JPH03267663A - Operating method for refrigerator - Google Patents

Operating method for refrigerator

Info

Publication number
JPH03267663A
JPH03267663A JP6540290A JP6540290A JPH03267663A JP H03267663 A JPH03267663 A JP H03267663A JP 6540290 A JP6540290 A JP 6540290A JP 6540290 A JP6540290 A JP 6540290A JP H03267663 A JPH03267663 A JP H03267663A
Authority
JP
Japan
Prior art keywords
compressor
pressure
evaporator
valve
evaporators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6540290A
Other languages
Japanese (ja)
Inventor
Tsutomu Itahana
板鼻 勉
Yoshimi Shimodaira
下平 良美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6540290A priority Critical patent/JPH03267663A/en
Publication of JPH03267663A publication Critical patent/JPH03267663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To prevent the pressure of refrigerant gas to be discharged from a compressor from excessively rising by feeding a part of the gas discharged from the compressor to a condenser when the pressure of the gas discharged from the compressor exceeds a predetermined value, dissipating heat from the condenser, and then introducing the residue into an evaporator. CONSTITUTION:A pressure switch 40 for sensing the pressure of refrigerant gas discharged from a compressor 1 is provided in a discharge tube 1a of the compressor 1. When the pressure sensed by the switch 40 is a predetermined value or less, a solenoid valve 2 remains closed, while when it exceeds the value, the valve 2 is opened. Then the pressure of the gas discharged from the compressor 1 is lower than a predetermined value, i.e., a pressure set by the switch 40, under a state where a load is cooled by a first evaporator 8 and heated by a second evaporator 11, solenoid valves 6, 18, 20 are opened, and the valves 2, 9, 17, 21 are closed. Thus, the gas of high temperature and high pressure discharged from the compressor 1 is introduced to the evaporator 1 through a bypass tube 31 and the valve 18 to heat the load in the step of passing the evaporator 11 to be condensed and liquefied.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は2つの冷蔵又は保温庫を有する冷凍車等に好適
な冷凍装置の運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of operating a refrigeration system suitable for a refrigerating vehicle or the like having two refrigerators or heat-insulating compartments.

(従来の技術) 本出願人はさきに第2図に示す冷凍装置及びその運転方
法について特許出願中である。
(Prior Art) The present applicant is currently applying for a patent regarding the refrigeration system and its operating method shown in FIG.

この冷凍装置は圧縮機1と、この圧縮機1の吐出口に接
続された凝縮器3と、この凝縮器3の出口に並列に接続
された第1及び第2の蒸発器8.11と、これら蒸発器
8.11の入口と上記圧m機lの吐出口とをそれぞれ接
続するバイパス管30.31と、これら蒸発器8.11
の出口と凝縮器3の出口とをそれぞれ接続する第1及び
第2戻り管32.33と、これら戻り管32.33にそ
れぞれ介装され凝縮器3の出口に向かう冷媒の流れのみ
を許容する逆止弁22.23とを備えている。
This refrigeration system includes a compressor 1, a condenser 3 connected to the outlet of the compressor 1, and first and second evaporators 8.11 connected in parallel to the outlet of the condenser 3. Bypass pipes 30.31 connecting the inlets of these evaporators 8.11 and the discharge ports of the pressure machine 1, respectively, and the evaporators 8.11
first and second return pipes 32.33 connecting the outlet of the condenser 3 and the outlet of the condenser 3, respectively, and a refrigerant that is interposed in each of these return pipes 32.33 and allows only the flow of refrigerant toward the outlet of the condenser 3. It is equipped with check valves 22 and 23.

この冷凍装置の各蒸発器8.11の作用と電磁弁の開閉
との関係が第1表に示されている。
Table 1 shows the relationship between the operation of each evaporator 8.11 of this refrigeration system and the opening/closing of the solenoid valve.

第1表 双方の蒸発器8及び11に冷却作用をさせる場合には第
1表のケースlに示されるように、電磁弁2.6.9.
20.21が開、電磁弁17.18が閉とされる。
When cooling is applied to both evaporators 8 and 11 in Table 1, as shown in case l of Table 1, solenoid valves 2.6.9.
20.21 is opened, and solenoid valves 17.18 are closed.

カベして、圧縮機1から吐出された高温・高圧の冷媒ガ
スは電磁弁2を経て凝縮器3に入り、ここで放熱するこ
とによって凝縮液化する。この液冷媒はレシーバ4及び
逆止弁5を経て分岐し、その一方は電磁弁6を経て第1
の膨張弁7に入り、ここで絞られることにより断熱膨張
した後、第1の蒸発器8に入り、ここで負荷を冷却する
ことによって蒸発気化し、次いで、この冷媒ガスは電磁
弁20、逆止弁12を流過する。
The high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the electromagnetic valve 2 and enters the condenser 3, where it is condensed and liquefied by dissipating heat. This liquid refrigerant is branched through a receiver 4 and a check valve 5, one of which is branched through a solenoid valve 6 and a first branch.
The refrigerant gas enters the expansion valve 7, where it is throttled and adiabatically expanded, enters the first evaporator 8, where it is evaporated by cooling the load, and then this refrigerant gas passes through the solenoid valve 20 and the reverse It flows through the stop valve 12.

分岐した他方の液冷媒は1を磁弁9を経て第2の膨張弁
10に入り、ここで絞られることにより断熱膨張した後
、第2の蒸発器11に入り、ここで負荷を冷却すること
によって蒸発気化する0次いで、この冷媒ガスは電磁弁
21を経て冷媒流量調整弁14でその流量を調整された
後、逆止弁15を流過した所で逆止弁12を通って来た
冷媒ガスと合流してアキュムレータ13に入り、ここで
未蒸発の液冷媒を分離する。しかる後、吸入圧力調整弁
16に入り、ここでその圧力を調整された後、圧縮機1
に吸入されて再び圧縮される。
The other branched liquid refrigerant passes through the magnetic valve 9 and enters the second expansion valve 10, where it is throttled and expanded adiabatically, and then enters the second evaporator 11, where it cools the load. The refrigerant gas passes through the electromagnetic valve 21 and has its flow rate adjusted by the refrigerant flow rate adjustment valve 14, and then passes through the check valve 15 where the refrigerant gas that has passed through the check valve 12 It joins with the gas and enters the accumulator 13, where the unevaporated liquid refrigerant is separated. After that, it enters the suction pressure regulating valve 16, where the pressure is adjusted, and then the compressor 1
is inhaled and compressed again.

双方の蒸発器8及び−11に加熱作用をさせる場合には
、第1表のケース2に示されるように、電磁弁17.1
8.20.21が開、電磁弁2.6.9が閉とされる。
When heating both evaporators 8 and -11, as shown in case 2 of Table 1, the solenoid valve 17.1
8.20.21 is open and solenoid valve 2.6.9 is closed.

かくして、圧縮機1から吐出された高温・高圧の冷媒ガ
スは吐出直後に分岐し、その一方はバイパス管30及び
これに介装された電磁弁17を経て第1の蒸発器8内に
入り、ここで負荷を加熱することによって降温した後、
電磁弁20、逆止弁12を流過する。分岐した冷媒ガス
の他方はバイパス管31及びこれに介装された電磁弁1
8を経て第2の蒸発器11に入り、ここで負荷を加熱す
ることによって降温した後、を磁弁21、冷媒流量調整
弁14、逆止弁15を流過した所で逆止弁12を通って
来た冷媒ガスと合流し、アキュムレータ13、吸入圧力
調整弁16を経て圧縮機1に吸い込まれる。
In this way, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 is branched immediately after discharge, one of which enters the first evaporator 8 through the bypass pipe 30 and the solenoid valve 17 installed therein. After cooling down by heating the load here,
It flows through the electromagnetic valve 20 and the check valve 12. The other branched refrigerant gas is connected to the bypass pipe 31 and the solenoid valve 1 installed therein.
8, enters the second evaporator 11, where the load is cooled down by heating, and then passes through the magnetic valve 21, the refrigerant flow rate adjustment valve 14, and the check valve 15, where the check valve 12 is closed. It joins with the refrigerant gas that has passed through, and is sucked into the compressor 1 via the accumulator 13 and the suction pressure regulating valve 16.

第1の蒸発器8で負荷を冷却し、第2の蒸発器11で負
荷を加熱する場合には、第1表のケース3に示されるよ
うに、電磁弁6.18.20が開、電磁弁2.9.7.
21が閉とされる。
When the first evaporator 8 cools the load and the second evaporator 11 heats the load, the solenoid valve 6.18.20 opens and the solenoid valve 6.18.20 opens, as shown in case 3 of Table 1. Valve 2.9.7.
21 is closed.

かくして、圧縮機1から吐出された高温・高圧の冷媒ガ
スはバイパス管31、電磁弁18を経て第2の蒸発器1
1に入り、ここで流過する過程で負荷を加熱することに
よって凝縮液化する。次いで、この冷媒液は第2の戻り
管33、逆止弁23、電磁弁6、第1の膨張弁7を経て
第1の蒸発器8に入り、ここで負荷を冷却することによ
って蒸発気化した後、電磁弁20、逆止弁12、アキュ
ムレータ13、吸入圧力調整弁16を経て圧縮機1に戻
る。
In this way, the high temperature and high pressure refrigerant gas discharged from the compressor 1 passes through the bypass pipe 31 and the solenoid valve 18 to the second evaporator 1.
1, where it condenses and liquefies by heating the load in the process of flowing through it. Next, this refrigerant liquid passes through the second return pipe 33, the check valve 23, the electromagnetic valve 6, and the first expansion valve 7, and enters the first evaporator 8, where it is evaporated and vaporized by cooling the load. Thereafter, it returns to the compressor 1 via the solenoid valve 20, check valve 12, accumulator 13, and suction pressure regulating valve 16.

第1の蒸発器8で負荷を加熱し、第2の蒸発器11で負
荷を冷却する場合には、第2表のケース4に示されるよ
うに、電磁弁9.17.21が開、電磁弁2.6.18
.20が閉とされる。
When the load is heated by the first evaporator 8 and the load is cooled by the second evaporator 11, as shown in case 4 of Table 2, the solenoid valve 9.17.21 is opened and the solenoid valve 9.17.21 is opened. Valve 2.6.18
.. 20 is considered closed.

かくして、圧縮機1から吐出された高温・高圧の冷媒ガ
スはバイパス管30、電磁弁17を経て第1の蒸発器8
に入り、ここで負荷を加熱することによって凝縮液化す
る。次いで、この冷媒液は第1の戻り管32、逆止弁2
2、電磁弁9、第2の膨張弁10を経て第2の蒸発器1
1に入り、ここで負荷を冷却することによって蒸発気化
した後、電磁弁2】、冷媒流量調整弁14、逆止弁15
、アキュムレータ13、吸入圧力調整弁16を経て圧縮
機1に戻る。
Thus, the high temperature and high pressure refrigerant gas discharged from the compressor 1 passes through the bypass pipe 30 and the solenoid valve 17 to the first evaporator 8.
where it condenses and liquefies by heating the load. This refrigerant liquid then passes through the first return pipe 32 and the check valve 2.
2, the second evaporator 1 via the solenoid valve 9 and the second expansion valve 10
1, and after the load is evaporated by cooling it, the solenoid valve 2], the refrigerant flow rate adjustment valve 14, and the check valve 15
, the accumulator 13, and the suction pressure regulating valve 16 before returning to the compressor 1.

(発明が解決しようとする課題) いずれか一方の蒸発器で負荷を加熱し、いずれか他方の
蒸発器で負荷を冷却する場合、一方の蒸発器における放
熱量が不足するため、圧縮機1から吐出される冷媒ガス
の圧力が過昇し、この結果、冷凍装置の運転を安定して
継続することができないという問題があった。
(Problem to be Solved by the Invention) When heating a load with one of the evaporators and cooling the load with one of the other evaporators, the amount of heat dissipated in one of the evaporators is insufficient. There was a problem in that the pressure of the discharged refrigerant gas increased excessively, and as a result, the operation of the refrigeration system could not be continued stably.

(課題を解決するための手段) 本発明は上記課題を解決するために発明されたものであ
って、その要旨とするところは、圧縮機と、この圧縮機
の吐出口に接続されたaII器と、この凝縮器の出口に
並列に接続された複数の蒸発器と、これら複数の蒸発器
の入口と上記圧縮機の吐出口とをそれぞれ接続する複数
のバイパス管と、上記複数の蒸発器の出口と上記凝縮器
の出口とを接続する複数の戻り管と、これら戻り管にそ
れぞれ介装され上記凝縮器の出口に向かう冷媒の流れの
みを許容する逆止弁とを備えた冷凍装置において、上記
複数の蒸発器の中の一部の蒸発器に上記圧縮機から吐出
された高温・高圧の冷媒ガスをバイパス管を経て導入す
ることによって負荷を加熱しこの一部の蒸発器を流過し
た冷媒を上記戻り管及び逆止弁を経て残部の蒸発器に導
入して負荷を冷却する際、上記圧縮機から吐出される冷
媒ガスの圧力が所定値を越えたとき上記圧縮機から吐出
された冷媒ガスの一部を上記凝縮器を経て上記残部の蒸
発器に導入することを特徴とする冷凍装置の運転方法に
ある。
(Means for Solving the Problems) The present invention was invented in order to solve the above problems, and the gist of the present invention is to provide a compressor and an aII device connected to the discharge port of the compressor. and a plurality of evaporators connected in parallel to the outlet of the condenser, a plurality of bypass pipes respectively connecting the inlets of the plurality of evaporators and the discharge port of the compressor, and a plurality of bypass pipes of the plurality of evaporators. A refrigeration system comprising a plurality of return pipes connecting the outlet and the outlet of the condenser, and a check valve that is interposed in each of the return pipes and allows only the flow of refrigerant toward the outlet of the condenser, The high-temperature, high-pressure refrigerant gas discharged from the compressor was introduced into some of the plurality of evaporators through a bypass pipe to heat the load, and the gas was passed through some of the evaporators. When the refrigerant is introduced into the remaining evaporator through the return pipe and check valve to cool the load, when the pressure of the refrigerant gas discharged from the compressor exceeds a predetermined value, the refrigerant gas discharged from the compressor A method of operating a refrigeration apparatus is characterized in that a part of the refrigerant gas is introduced into the remaining evaporator through the condenser.

(作用) 本発明においては、複数の蒸発器の中の一部の蒸発器で
負荷を加熱し、残部の蒸発器で負荷を冷却する際、圧縮
機から吐出される冷媒ガスの圧力が所定値を越えたとき
は圧縮機から吐出された冷媒ガスの一部を凝縮器に流入
させてここで放熱させた後、残部の蒸発器に導入する。
(Function) In the present invention, when a load is heated by some of the evaporators and the load is cooled by the remaining evaporators, the pressure of the refrigerant gas discharged from the compressor is set to a predetermined value. When the refrigerant gas is exceeded, a part of the refrigerant gas discharged from the compressor flows into the condenser where the heat is radiated, and then the remaining part is introduced into the evaporator.

(実施例) 本発明の1実施例が第1図に示されている。(Example) One embodiment of the invention is shown in FIG.

圧縮[131の吐出管1aには圧縮機1から吐出された
冷媒ガスの圧力を検知する圧力スイフチ4oが設けられ
、この圧力スイッチ40で検知された圧力が予め定めら
れた所定値以下のときは電磁弁2は閉のままとされ、所
定値を越えたとき、電磁弁2が開とされるようになって
いる。
The discharge pipe 1a of the compressor 131 is provided with a pressure switch 4o that detects the pressure of the refrigerant gas discharged from the compressor 1, and when the pressure detected by the pressure switch 40 is below a predetermined value, The solenoid valve 2 is kept closed, and when a predetermined value is exceeded, the solenoid valve 2 is opened.

他の構成は第2図に示す従来のものと同様であり、対応
する部材には同し符号が付されている。
The rest of the structure is the same as the conventional one shown in FIG. 2, and corresponding members are given the same reference numerals.

各蒸発器8.11の作用と各1[弁の開閉との関係が第
2表に示されている。
The relationship between the action of each evaporator 8.11 and the opening and closing of each valve is shown in Table 2.

第2表 双方の芸発器8及び11で負荷を冷却する場合、即ち、
ケース1並びに双方の蒸発器8及び11で負荷を加熱す
る場合、即ち、ケース2は第2図に示す従来のものと同
様である。
When cooling the load with generators 8 and 11 in both Table 2, that is,
When heating the load with case 1 and both evaporators 8 and 11, case 2 is similar to the conventional one shown in FIG.

第1の蒸発器8で負荷を冷却し、第2の蒸発器11で負
荷を加熱する場合において、圧縮機lから吐出された冷
媒ガスの圧力が所定値、即ち、圧力スイフチ40に設定
された設定圧力より低いときには、第2表のケース3の
上段に示されるように、電磁弁6.18.20が開、;
磁弁2.9.17.21が閉とされる。
When the load is cooled by the first evaporator 8 and the load is heated by the second evaporator 11, the pressure of the refrigerant gas discharged from the compressor l is set to a predetermined value, that is, the pressure switch 40. When the pressure is lower than the set pressure, as shown in the upper row of case 3 in Table 2, the solenoid valve 6.18.20 opens;
Magnetic valve 2.9.17.21 is closed.

かくして、圧縮機1から吐出された高温・高圧の冷媒ガ
スはバイパス管31、電磁弁18を経て第2の芸発器1
1に入り、ここを流過する過程で負荷を加熱することに
よって凝縮液化する。次いで、この冷媒液は第2の戻り
6管33、逆止弁23、電磁弁6、第1の膨張弁7を経
て第1の蒸発器8に入り、ここで負荷を冷却することに
よって蒸発気化した後、電磁弁20、逆止弁12、アキ
ュムレータ13、吸入圧力調整弁16を経て圧縮Ill
に戻る。
In this way, the high temperature and high pressure refrigerant gas discharged from the compressor 1 passes through the bypass pipe 31 and the solenoid valve 18 to the second generator 1.
1, and in the process of flowing through this, the load is heated and condensed into liquid. Next, this refrigerant liquid passes through the second return pipe 33, the check valve 23, the solenoid valve 6, and the first expansion valve 7, and enters the first evaporator 8, where it is evaporated by cooling the load. After that, the compression Ill passes through the solenoid valve 20, the check valve 12, the accumulator 13, and the suction pressure regulating valve 16.
Return to

圧縮機1から吐出された冷媒ガスの圧力が圧力スイッチ
40の設定圧力を越えたときには、第2表のケース3の
下段に示されるように、1を磁弁2.6.18.20が
開、を磁弁9.17.21が閉とされる。
When the pressure of the refrigerant gas discharged from the compressor 1 exceeds the set pressure of the pressure switch 40, as shown in the lower row of case 3 in Table 2, the magnetic valve 2, 6, 18, 20 opens 1. , the magnetic valve 9.17.21 is closed.

かくして、圧縮機1から吐出された冷媒ガスは吐出直後
に分岐し、その一部は’am弁2を経て凝縮器3に入り
、ここで放熱することにより凝縮液化した後、レシーバ
4、逆止弁5を流過する0分岐した冷媒ガスの大部はバ
イパス管31、を磁弁18、第2の蒸発器11、第2の
戻り管33、逆止弁23を経て先に分岐した冷媒ガスの
一部と合流してTH,M1弁6、第1の膨張弁7を経て
第1の蒸発器8、電磁弁20、逆止弁12、アキュムレ
ータ13、吸入圧力調整弁16を経て圧縮機1に戻る。
In this way, the refrigerant gas discharged from the compressor 1 branches immediately after discharge, and a part of it passes through the 'am valve 2 and enters the condenser 3, where it is condensed and liquefied by dissipating heat. Most of the zero-branched refrigerant gas flowing through the valve 5 passes through the bypass pipe 31, the magnetic valve 18, the second evaporator 11, the second return pipe 33, and the check valve 23, and then returns to the previously branched refrigerant gas. through the TH, M1 valve 6, the first expansion valve 7, the first evaporator 8, the solenoid valve 20, the check valve 12, the accumulator 13, the suction pressure regulating valve 16, and the compressor 1. Return to

この結果、冷媒回路内を循環する冷媒は凝縮器2で放熱
するとともに第2の蒸発器11で放熱することによって
放熱量が増大するため、圧縮機1から吐出される冷媒ガ
スの圧力が低下し、これが圧力スイッチ40の設定圧力
より低下すれば電磁弁2は再び閉となり、ケース3の上
段に示す作動をする。
As a result, the refrigerant circulating in the refrigerant circuit radiates heat in the condenser 2 and also in the second evaporator 11, increasing the amount of heat radiated, so the pressure of the refrigerant gas discharged from the compressor 1 decreases. When this pressure falls below the set pressure of the pressure switch 40, the solenoid valve 2 closes again, and the operation shown in the upper part of the case 3 is performed.

第1の蒸発器8で負荷を加熱し、第2の蒸発器11で負
荷を冷却する場合において、圧縮機1から吐出された冷
媒ガスの圧力が圧力スイッチ40の設定圧力より低い場
合が第2表のケース4の上段に、設定圧力より高い場合
が下段に示されており、上記ケース3の場合と類似する
のでその説明を省略する。
When the first evaporator 8 heats the load and the second evaporator 11 cools the load, if the pressure of the refrigerant gas discharged from the compressor 1 is lower than the set pressure of the pressure switch 40, the second Case 4 is shown in the upper row of the table, and the case where the pressure is higher than the set pressure is shown in the lower row, and since it is similar to case 3 above, the explanation thereof will be omitted.

以上、2つの蒸発器8.11を備えているものについて
具体的に説明したが、2つ以上の蒸発器を備えているも
のにも本発明を適用しうろことは勿論である。
Although the above description has specifically been given of an apparatus equipped with two evaporators 8.11, it goes without saying that the present invention can also be applied to an apparatus equipped with two or more evaporators.

(発明の効果) 本発明においては、複数の蒸発器の中の一部の蒸発器に
圧縮機から吐出された高温・高圧の冷媒ガスをバイパス
管を経て導入することによって負荷を加熱しこの一部の
蒸発器を流過した冷媒を戻り管及び逆止弁を経て残部の
1発器に導入して負荷を冷却する際、圧縮機から吐出さ
れる冷媒ガスの圧力が所定値を越えたとき圧縮機から吐
出された冷媒ガスの一部を凝縮器を経て残部の蒸発器に
導入するため、圧縮機から吐出された冷媒ガスの圧力を
所定値以下に維持することができ、従って、冷凍装置の
運転を安定して継続することが可能となる。
(Effects of the Invention) In the present invention, a load is heated by introducing high-temperature, high-pressure refrigerant gas discharged from a compressor into some of the plurality of evaporators through a bypass pipe. When the pressure of refrigerant gas discharged from the compressor exceeds a predetermined value when the refrigerant that has passed through the first evaporator is introduced into the second evaporator through the return pipe and check valve to cool the load. Since a part of the refrigerant gas discharged from the compressor is introduced into the remaining evaporator through the condenser, the pressure of the refrigerant gas discharged from the compressor can be maintained below a predetermined value, and therefore the refrigeration system This makes it possible to continue stable operation.

【図面の簡単な説明】 第1図は本発明の1実施例を示す冷媒回路図、第2図は
従来の冷凍装置の冷媒回路図である。 圧縮機−1、凝縮器−3、蒸発器−8,11、バイパス
管 30.31、戻り管−32,33、逆止弁−22、
−3(
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a refrigerant circuit diagram showing one embodiment of the present invention, and FIG. 2 is a refrigerant circuit diagram of a conventional refrigeration system. Compressor-1, condenser-3, evaporator-8, 11, bypass pipe 30.31, return pipe-32, 33, check valve-22,
−3(

Claims (1)

【特許請求の範囲】[Claims] 圧縮機と、この圧縮機の吐出口に接続された凝縮器と、
この凝縮器の出口に並列に接続された複数の蒸発器と、
これら複数の蒸発器の入口と上記圧縮機の吐出口とをそ
れぞれ接続する複数のバイパス管と、上記複数の蒸発器
の出口と上記凝縮器の出口とを接続する複数の戻り管と
、これら戻り管にそれぞれ介装され上記凝縮器の出口に
向かう冷媒の流れのみを許容する逆止弁とを備えた冷凍
装置において、上記複数の蒸発器の中の一部の蒸発器に
上記圧縮機から吐出された高温・高圧の冷媒ガスをバイ
パス管を経て導入することによって負荷を加熱しこの一
部の蒸発器を流過した冷媒を上記戻り管及び逆止弁を経
て残部の蒸発器に導入して負荷を冷却する際、上記圧縮
機から吐出される冷媒ガスの圧力が所定値を越えたとき
上記圧縮機から吐出された冷媒ガスの一部を上記凝縮器
を経て上記残部の蒸発器に導入することを特徴とする冷
凍装置の運転方法。
a compressor; a condenser connected to a discharge port of the compressor;
a plurality of evaporators connected in parallel to the outlet of this condenser;
a plurality of bypass pipes respectively connecting the inlets of the plurality of evaporators and the outlet of the compressor; a plurality of return pipes connecting the outlet of the plurality of evaporators and the outlet of the condenser; In a refrigeration system equipped with a check valve that is interposed in each pipe and allows refrigerant to flow only toward an outlet of the condenser, the refrigerant is discharged from the compressor to some of the evaporators of the plurality of evaporators. The high-temperature, high-pressure refrigerant gas is introduced through the bypass pipe to heat the load, and the refrigerant that has passed through some of the evaporators is introduced into the remaining evaporators through the return pipe and check valve. When cooling the load, when the pressure of the refrigerant gas discharged from the compressor exceeds a predetermined value, a part of the refrigerant gas discharged from the compressor is introduced into the remaining evaporator via the condenser. A method of operating a refrigeration system characterized by:
JP6540290A 1990-03-15 1990-03-15 Operating method for refrigerator Pending JPH03267663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6540290A JPH03267663A (en) 1990-03-15 1990-03-15 Operating method for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6540290A JPH03267663A (en) 1990-03-15 1990-03-15 Operating method for refrigerator

Publications (1)

Publication Number Publication Date
JPH03267663A true JPH03267663A (en) 1991-11-28

Family

ID=13285987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6540290A Pending JPH03267663A (en) 1990-03-15 1990-03-15 Operating method for refrigerator

Country Status (1)

Country Link
JP (1) JPH03267663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196915A (en) * 2009-02-23 2010-09-09 Mitsubishi Heavy Ind Ltd Refrigerating cycle system and method of controlling the refrigerating cycle system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196915A (en) * 2009-02-23 2010-09-09 Mitsubishi Heavy Ind Ltd Refrigerating cycle system and method of controlling the refrigerating cycle system

Similar Documents

Publication Publication Date Title
AU2001286333B2 (en) Method and arrangement for defrosting a vapor compression system
US7197889B2 (en) Cooling unit
US20080078203A1 (en) Co2 Refrigeration Circuit with Sub-Cooling of the Liquid Refrigerant Aganist the Receiver Flash Gas and Method for Operating the Same
KR20060019582A (en) Supercritical pressure regulation of economized refrigeration system
CN104613696B (en) Refrigerator and its control method
US20210341192A1 (en) Heat pump device
CN109154454A (en) Refrigerating circulatory device
JPH03267663A (en) Operating method for refrigerator
JPH02309157A (en) Two-stage compression refrigeration cycle device and operation thereof
JP3735338B2 (en) Refrigeration apparatus for vehicle and control method thereof
JPH07151413A (en) Separate type air conditioner
JP2721727B2 (en) Refrigeration equipment
JPH05264108A (en) Refrigeration device
JP6521018B2 (en) Refrigeration system
JP2007315637A (en) Refrigerating machine with standby
JPH1194395A (en) Multi-room air conditioner
JP2014186621A (en) Vending machine
JPH03194363A (en) Refrigerating machine
JPH06313636A (en) Refrigerating equipment
JPH0593548A (en) Refrigerator
JPS627462B2 (en)
KR200298357Y1 (en) temperature-control structure between receiver tank and accumulator
KR100535333B1 (en) Cooling system
JPH02176365A (en) Heating and cooling machine
JPH0275861A (en) Method and apparatus for preventing refrigerant gas of evaporator and refrigerating compressor from abnormally overheating