JPH032655A - Air/fuel ratio sensor of internal combustion engine - Google Patents

Air/fuel ratio sensor of internal combustion engine

Info

Publication number
JPH032655A
JPH032655A JP1136222A JP13622289A JPH032655A JP H032655 A JPH032655 A JP H032655A JP 1136222 A JP1136222 A JP 1136222A JP 13622289 A JP13622289 A JP 13622289A JP H032655 A JPH032655 A JP H032655A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
characteristic
nox
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1136222A
Other languages
Japanese (ja)
Inventor
Akira Uchikawa
晶 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP1136222A priority Critical patent/JPH032655A/en
Publication of JPH032655A publication Critical patent/JPH032655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To perform feedback control for the different air/fuel ratios in correspondence with the operating conditions by providing a plurality of detecting elements having the different characteristics, and connecting electrodes in series. CONSTITUTION:The characteristic of electromotive voltage which is generated between a first inner electrode 15A and a first outer electrode 15B of a first detecting element 1 becomes the characteristic as follows: the oxygen component of NOx is excellently detected by the NOx reduction action of the reducing catalyst particles in the NOx in a first electrode protecting layer 17; and the characteristic is suddenly changed at a point close to a theoretical air/fuel ratio when NOx is increased. On the contrary, the characteristic of the electromotive voltage generated between an inner electrode 16A and an outer electrode 16B in a second detecting element 13 becomes the characteristic as follows: the oxygen component of NOx is not detected as the concentration of oxygen is exhaust gas; and a point where the electromotive voltage is suddenly changed in correspondence with the increase in concentration of NOx is shifted to the lean side. Therefore the output voltage characteristic between the electrodes 15A and 16B at both ends of the part wherein the electrodes of the elements 12 and 13 are connected in series becomes the characteristic obtained by adding the individual electromotive voltage characteristics. Thus, the feedback control can be performed for the different air/fuel ratios in correspondence with the operating conditions at a low cost.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関において、空燃比のフィードバック
制御に使用するための空燃比センサに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an air-fuel ratio sensor for use in feedback control of an air-fuel ratio in an internal combustion engine.

〈従来の技術〉 内燃機関においては、排気浄化対策として排気系に排気
中のCo、HCを酸化するとともにNOXを還元して浄
化する三元触媒が介装したものが一般化している。
<Prior Art> In internal combustion engines, as an exhaust purification measure, it has become common to have a three-way catalyst installed in the exhaust system that oxidizes Co and HC in the exhaust and reduces and purifies NOX.

前記三元触媒は転化効率(浄化効率)が理論空燃比燃焼
時の排気状態で有効に機能するように設定されている。
The conversion efficiency (purification efficiency) of the three-way catalyst is set so that it functions effectively in the exhaust state during stoichiometric air-fuel ratio combustion.

このため、特に高出力が要求される高負荷運転時等以外
の通常運転時は、排気系に設けた空燃比センサにより排
気性状がら空燃比を検出し、該空燃比を理論空燃比近傍
に制御することが一般に行われている。
Therefore, during normal operation other than during high-load operation where particularly high output is required, an air-fuel ratio sensor installed in the exhaust system detects the air-fuel ratio based on the exhaust characteristics, and controls the air-fuel ratio to near the stoichiometric air-fuel ratio. It is common practice to do so.

上記内燃機関の空燃比センサの従来例としては特開昭5
8−204365号公報等に示されるようなものがある
As a conventional example of the air-fuel ratio sensor for the internal combustion engine mentioned above,
There are some such as those shown in Publication No. 8-204365.

このものは、酸素イオン導電性を有したジルコニアチュ
ーブの排気と接触する外表面に排気中のCo、HCの酸
化反応を促進させる白金触媒層を積層しである。そして
、理論空燃比よりリッチな混合気で燃焼させたときに白
金触媒層付近に残存する低濃度のo2をCo、HCと良
好に反応させて0□濃度をゼロ近くにし、ジルコニアチ
ューブ内表面に接触させた大気の0□濃度との濃度比を
大きくして、ジルコニアチューブ内外表面間に大きな起
電力を発生させる。
This tube has a platinum catalyst layer that promotes the oxidation reaction of Co and HC in the exhaust gas on the outer surface of a zirconia tube having oxygen ion conductivity that comes into contact with the exhaust gas. Then, when combustion is performed with a mixture richer than the stoichiometric air-fuel ratio, the low concentration of O2 remaining near the platinum catalyst layer is reacted favorably with Co and HC to bring the concentration close to zero, and the inner surface of the zirconia tube is A large electromotive force is generated between the inner and outer surfaces of the zirconia tube by increasing the concentration ratio to the 0□ concentration of the atmosphere with which it is in contact.

一方、理論空燃比よりリーンな混合気で燃焼させたとき
には、排気中に高濃度の0□と低濃度のCo、HCが存
在するため、Co、HCと0□とが反応しても未だ0□
が余り、ジルコニアチューブ内外表面の0!濃度比は小
さく殆ど電力は発生しない。
On the other hand, when combustion is performed with a mixture leaner than the stoichiometric air-fuel ratio, a high concentration of 0□ and a low concentration of Co and HC are present in the exhaust gas, so even if Co and HC react with 0□, there is still no 0□. □
The remainder is 0 on the inner and outer surfaces of the zirconia tube! The concentration ratio is small and almost no power is generated.

このように、空燃比センサの発生起電力(出力電圧)は
理論空燃比近傍で急変する特性を有しており、この出力
電圧VO2を基準電圧(スライスレベル)とを比較して
混合気の空燃比が理論空燃比に対してリッチかリーンか
を判定する。
In this way, the electromotive force (output voltage) generated by the air-fuel ratio sensor has the characteristic of rapidly changing near the stoichiometric air-fuel ratio, and this output voltage VO2 is compared with the reference voltage (slice level) to determine the air-fuel ratio. Determines whether the fuel ratio is rich or lean relative to the stoichiometric air-fuel ratio.

そして、例えば空燃比がリーン(リッチ)の場合には、
機関の吸入空気流itQ及び回転数N等に基づいて設定
された基本燃料噴射量T、を機関温度等により補正した
ものに乗じるフィードバック補正係数αを所定の積分定
数1分ずつ徐々に増大(減少)していき、燃料噴射量T
、を増量(減少)することで空燃比を理論空燃比近傍に
制御するようにしている。
For example, when the air-fuel ratio is lean (rich),
The feedback correction coefficient α, which is multiplied by the basic fuel injection amount T, which is set based on the engine's intake airflow itQ and engine speed N, corrected based on the engine temperature, etc., is gradually increased (decreased) by a predetermined integral constant of 1 minute. ), the fuel injection amount T
By increasing (decreasing) , the air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio.

〈発明が解決しようとする課題〉 しかしながら、かかる従来の空燃比センサにあっては、
次のような問題を生じていた。
<Problem to be solved by the invention> However, in such a conventional air-fuel ratio sensor,
The following problems occurred.

即ち、本来NO,l中の酸素分は、排気中酸素濃度とし
て検出されるべきものであるが、前記空燃比センサでは
、これを捉えることができないため、NOX濃度が高(
なるほど真の理論空燃比よりリーン側で起電力が反転し
、これにより空燃比がリーン側に制御される。
That is, the oxygen content in NO,l should originally be detected as the oxygen concentration in the exhaust gas, but since the air-fuel ratio sensor cannot detect this, the NOx concentration is high (
Indeed, the electromotive force is reversed on the lean side of the true stoichiometric air-fuel ratio, thereby controlling the air-fuel ratio to the lean side.

また、メタノール等を使用すると、高負荷領域ではH2
が多量に存在するため、この場合も、空燃比の制御点が
リーン側にずれてしまうことがあった。
In addition, when using methanol etc., H2
Since a large amount of is present, the control point of the air-fuel ratio may shift to the lean side in this case as well.

このように、制御点がリーン側にシフトされ、空燃比が
リーン制御されると、ある程度までは燃費向上を図れる
ため却って好都合な制御となるのであるが、リーン側に
大きくシフトされると、三元触媒のNOx還元機能が損
なわれNOx発生量が大きく増加してしまう。
In this way, if the control point is shifted to the lean side and the air-fuel ratio is controlled to be lean, fuel efficiency can be improved to a certain extent, which is actually a convenient control, but if the control point is shifted significantly to the lean side, the The NOx reduction function of the base catalyst is impaired and the amount of NOx generated increases significantly.

本発明は、このような従来の問題点に鑑みなされたもの
で、異なる空燃比で出力特性が急変する特性を有し、以
て運転条件に応じて異なる空燃比にフィードバック制御
することを可能として、上記問題点を解消することがで
きるようにした内燃機関の空燃比センサを提供すること
を目的とする。
The present invention was developed in view of these conventional problems, and has the characteristic that the output characteristics change suddenly with different air-fuel ratios, thereby making it possible to perform feedback control to different air-fuel ratios depending on operating conditions. An object of the present invention is to provide an air-fuel ratio sensor for an internal combustion engine that can solve the above problems.

く課題を解決するための手段〉 このため本発明は、排気の性状に感応して濃淡電池機能
を有する検出素子の電極間に発生する起電圧の変化によ
り空燃比を検出する空燃比センサにおいて、異なる空燃
比に対応する排気性状で起電圧が急変する特性を有した
複数の検出素子を、センサ本体に一体に配設すると共に
、各検出素子の電極を直列に接続し、該直列接続された
両端の電極から出力を取り出す構成とした。
Means for Solving the Problems> Therefore, the present invention provides an air-fuel ratio sensor that detects an air-fuel ratio by a change in an electromotive force generated between electrodes of a detection element having a concentration battery function in response to the properties of exhaust gas. A plurality of detection elements having the characteristic that the electromotive force changes suddenly depending on the exhaust properties corresponding to different air-fuel ratios are integrally arranged in the sensor body, and the electrodes of each detection element are connected in series. The configuration is such that output is taken out from the electrodes at both ends.

〈作用〉 各検出素子の電極からの出力電圧特性は、夫々異なる空
燃比に対応する排気性状で起電圧が急変する特性となる
<Operation> The output voltage characteristics from the electrodes of each detection element are such that the electromotive voltage changes suddenly depending on the exhaust gas characteristics corresponding to different air-fuel ratios.

したがって、各検出素子の電極を直列接続したものの両
端の電極から取り出される出力特性は、起電圧が空燃比
変化に対し複数段で急変する特性となる。
Therefore, the output characteristic taken out from the electrodes at both ends of the electrodes of each detection element connected in series is such that the electromotive force changes suddenly in multiple stages in response to a change in the air-fuel ratio.

前記複数段の急変部分で夫々スライスレベルと比較する
ことにより、複数の空燃比を検出できる。
A plurality of air-fuel ratios can be detected by comparing the sudden change portions of the plurality of stages with the respective slice levels.

〈実施例〉 以下に、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図〜第3図は本発明の第1実施例を示す。1 to 3 show a first embodiment of the present invention.

図において、空燃比センサ11には第1及び第2検出素
子12.13がアルミナ等の絶縁部材14により所定の
間隙を有して取り付けられている。各検出素子12.1
3には、例えば酸化ジルコニウム(ZrO□)を主成分
とする固体電解質部材12A、 i3Aにより中空状の
大気導入室12B、13Bが夫々形成され、これら大気
導入室12B、13Bに臨む第1及び第2内側電極15
A、16Aと、これら内側電極15A、16Aに固体電
解質部材12A、13Aを介して対向し、排気に接触す
る第1及び第2外側電極15B。
In the figure, first and second detection elements 12 and 13 are attached to the air-fuel ratio sensor 11 with a predetermined gap between them by an insulating member 14 made of alumina or the like. Each detection element 12.1
3, hollow air introduction chambers 12B and 13B are respectively formed by solid electrolyte members 12A and i3A mainly composed of, for example, zirconium oxide (ZrO□). 2 inner electrode 15
A, 16A, and first and second outer electrodes 15B which face these inner electrodes 15A, 16A via solid electrolyte members 12A, 13A and are in contact with the exhaust gas.

16Bとが形成されている。これら電極は、白金(pt
)で形成されている。前記第1及び第2外側電極15B
、16Bは第1及び第2電極保護層17.18により覆
われている。
16B is formed. These electrodes are platinum (pt
) is formed. The first and second outer electrodes 15B
, 16B are covered with first and second electrode protection layers 17.18.

ここで、前記第1検出素子12側の第1外側電極15B
を覆う第1電極保護層17は、例えば、ガンマアルミナ
(γ−Alz Ox ) 、酸化チタン(TiO□)、
酸化ランタン(La203)等の多孔質セラミックから
なる担体に、Pt(白金)、  Rh(ロジウム)、R
u(ルテニウム)、Pd(パラジウム)等少なくとも一
種のNOx還元反応を促進させる触媒の粒子を混在させ
てNOX還元機能を有するように形成されている。
Here, the first outer electrode 15B on the first detection element 12 side
The first electrode protective layer 17 covering the electrode is made of, for example, gamma alumina (γ-Alz Ox), titanium oxide (TiO
Pt (platinum), Rh (rhodium), R
It is formed to have a NOx reduction function by mixing particles of at least one kind of catalyst that promotes the NOx reduction reaction, such as u (ruthenium) and Pd (palladium).

一方、第2検出素子13側の第2外側電極16Bを覆う
第2電極保護層18は、従来型の空燃比センサと同様マ
グネシウムスピネル層で形成されている。
On the other hand, the second electrode protective layer 18 covering the second outer electrode 16B on the second detection element 13 side is formed of a magnesium spinel layer, similar to the conventional air-fuel ratio sensor.

そして、第1検出素子12側の第1内側電極15A。And the first inner electrode 15A on the first detection element 12 side.

第1外側電極15Bと、第2検出素子13側の第2内側
電極16A、第2外側電極16Bとが直列接続され、該
直列接続された両端の電極、つまり第1内側電極15A
と第2外側電極16Bとから出力が取り出される。
The first outer electrode 15B, the second inner electrode 16A on the second detection element 13 side, and the second outer electrode 16B are connected in series, and the electrodes at both ends of the series connection, that is, the first inner electrode 15A
Output is taken out from the second outer electrode 16B.

かかる構造を有した空燃比センサ11において、第1検
出素子12の第1内側電極15Aと第1外側電極15B
との間に圧じる起電圧特性は第4図に実線で示すように
、第1電極保護層17のNOX還元触媒粒子のNOX還
元作用により、NoX中の酸素分も排気中酸素濃度分と
して良好に検出され、NOx増大時も理論空燃比に近い
点で急変する特性となる。
In the air-fuel ratio sensor 11 having such a structure, the first inner electrode 15A and the first outer electrode 15B of the first detection element 12
As shown by the solid line in Fig. 4, the electromotive force characteristic between the It is well detected and has a characteristic that changes suddenly at a point close to the stoichiometric air-fuel ratio even when NOx increases.

これに対し、第2検出素子13の第2内側電極16Aと
第2外側電極16Bとの間に生じる起電圧特性は第4図
に点線で示すように、従来同様のマグネシウムスピネル
からなる第2電極保護層18を有しているため、NOx
中の酸素分が排気中酸素濃度分として検出されず、NO
x濃度の増大に応じて起電圧が急変する点が、リーン側
にシフトする特性となる。
On the other hand, the electromotive force characteristic generated between the second inner electrode 16A and the second outer electrode 16B of the second detection element 13 is as shown by the dotted line in FIG. Since it has the protective layer 18, NOx
The oxygen content in the exhaust gas is not detected as the oxygen concentration in the exhaust gas, and NO
The point where the electromotive force suddenly changes as the x concentration increases is a characteristic that shifts to the lean side.

したがって、前記第1検出素子12と第2検出素子13
との電極を直列に接続したものの両端の第1内側電極1
5Aと第2外側電極16Bとの間の出力電圧特性は、前
記各別の起電圧特性を加えた特性となり、第5図に示す
ように理論空燃比に近い空燃比と、NOx濃度が高いと
きほどこれよりリーン側の空燃比とで夫々出力電圧が急
変する特性となる。
Therefore, the first detection element 12 and the second detection element 13
The first inner electrode 1 at both ends of the electrodes connected in series.
The output voltage characteristics between 5A and the second outer electrode 16B are the characteristics obtained by adding the above-mentioned individual electromotive voltage characteristics, and as shown in FIG. 5, when the air-fuel ratio is close to the stoichiometric air-fuel ratio and the NOx concentration is high, As the air-fuel ratio becomes leaner, the output voltage suddenly changes.

かかる構成の空燃比センサ11を使用した内燃機関の空
燃比制御装置の構成を該6図に示す。
FIG. 6 shows the configuration of an air-fuel ratio control device for an internal combustion engine using the air-fuel ratio sensor 11 having such a configuration.

内燃機関21の吸気通路22には、吸入空気流ilQを
検出するエアフローメータ23及びアクセルペダルに連
動して吸入空気流量Qを制御する絞り弁24が設けられ
、下流のマニホールド部には気筒毎に電磁式の燃料噴射
弁25が設けられる。燃料噴射弁25はマイクロコンピ
ュータを内蔵したコントロールユニット26からの噴射
パルス信号によって開弁駆動し、図示しない燃料ポンプ
から圧送されてプレッシャレギュレータにより所定圧力
に制御された燃料を噴射供給する。更に、機関21の冷
却ジャケット内の冷却水温度Twを検出する水温センサ
27が設けられると共に排気通路28に前記空燃比セン
サ11が設けられ、更に下流側に排気中のC○。
The intake passage 22 of the internal combustion engine 21 is provided with an air flow meter 23 that detects the intake air flow ilQ and a throttle valve 24 that controls the intake air flow rate Q in conjunction with the accelerator pedal. An electromagnetic fuel injection valve 25 is provided. The fuel injection valve 25 is driven to open by an injection pulse signal from a control unit 26 having a built-in microcomputer, and injects fuel that is pressure-fed from a fuel pump (not shown) and controlled to a predetermined pressure by a pressure regulator. Furthermore, a water temperature sensor 27 for detecting the temperature Tw of the cooling water in the cooling jacket of the engine 21 is provided, and the air-fuel ratio sensor 11 is provided in the exhaust passage 28, further downstream to detect CO in the exhaust gas.

HCの酸化とNOxの還元とを行って浄化する三元触媒
29が設けられる。また、図示しないディストリビュー
タにはクランク角センサ30が内蔵されており、該クラ
ンク角センサ30から機関回転と同期して出力されるク
ランク角単位角信号を一定時間カウントして、又は、ク
ランク角基準角信号の周期を計測して機関回転数Nが検
出される。
A three-way catalyst 29 is provided that performs purification by oxidizing HC and reducing NOx. Further, the distributor (not shown) has a built-in crank angle sensor 30, and the crank angle unit angle signal outputted from the crank angle sensor 30 in synchronization with engine rotation is counted for a certain period of time, or the crank angle reference angle The engine rotation speed N is detected by measuring the period of the signal.

次に、コントロールユニット26による空燃比制御ルー
チンを第7図に示したフローチャートに従って説明する
Next, the air-fuel ratio control routine by the control unit 26 will be explained according to the flowchart shown in FIG.

ステップ(図ではSと記す)1では、エアフローメータ
23によって検出された吸入空気流IQとクランク角セ
ンサ30からの信号によって算出した機関回転数Nとに
基づき、単位回転当たりの吸入空気量に相当する基本燃
料噴射量T、を次式により算出する。
In step 1 (denoted as S in the figure), the amount of intake air per unit rotation is calculated based on the intake air flow IQ detected by the air flow meter 23 and the engine rotation speed N calculated from the signal from the crank angle sensor 30. The basic fuel injection amount T is calculated using the following equation.

f’P =K −Q/N (Kは定数)ステップ2では
、水温センサ27によって検出された水温Tw等に基づ
いて各種補正係数C0EFを設定する。
f'P = K - Q/N (K is a constant) In step 2, various correction coefficients C0EF are set based on the water temperature Tw etc. detected by the water temperature sensor 27.

ステップ3では、バッテリ電圧値に基づいて無効噴射パ
ルス分子、を設定する。
In step 3, an invalid injection pulse numerator is set based on the battery voltage value.

ステップ4では、空燃比フィードバック制御を行う機関
運転条件であるか否かを判定する。
In step 4, it is determined whether the engine operating conditions are such that air-fuel ratio feedback control is performed.

前記判定がYESの場合はステップ5へ進み、機関回転
数Nが高速に設定された所定値N、(例えば300rp
m)とを比較する。ここで、所定値N0以上の高負荷時
は、排気温度が高くこれに伴ってNOx濃度が上昇する
運転条件である。
If the above determination is YES, the process proceeds to step 5, where the engine speed N is set to a high predetermined value N (for example, 300 rpm).
Compare with m). Here, when the load is high, which is equal to or higher than the predetermined value N0, the exhaust gas temperature is high and the NOx concentration increases accordingly.

そして、上記ステフジ50判定がN≧Noであるとき、
即ちNOx’lA度が上昇する運転条件のときには、ス
テップ6へ進んで、空燃比センサ11の出力電圧と比較
される基準電圧SLを、第1検出素子12の起電圧が急
変する空燃比を検出するため、相対的に高い値■。z 
+  (′t1500mV)にセットする。
Then, when the Step 50 determination is N≧No,
That is, when the operating condition is such that the NOx'lA degree increases, the process proceeds to step 6, and the reference voltage SL, which is compared with the output voltage of the air-fuel ratio sensor 11, is detected at the air-fuel ratio at which the electromotive force of the first detection element 12 suddenly changes. Therefore, the relatively high value■. z
+ ('t1500mV).

また、ステフジ50判定がN<Noである場合、即ち、
NOx濃度が基準以下のレベルとなる運転条件では、ス
テップ7へ進んで空燃比センサ11の出力電圧と比較さ
れる基準電圧SLを、第2検出素子13の起電圧が急変
する空燃比を検出するため、相対的に低い値v02□(
#1500mV )にセットする。
In addition, if the Step 50 determination is N<No, that is,
Under operating conditions where the NOx concentration is at a level below the reference level, the process proceeds to step 7, where the reference voltage SL, which is compared with the output voltage of the air-fuel ratio sensor 11, is used to detect the air-fuel ratio at which the electromotive force of the second detection element 13 suddenly changes. Therefore, the relatively low value v02□(
#1500mV).

ステップ6又はステップ7を経た後、ステップ8へ進み
、空燃比センサ11の出力電圧を、前述のように運転条
件毎に変えて設定された基準電圧SLと比較しつつ増減
して空燃比フィードバック補正係数αを設定する。
After passing through step 6 or step 7, the process proceeds to step 8, where the air-fuel ratio feedback correction is performed by increasing or decreasing the output voltage of the air-fuel ratio sensor 11 while comparing it with the reference voltage SL, which is set by changing the output voltage for each operating condition as described above. Set the coefficient α.

前記ステップ8を経た後、又はステップ4の判定がNO
の場合はステップ9へ進み、最終的な燃料噴射量T1を
次式に従って演算する。
After passing through step 8, or if the determination in step 4 is NO
In this case, the process proceeds to step 9, and the final fuel injection amount T1 is calculated according to the following equation.

T+ =Tp  −C0EF −a十Tsステップ10
では、演算された燃料噴射量T、を出力用レジスタにセ
ットする。
T+ = Tp -C0EF -a ten Ts Step 10
Now, the calculated fuel injection amount T is set in the output register.

これにより、予め定められた機関回転同期の燃料噴射タ
イミングになると、演算した燃料噴射量T、のパルス幅
を持つ駆動パルス信号が燃料噴射弁25に与えられて燃
料噴射が行われる。
As a result, when the predetermined fuel injection timing is synchronized with the engine rotation, a drive pulse signal having a pulse width of the calculated fuel injection amount T is applied to the fuel injection valve 25 to perform fuel injection.

かかる制御中、空燃比フィードバック制御時はNOX 
R度が高くなる運転条件では、空燃比センサ11の出力
電圧を基準電圧VO2□と比較して設定される空燃比フ
ィードバック補正係数αにより、空燃比は真の理論空燃
比近傍の値に制御されるため、N Ox濃度の上昇を抑
制できる。
During such control, during air-fuel ratio feedback control, NOx
Under operating conditions where the R degree is high, the air-fuel ratio is controlled to a value near the true stoichiometric air-fuel ratio by the air-fuel ratio feedback correction coefficient α, which is set by comparing the output voltage of the air-fuel ratio sensor 11 with the reference voltage VO2□. Therefore, the increase in NOx concentration can be suppressed.

また、NOx濃度が比較的低く抑えられる条件では、空
燃比センサ11の出力電圧を基準電圧■。2゜と比較し
て設定される空燃比フィードバック[係数αにより、空
燃比はNOx濃度に応じてり一ン側にある程度シフトし
た点に制御され、これにより燃費の良い空燃比制御が行
われる。
Further, under conditions where the NOx concentration can be kept relatively low, the output voltage of the air-fuel ratio sensor 11 is set to the reference voltage ■. The air-fuel ratio is controlled by the air-fuel ratio feedback [coefficient α] which is set in comparison with 2°, so that the air-fuel ratio is shifted to a certain degree in accordance with the NOx concentration, thereby achieving air-fuel ratio control with good fuel efficiency.

また、−個の空燃比センサ11で複数の空燃比制御点を
切り換えることができるため、センサ取付スペース、配
線も従来同様で済み、低コストで実施できると共に、制
御も基準電圧の切換のみでよいから簡易で済む。
In addition, since multiple air-fuel ratio control points can be switched with - number of air-fuel ratio sensors 11, the sensor installation space and wiring are the same as before, making it possible to implement at low cost and controlling only by switching the reference voltage. It's simple and easy.

第8図は、本発明の第2実施例に係る空燃比センサの構
成を示す、但し、第1図〜第3図に示した第1実施例と
同一要素には同一符合を付して説明を省略する。
FIG. 8 shows the configuration of an air-fuel ratio sensor according to a second embodiment of the present invention. However, the same elements as those in the first embodiment shown in FIGS. 1 to 3 are given the same reference numerals. omitted.

即ち、単一の大気導入室19の対向する位置に第1及び
第2検出素子12.13の第1及び第2内側電極15A
、16Aを設け、大気導入室19を第1及び第2検出素
子12.13で共用するようにしたものである。電極の
接続方式については第1実施例と同様である。
That is, the first and second inner electrodes 15A of the first and second detection elements 12.13 are placed at opposing positions in the single atmosphere introduction chamber 19.
, 16A are provided, and the atmosphere introduction chamber 19 is shared by the first and second detection elements 12.13. The electrode connection method is the same as in the first embodiment.

かかる構成においても、第1実施例と同様な機能が得ら
れ、センサをより小型化できる。
Even in this configuration, the same functions as those in the first embodiment can be obtained, and the sensor can be further miniaturized.

〈考案の効果〉 以上説明したように本考案によれば、センサ本体に特性
の異なる検出素子を複数設け、各電極を直列接続した構
成の空燃比センサとしたため、個の空燃比センサで低コ
ストで運転条件に応じて異なる空燃比にフィードバック
制御することができるものである。
<Effects of the invention> As explained above, according to the invention, the air-fuel ratio sensor has a configuration in which a plurality of detection elements with different characteristics are provided in the sensor body and each electrode is connected in series. This allows for feedback control to different air-fuel ratios depending on operating conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係る空燃比センサの構成
を示す図、第2図は同上の■−■矢視断面図、第3図は
同上の左側面図、第4図は同上の空燃比センサの各検出
素子毎の起電圧特性を示す線図、第5図は同上の空燃比
センサの出力特性を示す線図、第6図は同上の空燃比セ
ンサを使用した空燃比制御装置の例を示す回、第7図は
同上装置による空燃比制御ルーチンを示すフローチャー
ト、第8図は第2実施例に係る空燃比センサの構成を示
す図である。 11・・・空燃比センサ  12・・・第1検出素子 
 12A、13A・・・固体電解質部材  12B、 
13B、 19・・・大気導入室  13・・・第2検
出素子  15A・・・第1内側電極  15B・・・
第2外側電極  16A・・・第1外側電極  16B
・・・第2外側電極特許出願人   日本電子機器株式
会社代理人 弁理士 笹 島  冨二雄
FIG. 1 is a diagram showing the configuration of an air-fuel ratio sensor according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the arrow ■-■ of the same, FIG. 3 is a left side view of the same, and FIG. A diagram showing the electromotive force characteristics of each detection element of the air-fuel ratio sensor as above, Fig. 5 is a diagram showing the output characteristics of the air-fuel ratio sensor as above, and Fig. 6 shows an air-fuel ratio control device using the air-fuel ratio sensor as above. As an example, FIG. 7 is a flowchart showing an air-fuel ratio control routine by the above device, and FIG. 8 is a diagram showing the configuration of an air-fuel ratio sensor according to a second embodiment. 11... Air-fuel ratio sensor 12... First detection element
12A, 13A... solid electrolyte member 12B,
13B, 19...Air introduction chamber 13...Second detection element 15A...First inner electrode 15B...
Second outer electrode 16A...first outer electrode 16B
...Second outer electrode patent applicant Fujio Sasashima, agent of Japan Electronics Co., Ltd., patent attorney

Claims (1)

【特許請求の範囲】[Claims] 排気の性状に感応して濃淡電池機能を有する検出素子の
電極間に発生する起電圧の変化により空燃比を検出する
空燃比センサにおいて、異なる空燃比に対応する排気性
状で起電圧が急変する特性を有した複数の検出素子を、
センサ本体に一体に配設すると共に、各検出素子の電極
を直列に接続し、該直列接続された両端の電極から出力
を取り出すことにより、起電圧が空燃比変化に対し複数
段で急変する特性となるようにしたことを特徴とする内
燃機関の空燃比センサ。
In an air-fuel ratio sensor that detects the air-fuel ratio by changes in the electromotive force generated between the electrodes of a detection element that has a concentration battery function in response to the characteristics of exhaust gas, a characteristic in which the electromotive force changes suddenly depending on the characteristics of the exhaust that corresponds to different air-fuel ratios. A plurality of detection elements having
In addition to being integrated into the sensor body, the electrodes of each detection element are connected in series, and the output is taken from the electrodes at both ends of the series connection, which allows the electromotive force to suddenly change in multiple stages in response to changes in the air-fuel ratio. An air-fuel ratio sensor for an internal combustion engine, characterized in that:
JP1136222A 1989-05-31 1989-05-31 Air/fuel ratio sensor of internal combustion engine Pending JPH032655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1136222A JPH032655A (en) 1989-05-31 1989-05-31 Air/fuel ratio sensor of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1136222A JPH032655A (en) 1989-05-31 1989-05-31 Air/fuel ratio sensor of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH032655A true JPH032655A (en) 1991-01-09

Family

ID=15170150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1136222A Pending JPH032655A (en) 1989-05-31 1989-05-31 Air/fuel ratio sensor of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH032655A (en)

Similar Documents

Publication Publication Date Title
US10151262B2 (en) Abnormality diagnosis system of air-fuel ratio sensors
JPH079417B2 (en) Abnormality detection method for oxygen concentration sensor
JPH073403B2 (en) Abnormality detection method for oxygen concentration sensor
US8131451B2 (en) Air-fuel ratio sensor and control apparatus for internal combustion engine
US5970967A (en) Method and apparatus for diagnosing an abnormality in a wide range air-fuel ratio sensor
JPH073404B2 (en) Abnormality detection method for oxygen concentration sensor
JP2015086861A (en) Abnormality diagnostic device of internal combustion engine
JPH11264340A (en) Abnormality diagnostic device for wide area air-fuel ratio sensor
JPH073405B2 (en) Abnormality detection method for oxygen concentration sensor
JP6110270B2 (en) Abnormality diagnosis device for internal combustion engine
JP2976490B2 (en) Method for detecting deterioration of oxygen sensor in internal combustion engine
JP2001124730A (en) Hydrogen concentration detecting device and catalyst degradation detecting device for internal combustion engine
JP3572927B2 (en) Air-fuel ratio control device for internal combustion engine
JP2623926B2 (en) Catalytic converter device for internal combustion engine
JPH032655A (en) Air/fuel ratio sensor of internal combustion engine
JP2946379B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JPH10169494A (en) Diagnosing device for exhaust emission control catalyst and abnormality diagnosing device for oxygen sensor
JPH0754851Y2 (en) Air-fuel ratio feedback control system for internal combustion engine
JPS63255541A (en) Air-to-fuel ratio control device of internal combustion engine
JPH01458A (en) Oxygen sensor for internal combustion engine
JP2003148235A (en) Air-fuel ratio detecting device for engine
JPS63271156A (en) Air-fuel ratio controller for internal combustion engine
JPH0370849A (en) Exhaust air purifying device of internal combustion engine
JPH0694832B2 (en) Air-fuel ratio controller for internal combustion engine
JP2001295624A (en) Exhaust gas temperature detecting device, and catalyst deterioration judging device for internal combustion engine