease of the power supply voltage VDD. However, the decreasing rate of the divided voltage P51 of the first voltage dividing circuit 51 that uses the capacitive element Cfe51 having voltage dependent characteristics as a voltage dividing element is the same as the decreasing rate of the divided voltage P72 of the second voltage dividing circuit 72. Different.

本実施形態では,この電圧P51,電圧P72の変化の特性を利用して,電圧P51と電圧P72のクロスポイントを作る。そして,このクロスポイントの電圧Vcが基準電圧VREFになるように,すなわち,このクロスポイントの時点(時間T20)で,電源電圧VDDが動作仕様規格以下の電圧に低下したと見なせるように,強誘電体容量素子Cfe51,常誘電体容量素子Cdp51,抵抗R72,抵抗R72’のパラメータを調整する。このパラメータの調整の具体例については,第1実施形態で説明したので省略する。   In the present embodiment, a cross point between the voltage P51 and the voltage P72 is created by using the change characteristics of the voltage P51 and the voltage P72. Then, the ferroelectric voltage is set so that the voltage Vc at the cross point becomes the reference voltage VREF, that is, at the time of the cross point (time T20), it can be considered that the power supply voltage VDD has decreased to a voltage lower than the operation specification standard. The parameters of the body capacitance element Cfe51, the paraelectric capacitance element Cdp51, the resistor R72, and the resistor R72 ′ are adjusted. Since a specific example of the parameter adjustment has been described in the first embodiment, a description thereof will be omitted.

第2の分圧回路72の分圧素子として抵抗を利用すると電流パスが形成されることになる。しかし,分圧素子である抵抗R72,抵抗R72’の抵抗値を大きくすることにより,第2の分圧回路72に流れる電流を削減することができるので,電流パスの影響を少なくできる。   When a resistor is used as the voltage dividing element of the second voltage dividing circuit 72, a current path is formed. However, since the current flowing through the second voltage dividing circuit 72 can be reduced by increasing the resistance values of the resistors R72 and R72 'that are voltage dividing elements, the influence of the current path can be reduced.

第3実施形態の変形例としては,第2実施形態の変形例と同様に,第1の分圧回路51と第2の分圧回路72とを入れ替えてもよい。また,第1の分圧回路51の高電源VDD側に接続している強誘電体容量素子Cfe51を基準電源VSS側に接続して常誘電体容量素子Cdp51を高電源VDD側に接続してもよい。この入れ替えによって比較器53の比較信号VDETが逆論理になる場合には,第1の分圧回路51の分圧電圧P51を比較器53の非反転入力端子に入力し,第2の分圧回路72の分圧電圧P72を比較器53の反転入力端子に入力する。   As a modification of the third embodiment, the first voltage dividing circuit 51 and the second voltage dividing circuit 72 may be interchanged as in the modification of the second embodiment. Further, even if the ferroelectric capacitor Cfe51 connected to the high power supply VDD side of the first voltage dividing circuit 51 is connected to the reference power supply VSS side and the paraelectric capacitor Cdp51 is connected to the high power supply VDD side. Good. When the comparison signal VDET of the comparator 53 becomes reverse logic due to this replacement, the divided voltage P51 of the first voltage dividing circuit 51 is input to the non-inverting input terminal of the comparator 53, and the second voltage dividing circuit. The divided voltage P 72 of 72 is input to the inverting input terminal of the comparator 53.

上記の実施形態の説明では,電圧依存特性を持つ容量素子の一例として,強誘電体容量素子を例示したが,他にもPNダイオードの逆方向バイアス時の接合(Junction)容量を用いることもできる。この接合容量とは,ダイオードの逆方向バイアス時に,ダイオードのPN接合部における絶縁性を持つ空乏層に空間電荷が蓄えられることにより生じる静電容量である。他にも,MOSトランジスタを利用したMOS容量を用いることもできる。   In the above description of the embodiment, a ferroelectric capacitor is illustrated as an example of a capacitor having voltage-dependent characteristics. However, a junction capacitor at the time of reverse bias of a PN diode can also be used. . The junction capacitance is an electrostatic capacitance generated when space charges are stored in a depletion layer having an insulating property at the PN junction portion of the diode when the diode is reversely biased. In addition, a MOS capacitor using a MOS transistor can be used.

電圧依存特性を持たない容量素子の一例としては,積層ダブルポリシリコンを使用した容量がある。   An example of a capacitive element that does not have voltage-dependent characteristics is a capacitor that uses stacked double polysilicon.

以上の実施の形態をまとめると,次の付記のとおりである。   The above embodiment is summarized as follows.

(付記1)
高電源VDDと基準電源VSSとの間に設けられ,印加電圧に応じて容量が変化する電圧依存特性を持つ容量素子と前記電圧依存特性を持たない容量素子とが直列接続した第1の分圧回路と,
前記高電源VDDと前記基準電源VSSとの間に設けられ,前記第1の分圧回路に並列接続した第2の分圧回路と,
前記第1の分圧回路における前記容量素子間の分圧電圧と,前記第2の分圧回路の分圧電圧とを比較する比較器とを有する電源電圧判定回路。
(Appendix 1)
A first voltage divider provided between the high power supply VDD and the reference power supply VSS and having a voltage-dependent characteristic whose capacitance changes according to the applied voltage and a capacitive element not having the voltage-dependent characteristic are connected in series. Circuit,
A second voltage dividing circuit provided between the high power supply VDD and the reference power supply VSS and connected in parallel to the first voltage dividing circuit;
A power supply voltage determination circuit comprising: a comparator that compares a divided voltage between the capacitive elements in the first voltage dividing circuit with a divided voltage of the second voltage dividing circuit.

(付記2)
付記1において,
前記第1の分圧回路は,前記高電源VDD側に接続する前記電圧依存特性を持つ第1の容量素子と前記基準電源VSS側に接続する前記電圧依存特性を持たない第2の容量素子を有し,
前記第2の分圧回路は,前記高電源VDD側に接続する前記電圧依存特性を持たない第3の容量素子と前記基準電源VSS側に接続する前記電圧依存特性を持つ第4の容量素子を有する電源電圧判定回路。
(Appendix 2)
In Appendix 1,
The first voltage dividing circuit includes a first capacitive element having the voltage dependence characteristic connected to the high power supply VDD side and a second capacitive element having no voltage dependence characteristic connected to the reference power supply VSS side. Have
The second voltage dividing circuit includes a third capacitor element having no voltage dependency characteristic connected to the high power supply VDD side and a fourth capacitor element having the voltage dependency characteristic connected to the reference power supply VSS side. A power supply voltage determination circuit.

(付記3)
付記1において,
前記第2の分圧回路は,前記電圧依存特性を持たない容量素子を直列接続した電源電圧判定回路。
(Appendix 3)
In Appendix 1,
The second voltage dividing circuit is a power supply voltage determination circuit in which capacitive elements having no voltage dependence characteristics are connected in series.

(付記4)
付記1において,
前記第2の分圧回路は,抵抗素子を直列接続した電源電圧判定回路。
(Appendix 4)
In Appendix 1,
The second voltage dividing circuit is a power supply voltage determination circuit in which resistance elements are connected in series.

(付記5)
付記1から4の何れかにおいて,
前記電圧依存特性を持つ容量素子は,強誘電体容量である電源電圧判定回路。
(Appendix 5)
In any one of appendices 1 to 4,
The capacitor element having the voltage dependency characteristic is a power supply voltage determination circuit which is a ferroelectric capacitor.

(付記6)
付記1から4の何れかにおいて,
前記電圧依存特性を持たない容量素子は,常誘電体容量である電源電圧判定回路。
(Appendix 6)
In any one of appendices 1 to 4,
The capacitor element having no voltage dependence characteristic is a power supply voltage determination circuit which is a paraelectric capacitor.

10…LSI
11,20,40,50,60,70…電源電圧判定回路
51…第1の分圧回路
52,62,72…第2の分圧回路
53…比較器
54…バイアス回路
10 ... LSI
11, 20, 40, 50, 60, 70 ... power supply voltage determination circuit 51 ... first voltage divider circuit 52, 62, 72 ... second voltage divider circuit 53 ... comparator 54 ... bias circuit

Claims (5)

高電源と基準電源との間に設けられ,印加電圧に応じて容量が変化する電圧依存特性を持つ容量素子と前記電圧依存特性を持たない容量素子とが直列接続した第1の分圧回路と,
前記高電源と前記基準電源との間に設けられ,前記第1の分圧回路に並列接続した第2の分圧回路と,
前記第1の分圧回路における前記容量素子間の分圧電圧と,前記第2の分圧回路の分圧電圧とを比較する比較器とを有する電源電圧判定回路。
A first voltage dividing circuit provided between a high power supply and a reference power supply and having a voltage-dependent characteristic whose capacitance changes according to an applied voltage and a capacitive element not having the voltage-dependent characteristic are connected in series; ,
A second voltage dividing circuit provided between the high power supply and the reference power supply and connected in parallel to the first voltage dividing circuit;
A power supply voltage determination circuit comprising: a comparator that compares a divided voltage between the capacitive elements in the first voltage dividing circuit with a divided voltage of the second voltage dividing circuit.
請求項1において,
前記第1の分圧回路は,前記高電源側に接続する前記電圧依存特性を持つ第1の容量素子と前記基準電源側に接続する前記電圧依存特性を持たない第2の容量素子を有し,
前記第2の分圧回路は,前記高電源側に接続する前記電圧依存特性を持たない第3の容量素子と前記基準電源側に接続する前記電圧依存特性を持つ第4の容量素子を有する電源電圧判定回路。
In claim 1,
The first voltage dividing circuit includes a first capacitive element having the voltage dependence characteristic connected to the high power supply side and a second capacitive element not having the voltage dependence characteristic connected to the reference power supply side. ,
The second voltage dividing circuit includes a third capacitor element having no voltage dependency characteristic connected to the high power supply side and a fourth capacitor element having the voltage dependency characteristic connected to the reference power supply side. Voltage judgment circuit.
請求項1において,
前記第2の分圧回路は,前記電圧依存特性を持たない容量素子を直列接続した電源電圧判定回路。
In claim 1,
The second voltage dividing circuit is a power supply voltage determination circuit in which capacitive elements having no voltage dependence characteristics are connected in series.
請求項1において,
前記第2の分圧回路は,抵抗素子を直列接続した電源電圧判定回路。
In claim 1,
The second voltage dividing circuit is a power supply voltage determination circuit in which resistance elements are connected in series.
請求項1から4の何れかにおいて,
前記電圧依存特性を持つ容量素子は,強誘電体容量である電源電圧判定回路。
In any of claims 1 to 4,
The capacitor element having the voltage dependency characteristic is a power supply voltage determination circuit which is a ferroelectric capacitor.
JP2010256833A 2010-11-17 2010-11-17 Power supply voltage determination circuit Pending JP2012107982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010256833A JP2012107982A (en) 2010-11-17 2010-11-17 Power supply voltage determination circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010256833A JP2012107982A (en) 2010-11-17 2010-11-17 Power supply voltage determination circuit

Publications (1)

Publication Number Publication Date
JP2012107982A true JP2012107982A (en) 2012-06-07

Family

ID=46493769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010256833A Pending JP2012107982A (en) 2010-11-17 2010-11-17 Power supply voltage determination circuit

Country Status (1)

Country Link
JP (1) JP2012107982A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143969A (en) * 1987-11-30 1989-06-06 Nec Corp Power supply voltage detecting circuit
JPH03211472A (en) * 1990-01-17 1991-09-17 Matsushita Electric Ind Co Ltd Source voltage detecting circuit
JPH03267767A (en) * 1990-03-17 1991-11-28 Matsushita Electric Ind Co Ltd Detecting circuit for power source voltage
JPH0993096A (en) * 1995-09-25 1997-04-04 Sharp Corp Comparator
JP2002078235A (en) * 2000-08-31 2002-03-15 Matsushita Electric Ind Co Ltd Power-failure detector
JP2009079947A (en) * 2007-09-26 2009-04-16 Fujitsu Microelectronics Ltd Supply voltage detection circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143969A (en) * 1987-11-30 1989-06-06 Nec Corp Power supply voltage detecting circuit
JPH03211472A (en) * 1990-01-17 1991-09-17 Matsushita Electric Ind Co Ltd Source voltage detecting circuit
JPH03267767A (en) * 1990-03-17 1991-11-28 Matsushita Electric Ind Co Ltd Detecting circuit for power source voltage
JPH0993096A (en) * 1995-09-25 1997-04-04 Sharp Corp Comparator
JP2002078235A (en) * 2000-08-31 2002-03-15 Matsushita Electric Ind Co Ltd Power-failure detector
JP2009079947A (en) * 2007-09-26 2009-04-16 Fujitsu Microelectronics Ltd Supply voltage detection circuit

Similar Documents

Publication Publication Date Title
US7176740B2 (en) Level conversion circuit
US10503189B1 (en) Voltage regulator and dynamic bleeder current circuit
US7884617B2 (en) ESD detection circuit and related method thereof
JP5581868B2 (en) Semiconductor circuit and constant voltage circuit using the same
JP5690341B2 (en) Integrated circuit adapted to be selectively AC or DC coupled
JPH06209255A (en) Integrated buffer circuit
JP3863508B2 (en) Power supply voltage detection circuit and semiconductor integrated circuit device
TWI301976B (en) Internal voltage generating circuit in semiconductor memory device
US9819332B2 (en) Circuit for reducing negative glitches in voltage regulator
US11422581B2 (en) Dynamic biasing techniques
JP2012107982A (en) Power supply voltage determination circuit
US20140369105A1 (en) Generating output signal during read operation
US11249118B2 (en) Current sensing circuit
KR20190006111A (en) Tie-High/Tie-Low Circuit
JP5133102B2 (en) Semiconductor integrated circuit
US7248092B2 (en) Clamp circuit device
US9030246B2 (en) Semiconductor device
US8542041B2 (en) Semiconductor device and system
US11728642B2 (en) Semiconductor device and protection circuit
KR100650816B1 (en) Internal circuit protection device
CN110727308B (en) Auxiliary circuit suitable for no off-chip capacitance type voltage regulator
CN113917967B (en) Low-power consumption trimming circuit
TWI497256B (en) Reference voltage generating circuit and electronic device
JP2009231891A (en) Semiconductor device
US20050104571A1 (en) Power-up signal generating circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303