JPH10169494A - Diagnosing device for exhaust emission control catalyst and abnormality diagnosing device for oxygen sensor - Google Patents

Diagnosing device for exhaust emission control catalyst and abnormality diagnosing device for oxygen sensor

Info

Publication number
JPH10169494A
JPH10169494A JP8331016A JP33101696A JPH10169494A JP H10169494 A JPH10169494 A JP H10169494A JP 8331016 A JP8331016 A JP 8331016A JP 33101696 A JP33101696 A JP 33101696A JP H10169494 A JPH10169494 A JP H10169494A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
oxygen sensor
abnormality
purification catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8331016A
Other languages
Japanese (ja)
Inventor
Akira Uchikawa
晶 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP8331016A priority Critical patent/JPH10169494A/en
Publication of JPH10169494A publication Critical patent/JPH10169494A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform abnormality diagnosing for an exhaust emission control catalyst highly accurately and by a relatively simple structure. SOLUTION: Determination is made as to whether an abnormality diagnosing condition is established or not (S1). If established, an objective air-fuel ratio is switched to another (S2). The output of a downstream side oxygen sensor is monitored (S3). Based on a degree of changing in the output of the downstream side oxygen sensor, the abnormality of an exhaust emission control catalyst is determined (S4). If normal, 'OK determined' is made (S5). If abnormal, then 'NG determined' is made (S6), and an MIL is lit (S7). Thus, the abnormality of the exhaust emission control catalyst is diagnosed highly accurately and by a relatively simple structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気浄化触媒の異
常を診断する装置及び酸素センサの異常を診断する装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for diagnosing an abnormality of an exhaust purification catalyst and an apparatus for diagnosing an abnormality of an oxygen sensor.

【0002】[0002]

【従来の技術】従来の排気浄化触媒の診断装置として
は、例えば、特開平4−116239号公報に開示され
るようなものがある。このものは、図8に示されるよう
に、内燃機関31の排気通路32に、排気浄化触媒とし
ての三元触媒33を介装し、この三元触媒33の上流側
と下流側に、排気中の酸素濃度に応じて理論空燃比{A
/F(空気重量/燃料重量)≒14.7、換言すると空
気過剰率λ=1}に対してリッチ・リーン信号を出力す
る上流側酸素センサ34、下流側酸素センサ35を設
け、所定の空燃比(理論空燃比)が得られるように上流
側酸素センサ34のリッチ・リーン反転出力信号に基づ
き燃料噴射弁36からの燃料噴射量(空燃比制御対象)
を比例積分制御により増減補正する空燃比フィードバッ
ク制御を行なう一方で、コントロールユニット37で
は、図9に示すようにして、空燃比のフィードバック制
御中の上流側酸素センサ34、下流側酸素センサ35の
出力値を用いて三元触媒3の異常を診断するようにして
いる。即ち、上流側酸素センサ34の出力信号のリッチ
・リーン反転周期(T1)と、下流側酸素センサ35の
出力信号のリッチ・リーン反転周期(T2)と、に基づ
いて反転周波数比(HZRATE=f2/f1)を求
め、当該HZRATEが所定値以下のときには、排気浄
化触媒の酸素ストレージ能力が高く排気浄化触媒上流側
での空燃比の振幅が触媒表面上での酸素の吸着・離脱作
用で相殺され下流側酸素センサ35の出力信号のリッチ
・リーン反転周期(T2)が長くなっていると判断でき
るので三元触媒33は正常であると診断し、所定値より
大きいときには異常がある(劣化、酸素ストレージ能力
が低下している)と診断するようにしている(図10、
図11参照)。
2. Description of the Related Art As a conventional diagnostic device for an exhaust gas purifying catalyst, for example, there is one disclosed in Japanese Patent Application Laid-Open No. 4-116239. As shown in FIG. 8, a three-way catalyst 33 as an exhaust gas purifying catalyst is interposed in an exhaust passage 32 of an internal combustion engine 31, and an exhaust gas is provided upstream and downstream of the three-way catalyst 33. The stoichiometric air-fuel ratio {A according to the oxygen concentration of
/ F (weight of air / weight of fuel) {14.7, in other words, an upstream oxygen sensor 34 and a downstream oxygen sensor 35 for outputting a rich / lean signal with respect to the excess air ratio λ = 1} are provided. The fuel injection amount from the fuel injection valve 36 based on the rich / lean inversion output signal of the upstream oxygen sensor 34 so that the fuel ratio (the stoichiometric air-fuel ratio) can be obtained (the air-fuel ratio control target).
While the air-fuel ratio feedback control for increasing / decreasing the air-fuel ratio is performed by proportional integral control, the control unit 37 outputs the outputs of the upstream oxygen sensor 34 and the downstream oxygen sensor 35 during the air-fuel ratio feedback control as shown in FIG. The abnormality of the three-way catalyst 3 is diagnosed using the value. That is, the inversion frequency ratio (HZRATE = f2) based on the rich / lean inversion period (T1) of the output signal of the upstream oxygen sensor 34 and the rich / lean inversion period (T2) of the output signal of the downstream oxygen sensor 35. / F1), and when the HZRATE is equal to or smaller than a predetermined value, the oxygen storage capacity of the exhaust purification catalyst is high, and the amplitude of the air-fuel ratio upstream of the exhaust purification catalyst is offset by the adsorption and desorption of oxygen on the catalyst surface. Since it can be determined that the rich / lean inversion cycle (T2) of the output signal of the downstream oxygen sensor 35 is long, the three-way catalyst 33 is diagnosed to be normal. Diagnosis is made that storage capacity has decreased (FIG. 10,
See FIG. 11).

【0003】ところで、近年においては、排気浄化触媒
入口部の空燃比を目標空燃比(例えば理論空燃比)に一
層正確に制御し排気浄化触媒の持つ排気浄化性能を最大
限発揮できるように、空燃比フィードバック制御のより
一層の高精度化等の要請に対し、理論空燃比に対するリ
ッチ・リーン信号しか出力できない酸素センサに替え
て、リッチからリーンまで広範囲に亘って空燃比をリニ
アに検出できる所謂広域空燃比センサを利用した空燃比
フィードバック制御も提案されている。
In recent years, the air-fuel ratio at the inlet of the exhaust purification catalyst has been controlled more precisely to a target air-fuel ratio (for example, a stoichiometric air-fuel ratio) so that the exhaust purification performance of the exhaust purification catalyst can be maximized. In response to the demand for higher accuracy of the fuel ratio feedback control, a so-called wide area that can linearly detect the air-fuel ratio over a wide range from rich to lean instead of an oxygen sensor that can output only a rich / lean signal for the stoichiometric air-fuel ratio Air-fuel ratio feedback control using an air-fuel ratio sensor has also been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この広
域空燃比センサは、リッチからリーンまで広範囲に亘っ
て空燃比をリニアに検出できるが故に、上記特開平4−
119239号公報に開示された異常診断方法では、三
元触媒の異常を診断できないという惧れがある。つま
り、理論空燃比に対してリッチ・リーン信号しか出力で
きない酸素センサの出力値を用いて比例積分制御により
空燃比フィードバック制御を行う場合には、理論空燃比
と実際の空燃比とのズレ量自体を正確に把握することが
できないため、次に酸素センサの出力値がリッチ或いは
リーン反転するまで空燃比制御対象(燃料噴射量或いは
吸入空気流量)を増加或いは減少させ、その結果再び酸
素センサの出力値がリッチ或いはリーン反転されると、
再び酸素センサの出力値がリッチ或いはリーン反転する
まで空燃比制御対象を増加或いは減少させるといった処
理を行うようにしているので、実際の空燃比が理論空燃
比を中心に所定周期で振幅することになると共に、所定
の周期で酸素センサの出力値が理論空燃比に対してリッ
チ・リーン反転することになる。
However, this wide-range air-fuel ratio sensor can linearly detect the air-fuel ratio over a wide range from rich to lean.
There is a concern that the abnormality diagnosis method disclosed in Japanese Patent No. 119239 cannot diagnose an abnormality of the three-way catalyst. In other words, when the air-fuel ratio feedback control is performed by the proportional integral control using the output value of the oxygen sensor that can output only the rich / lean signal with respect to the stoichiometric air-fuel ratio, the deviation amount between the stoichiometric air-fuel ratio and the actual air-fuel ratio itself is Cannot be accurately grasped, the air-fuel ratio control target (fuel injection amount or intake air flow rate) is increased or decreased until the output value of the oxygen sensor is next rich or lean inverted, and as a result, the output of the oxygen sensor is returned again. When the value is rich or lean inverted,
Since the process of increasing or decreasing the air-fuel ratio control target is performed again until the output value of the oxygen sensor is rich or lean inverted, the actual air-fuel ratio oscillates at a predetermined cycle around the stoichiometric air-fuel ratio. At the same time, the output value of the oxygen sensor is rich / lean inverted with respect to the stoichiometric air-fuel ratio in a predetermined cycle.

【0005】従って、上記特開平4−119239号公
報に開示されたような異常診断方法、即ち、上流側酸素
センサのリッチ・リーン反転周期と、下流側酸素センサ
のリッチ・リーン反転周期と、を比較して排気浄化触媒
の異常を診断するといった異常診断方法を採用できるの
である。これに対し、リッチからリーンまで広範囲に亘
って空燃比をリニアに検出できる広域空燃比センサを用
いて空燃比フィードバック制御を行う場合には、理論空
燃比から実際の空燃比が少しズレても、そのズレ量自体
を検出できるため、そのズレを修正すべくズレ量に見合
った空燃比制御対象(燃料噴射量或いは吸入空気流量)
の増加或いは減少が行われることになるから、酸素セン
サを用いた場合ほど大きくは、実際の空燃比が理論空燃
比を中心に振幅せず、広域空燃比センサの出力値が理論
空燃比に対して所定周期でリッチ・リーン反転する可能
性も少ない。
Therefore, the abnormality diagnosis method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 4-119239, that is, the rich / lean reversal cycle of the upstream oxygen sensor and the rich / lean reversal cycle of the downstream oxygen sensor are determined. In comparison, an abnormality diagnosis method of diagnosing an abnormality of the exhaust purification catalyst can be adopted. In contrast, when performing air-fuel ratio feedback control using a wide-range air-fuel ratio sensor that can linearly detect the air-fuel ratio over a wide range from rich to lean, even if the actual air-fuel ratio deviates slightly from the stoichiometric air-fuel ratio, Since the deviation itself can be detected, the air-fuel ratio control target (fuel injection amount or intake air flow rate) corresponding to the deviation is required to correct the deviation.
The actual air-fuel ratio does not oscillate around the stoichiometric air-fuel ratio, and the output value of the wide-range air-fuel ratio sensor is larger than the stoichiometric air-fuel ratio. Thus, there is little possibility of rich / lean inversion at a predetermined cycle.

【0006】従って、排気浄化触媒の上流側に設けた広
域空燃比センサのリッチ・リーン反転周期を求めること
自体正確でないし、理論空燃比に略一定に維持された排
気が排気浄化触媒に導入されるから排気浄化触媒から出
てくる排気の空燃比が所定周期で振幅することや排気浄
化触媒の下流側に設けた下流側酸素センサの出力値が所
定周期でリッチ・リーン反転するような機会も少ない。
Therefore, it is not accurate to determine the rich / lean inversion cycle of the wide area air-fuel ratio sensor provided on the upstream side of the exhaust purification catalyst, and the exhaust gas maintained at a substantially constant stoichiometric air-fuel ratio is introduced into the exhaust purification catalyst. Therefore, there is an opportunity that the air-fuel ratio of the exhaust gas coming out of the exhaust purification catalyst oscillates in a predetermined cycle and that the output value of the downstream oxygen sensor provided downstream of the exhaust purification catalyst is rich-lean inversion in a predetermined cycle. Few.

【0007】このため、広域空燃比センサを用いて空燃
比フィードバック制御を行う場合には、上記特開平4−
119239号公報に開示されたような異常診断方法、
即ち、排気浄化触媒の上流側と下流側の空燃比の振幅周
期を比較することで排気浄化触媒の異常を診断するとい
った異常診断方法を、そのまま採用することは難しいこ
ととなるのである。
For this reason, when performing the air-fuel ratio feedback control using the wide-range air-fuel ratio sensor, the above-mentioned Japanese Patent Laid-Open Publication No. Hei.
An abnormality diagnosis method as disclosed in JP-A-119239,
That is, it is difficult to directly adopt the abnormality diagnosis method of diagnosing the abnormality of the exhaust purification catalyst by comparing the amplitude periods of the air-fuel ratio on the upstream side and the downstream side of the exhaust purification catalyst.

【0008】本発明は、上記従来の実情に鑑みなされた
もので、排気浄化触媒の上流側に広域空燃比センサを配
設し、排気浄化触媒の下流側に酸素センサを配設した場
合にあっても、高精度かつ迅速に排気浄化触媒の異常を
診断できる排気浄化触媒の異常診断装置を提供すること
を目的とする。また、本発明に係る排気浄化触媒の異常
診断装置を構成する空燃比切換手段は、排気浄化触媒の
下流側に配設される酸素センサの異常診断にも利用でき
るため、前記空燃比切換手段を用いて行う酸素センサの
異常診断装置を提供することも目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and is directed to a case where a wide-range air-fuel ratio sensor is disposed upstream of an exhaust purification catalyst and an oxygen sensor is disposed downstream of the exhaust purification catalyst. In particular, it is an object of the present invention to provide an exhaust gas purifying catalyst abnormality diagnosis device capable of quickly and accurately diagnosing an exhaust gas purifying catalyst abnormality. Further, the air-fuel ratio switching means constituting the exhaust gas purification catalyst abnormality diagnosis device according to the present invention can be used for abnormality diagnosis of an oxygen sensor disposed downstream of the exhaust gas purification catalyst. Another object of the present invention is to provide a device for diagnosing abnormality of an oxygen sensor using the device.

【0009】[0009]

【解決を解決するための手段】このため、請求項1に記
載の発明では、図1に示すように、内燃機関の排気を浄
化する排気浄化触媒の異常診断装置において、機関吸入
混合気の空燃比を切り換える空燃比切換手段と、前記排
気浄化触媒の排気下流側に設けられ、当該排気浄化触媒
下流側の排気中の特定成分の濃度を検出し所定空燃比に
対するリッチ・リーン信号を出力する下流側酸素センサ
と、前記空燃比切換手段によって空燃比が切り換えられ
たときからの下流側酸素センサの出力変化に基づいて、
排気浄化触媒の異常を診断する異常診断手段と、を含ん
で構成するようにした。
For this reason, according to the first aspect of the present invention, as shown in FIG. 1, in an abnormality diagnosing apparatus for an exhaust gas purifying catalyst for purifying exhaust gas of an internal combustion engine, an air-fuel mixture of an engine intake air-fuel mixture is used. Air-fuel ratio switching means for switching the fuel ratio; and a downstream device provided downstream of the exhaust purification catalyst for detecting the concentration of a specific component in the exhaust downstream of the exhaust purification catalyst and outputting a rich / lean signal for a predetermined air-fuel ratio. Side oxygen sensor, based on the output change of the downstream oxygen sensor from when the air-fuel ratio is switched by the air-fuel ratio switching means,
Abnormality diagnosis means for diagnosing an abnormality of the exhaust gas purification catalyst.

【0010】かかる構成によれば、強制的に空燃比{延
いては空燃比制御対象(燃料噴射量若しくは吸入空気流
量)の制御状態}を切り換え、その切り換えに対する下
流側酸素センサの出力変化(応答時間、振幅周波数、変
化の傾き等)を観察することで、排気浄化触媒の異常を
診断するようにしたので、排気浄化触媒の上流側に広域
空燃比センサを設けた場合のように従来の異常診断方法
では異常診断を行えないような場合でも、簡単な構成
で、迅速かつ高精度に排気浄化触媒の異常を診断するこ
とができる。
According to this configuration, the air-fuel ratio is forcibly switched (that is, the control state of the air-fuel ratio control target (fuel injection amount or intake air flow rate)), and the output change (response) of the downstream oxygen sensor in response to the switching. By observing the time, the amplitude frequency, the slope of the change, etc.), the abnormality of the exhaust purification catalyst is diagnosed, so that the conventional abnormality such as when a wide-range air-fuel ratio sensor is provided upstream of the exhaust purification catalyst is used. Even if the diagnosis cannot be performed by the diagnosis method, it is possible to quickly and accurately diagnose the abnormality of the exhaust purification catalyst with a simple configuration.

【0011】請求項2に記載の発明では、前記異常診断
手段が、前記空燃比切換手段によって空燃比が切り換え
られたときから、下流側酸素センサの出力が切換後の空
燃比に向けて所定量変化するまでの所要時間に基づい
て、排気浄化触媒の異常を診断するように構成した。か
かる構成とすれば、簡単な構成で、迅速かつ高精度に排
気浄化触媒の異常の有無を診断することができる。
According to the second aspect of the present invention, the abnormality diagnosing means sets the output of the downstream oxygen sensor to a predetermined amount from the time when the air-fuel ratio is switched by the air-fuel ratio switching means toward the air-fuel ratio after the switching. An abnormality of the exhaust purification catalyst is diagnosed based on a time required until the change occurs. With this configuration, it is possible to quickly and accurately diagnose the presence or absence of an abnormality in the exhaust gas purification catalyst with a simple configuration.

【0012】請求項3に記載の発明では、前記排気浄化
触媒の上流側に排気中の特定成分の濃度を検出し空燃比
をリニアに検出する上流側空燃比センサを備えた場合
に、前記空燃比切換手段によって空燃比が切り換えられ
たときを、前記上流側空燃比センサの出力の切換後の空
燃比に向けた変化に基づいて検出するようにした。
According to the third aspect of the present invention, when an upstream air-fuel ratio sensor for detecting the concentration of a specific component in exhaust gas and linearly detecting an air-fuel ratio is provided upstream of the exhaust gas purification catalyst, The switching of the air-fuel ratio by the fuel-ratio switching means is detected based on a change in the output of the upstream-side air-fuel ratio sensor toward the air-fuel ratio after the switching.

【0013】かかる構成とすれば、空燃比の切り換え指
示が出されても、実際には排気浄化触媒上流側の空燃比
が良好に切り換わっていないような場合や、空燃比の切
り換え指示が出されてから実際に排気浄化触媒上流側の
空燃比が切り換わるまで比較的長期間応答遅れがある場
合等における誤診断発生の惧れを防止することができる
ので、本発明の異常診断精度を一層高めることができ
る。
With this configuration, even if the air-fuel ratio switching instruction is issued, the air-fuel ratio on the upstream side of the exhaust purification catalyst is not actually switched well, or the air-fuel ratio switching instruction is issued. Since it is possible to prevent the possibility of erroneous diagnosis occurring when there is a response delay for a relatively long time until the air-fuel ratio on the upstream side of the exhaust purification catalyst is actually switched after being performed, the abnormality diagnosis accuracy of the present invention can be further improved. Can be enhanced.

【0014】請求項4に記載の発明では、前記空燃比切
換手段が、空燃比を振幅させる手段であるように構成し
た。このようにすると、例えば、触媒パータベーション
制御中に、排気浄化触媒の異常診断を行えるので、触媒
パータベーション制御による排気浄化触媒の浄化性能の
最大化を図りつつ、同時に、簡単な構成で、迅速かつ高
精度に排気浄化触媒の異常の有無を診断することができ
る。
[0014] In the invention described in claim 4, the air-fuel ratio switching means is configured to oscillate the air-fuel ratio. In this way, for example, during the catalyst perturbation control, the abnormality diagnosis of the exhaust gas purification catalyst can be performed, so that the purification performance of the exhaust gas purification catalyst is maximized by the catalyst perturbation control, and at the same time, the simple configuration and the rapid In addition, it is possible to diagnose with high accuracy whether or not the exhaust gas purification catalyst is abnormal.

【0015】請求項5に記載の発明では、前記異常診断
手段が、前記空燃比切換手段による空燃比の切換周期
と、前記下流側酸素センサの出力変化周期と、に基づい
て、排気浄化触媒の異常を診断する手段として構成され
るようにした。このようにすると、一層高精度に、排気
浄化触媒の異常を診断できる。
According to a fifth aspect of the present invention, the abnormality diagnosing means determines whether or not the exhaust gas purifying catalyst is based on a switching cycle of the air-fuel ratio by the air-fuel ratio switching means and an output change cycle of the downstream oxygen sensor. It is configured as a means for diagnosing abnormalities. In this way, it is possible to diagnose the abnormality of the exhaust purification catalyst with higher accuracy.

【0016】請求項6に記載の発明では、前記排気浄化
触媒の上流側に排気中の特定成分の濃度を検出し空燃比
をリニアに検出する上流側空燃比センサを備えた場合
に、前記空燃比切換手段による空燃比の切り換えに伴う
排気浄化触媒上流側の実際の空燃比の変化が所定となる
ように、上流側空燃比センサの出力に基づいて、空燃比
制御対象をフィードバック制御するように構成した。
According to the present invention, when an upstream air-fuel ratio sensor for detecting the concentration of a specific component in the exhaust gas and linearly detecting the air-fuel ratio on the upstream side of the exhaust purification catalyst is provided, The air-fuel ratio control target is feedback-controlled based on the output of the upstream-side air-fuel ratio sensor so that the actual change in the air-fuel ratio on the upstream side of the exhaust purification catalyst accompanying the switching of the air-fuel ratio by the fuel-ratio switching means becomes predetermined. Configured.

【0017】このようにすると、例えば、機関固体差、
燃料系・吸気系の製造バラツキ、経時変化等により、与
えた空燃比の変化以上に実際の空燃比が変化したり、与
えたはずの空燃比の変化まで実際の空燃比が変化しなか
ったりした場合に、所定以上空燃比がリッチ化或いはリ
ーン化して排気浄化性能が悪化したり、機関安定性・ハ
ンチング等が悪化する惧れがあるが、排気浄化触媒上流
側の実際の空燃比の変化(変化幅、振幅周期等)を所定
(目標)に制御することができるので、かかる惧れを確
実に排除することができる。
By doing so, for example, the engine individual difference,
Due to manufacturing variations of fuel / intake systems, aging, etc., the actual air-fuel ratio changed more than the change in the given air-fuel ratio, or the actual air-fuel ratio did not change until the change in the expected air-fuel ratio. In such a case, the air-fuel ratio may become richer or leaner than a predetermined value, thereby deteriorating the exhaust purification performance or deteriorating the engine stability and hunting. The change width, the amplitude period, etc.) can be controlled to a predetermined (target), so that such a concern can be reliably eliminated.

【0018】請求項7に記載の発明では、内燃機関の排
気を浄化する排気浄化触媒の下流側に設けられ、当該排
気浄化触媒下流側の排気中の特定成分の濃度を検出し所
定空燃比に対するリッチ・リーン信号を出力する下流側
酸素センサの異常診断装置において、機関吸入混合気の
空燃比を切り換える空燃比切換手段と、前記空燃比切換
手段によって空燃比が切り換えられたあと、下流側酸素
センサの出力が切換後の空燃比に向けて変化を開始した
ときからの下流側酸素センサの出力変化に基づいて、下
流側酸素センサの異常を診断する下流側酸素センサ異常
診断手段と、を含んで構成するようにした。
According to the present invention, the concentration of a specific component in the exhaust gas on the downstream side of the exhaust gas purification catalyst is provided downstream of the exhaust gas purification catalyst for purifying the exhaust gas of the internal combustion engine. In the abnormality diagnosis device for a downstream oxygen sensor that outputs a rich / lean signal, an air-fuel ratio switching unit that switches an air-fuel ratio of an engine intake air-fuel mixture, and a downstream oxygen sensor after the air-fuel ratio is switched by the air-fuel ratio switching unit. Downstream oxygen sensor abnormality diagnosing means for diagnosing an abnormality of the downstream oxygen sensor based on a change in the output of the downstream oxygen sensor from the time when the output starts to change toward the air-fuel ratio after the switching. To be configured.

【0019】かかる構成によると、強制的に空燃比{延
いては空燃比制御対象(燃料噴射量若しくは吸入空気流
量)の制御状態}を切り換え、その切り換えに応じて下
流側酸素センサの出力がリッチ側からリーン側へ若しく
はリーン側からリッチ側へ移行(変化)を開始した時点
からの下流側酸素センサの出力変化度合に基づいて、下
流側酸素センサの応答性異常を診断する。従って、簡単
な構成で、迅速かつ高精度に下流側酸素センサの異常の
有無を診断することができる。また、排気空燃比がリッ
チ・リーン反転する機会が少なく診断機会の少ない広域
空燃比センサを用いて空燃比フィードバック制御を行う
ような場合でも、下流側酸素センサの異常診断機会を確
保することができる。
According to this configuration, the air-fuel ratio is forcibly switched, that is, the control state of the air-fuel ratio control target (fuel injection amount or intake air flow rate) is switched, and the output of the downstream oxygen sensor becomes rich according to the switching. An abnormal response of the downstream oxygen sensor is diagnosed based on the output change degree of the downstream oxygen sensor from the time when the transition (change) from the side to the lean side or from the lean side to the rich side is started. Therefore, with a simple configuration, it is possible to quickly and accurately diagnose the presence or absence of an abnormality in the downstream oxygen sensor. Further, even in the case where the air-fuel ratio feedback control is performed using a wide-range air-fuel ratio sensor that has few opportunities for the exhaust air-fuel ratio to undergo rich / lean reversal and few diagnostic opportunities, it is possible to secure an abnormality diagnosis opportunity for the downstream oxygen sensor. .

【0020】請求項8に記載の発明では、前記下流側酸
素センサ異常診断手段が、前記空燃比切換手段によって
空燃比が切り換えられたあと、下流側酸素センサの出力
が切換後の空燃比に向けて変化を開始したときから所定
量変化するまでの所要時間に基づいて、下流側酸素セン
サの異常を診断するように構成した。
[0020] In the invention described in claim 8, the downstream oxygen sensor abnormality diagnosing means switches the output of the downstream oxygen sensor to the air-fuel ratio after the switching after the air-fuel ratio is switched by the air-fuel ratio switching means. Then, the abnormality of the downstream oxygen sensor is diagnosed based on the required time from the start of the change to the change of the predetermined amount.

【0021】かかる構成とすれば、簡単な構成で、迅速
かつ高精度に、請求項7に記載の発明の作用効果を奏す
ることができる。請求項9に記載の発明では、前記空燃
比切換手段を、空燃比を振幅させる手段として構成す
る。このようにすると、例えば、触媒パータベーション
制御中に、排気浄化触媒の異常診断を行えるので、触媒
パータベーション制御による排気浄化触媒の浄化性能の
最大化を図りつつ、同時に、簡単な構成で、迅速かつ高
精度に下流側酸素センサの異常の有無を診断することが
できる。
According to this structure, the operation and effect of the invention described in claim 7 can be achieved quickly and accurately with a simple structure. According to the ninth aspect of the present invention, the air-fuel ratio switching unit is configured as a unit that oscillates the air-fuel ratio. In this way, for example, during the catalyst perturbation control, the abnormality diagnosis of the exhaust gas purification catalyst can be performed, so that the purification performance of the exhaust gas purification catalyst is maximized by the catalyst perturbation control, and at the same time, the simple configuration and the rapid In addition, it is possible to diagnose with high accuracy whether or not the downstream oxygen sensor is abnormal.

【0022】請求項10に記載の発明では、前記排気浄
化触媒の上流側に排気中の特定成分の濃度を検出し空燃
比をリニアに検出する上流側空燃比センサを備えた場合
に、前記空燃比切換手段による空燃比の切り換えに伴う
排気浄化触媒上流側の実際の空燃比の変化が所定となる
ように、上流側空燃比センサの出力に基づいて、空燃比
制御対象をフィードバック制御するように構成した。
According to a tenth aspect of the present invention, when an upstream air-fuel ratio sensor for detecting the concentration of a specific component in exhaust gas and detecting the air-fuel ratio linearly is provided upstream of the exhaust gas purification catalyst, The air-fuel ratio control target is feedback-controlled based on the output of the upstream-side air-fuel ratio sensor so that the actual change in the air-fuel ratio on the upstream side of the exhaust purification catalyst accompanying the switching of the air-fuel ratio by the fuel-ratio switching means becomes predetermined. Configured.

【0023】このようにすると、例えば、機関固体差、
燃料系・吸気系の製造バラツキ、経時変化等により、与
えた空燃比の変化以上に実際の空燃比が変化したり、与
えたはずの空燃比の変化まで実際の空燃比が変化しなか
ったりした場合に、所定以上空燃比がリッチ化或いはリ
ーン化して排気浄化性能が悪化したり、機関安定性・ハ
ンチング等が悪化する惧れがあるが、排気浄化触媒上流
側の実際の空燃比の変化(変化幅、振幅周期等)を所定
(目標)に制御することができるので、下流側酸素セン
サの異常診断のために空燃比を切り換えても、かかる惧
れを確実に排除することができる。
In this way, for example, the engine individual difference,
Due to manufacturing variations of fuel / intake systems, aging, etc., the actual air-fuel ratio changed more than the change in the given air-fuel ratio, or the actual air-fuel ratio did not change until the change in the expected air-fuel ratio. In such a case, the air-fuel ratio may become richer or leaner than a predetermined value, thereby deteriorating the exhaust purification performance or deteriorating the engine stability and hunting. Since the change width, the amplitude cycle, etc.) can be controlled to a predetermined (target), even if the air-fuel ratio is switched for the purpose of diagnosing an abnormality of the downstream oxygen sensor, such a concern can be surely eliminated.

【0024】請求項11に記載の発明にかかる排気浄化
触媒の異常診断装置では、請求項7〜請求項10の何れ
か1つに記載の酸素センサの異常診断装置により、下流
側酸素センサが正常であると診断されたときに、排気浄
化触媒の異常診断装置が作動するようにした。このよう
にすると、先に下流側酸素センサが正常があることを確
認してから、排気浄化触媒の異常を診断するので、排気
浄化触媒の異常診断精度を格段に向上させることができ
る。
According to an eleventh aspect of the present invention, there is provided the exhaust gas purifying catalyst abnormality diagnostic apparatus, wherein the downstream side oxygen sensor operates normally by the oxygen sensor abnormality diagnostic apparatus according to any one of the seventh to tenth aspects. When the diagnosis is made, the abnormality diagnosing device for the exhaust purification catalyst is activated. With this configuration, the abnormality of the exhaust purification catalyst is diagnosed after confirming that the downstream oxygen sensor is normal, so that the abnormality diagnosis accuracy of the exhaust purification catalyst can be significantly improved.

【0025】[0025]

【発明の実施の形態】以下に、本発明の一実施形態を添
付の図面に基づいて説明する。本発明の一実施形態の構
成を示す図2において、機関11の吸気通路12には吸入空
気流量Qaを検出するエアフローメータ13及びアクセル
ペダルと連動して吸入空気流量Qaを制御する絞り弁14
が設けられ、下流のマニホールド部分には気筒毎に電磁
式の燃料噴射弁15が設けられる。
An embodiment of the present invention will be described below with reference to the accompanying drawings. In FIG. 2 showing the configuration of an embodiment of the present invention, an air flow meter 13 for detecting an intake air flow rate Qa and a throttle valve 14 for controlling the intake air flow rate Qa in conjunction with an accelerator pedal are provided in an intake passage 12 of an engine 11.
Is provided, and an electromagnetic fuel injection valve 15 is provided for each cylinder in a downstream manifold portion.

【0026】燃料噴射弁15は、後述するようにしてコン
トロールユニット50において設定される駆動パルス信号
によって開弁駆動し、図示しない燃料ポンプから圧送さ
れてプレッシャレギュレータ(図示せず)により所定圧
力に制御された燃料を噴射供給する。更に、機関11の冷
却ジャケット内の冷却水温度Twを検出する水温センサ
16が設けられる。
The fuel injection valve 15 is driven to open by a drive pulse signal set in the control unit 50 as will be described later, and is pressure-fed from a fuel pump (not shown) and controlled to a predetermined pressure by a pressure regulator (not shown). Injected fuel is supplied. Further, a water temperature sensor for detecting a cooling water temperature Tw in a cooling jacket of the engine 11.
16 are provided.

【0027】一方、排気通路17にはマニホールド集合部
近傍に、排気中の酸素濃度を検出することによってリッ
チからリーンまで広範囲に亘って空燃比を検出できる上
流側広域空燃比センサ18が設けられ、その下流側に、理
論空燃比{A/F(空気重量/燃料重量)≒14.7、
換言すると空気過剰率λ=1}近傍において最大に排気
中のCO,HCの酸化とNOX の還元を行って排気を浄
化する排気浄化触媒としての三元触媒20が介装されてい
る。なお、排気浄化触媒は、三元触媒に限らず、酸化触
媒、リーンNOx 触媒等であっても良い。
On the other hand, an upstream wide-range air-fuel ratio sensor 18 is provided in the exhaust passage 17 in the vicinity of the manifold assembly so as to detect the air-fuel ratio over a wide range from rich to lean by detecting the oxygen concentration in the exhaust gas. On the downstream side, the stoichiometric air-fuel ratio {A / F (air weight / fuel weight)} 14.7,
In other words the air excess ratio λ = 1} CO in the exhaust to a maximum in the vicinity of the three-way catalyst 20 as an exhaust gas purifying catalyst for purifying exhaust by performing the reduction of oxidation and NO X of HC is interposed. The exhaust purification catalyst is not limited to a three-way catalyst, but may be an oxidation catalyst, a lean NOx catalyst, or the like.

【0028】なお、上流側広域空燃比センサ18は、例え
ば、図3に示すような構成となっている。つまり、図3
に示すように、ヒータ部2を備えた本体(例えば酸素イ
オン伝導性を有するジルコニアZr2 3 等の耐熱性多
孔質絶縁材料等で形成される)1内に、大気(標準ガ
ス)と連通する大気導入孔3を設けると共に、検出対象
ガス(例えば内燃機関の排気等)と検出対象ガス導入孔
4、保護層5等を介して連通するガス拡散層(或いはガ
ス拡散ギャップ)6が設けられている。センシング部電
極7A、7Bは大気導入孔3とガス拡散層6に臨んで設
けられると共に、酸素ポンプ電極8A、8Bはガス拡散
層6と、これに対応する本体1の周囲と、に設けられる
ようになっている。
The upstream wide-range air-fuel ratio sensor 18 has, for example, a configuration as shown in FIG. That is, FIG.
As shown in (1), a body (formed of, for example, a heat-resistant porous insulating material such as zirconia Zr 2 O 3 having oxygen ion conductivity) having a heater portion 2 communicates with the atmosphere (standard gas). And a gas diffusion layer (or gas diffusion gap) 6 communicating with a gas to be detected (for example, exhaust gas from an internal combustion engine) via the gas introduction hole 4, the protective layer 5, and the like. ing. The sensing unit electrodes 7A and 7B are provided facing the air introduction hole 3 and the gas diffusion layer 6, and the oxygen pump electrodes 8A and 8B are provided on the gas diffusion layer 6 and the corresponding periphery of the main body 1. It has become.

【0029】なお、センシング部電極7A、7B(セン
サ部)は、ガス拡散層6内の酸素イオン濃度(酸素分
圧)によって影響されるセンシング部電極間の酸素分圧
比に応じて発生する電圧を検出するようになっている。
一方、酸素ポンプ電極8A、8B(特定成分ポンプ部)
には、所定電圧が印加されるようになっている。つま
り、センシング部電極7A、7Bはセンシング部電極間
の酸素分圧比によって発生する電圧を検出して、空燃比
が理論空燃比(換言すると、空気過剰率λ=1)に対し
てリッチであるかリーンであるかを検出することができ
るようになっている。
The sensing portion electrodes 7A and 7B (sensor portions) apply a voltage generated according to the oxygen partial pressure ratio between the sensing portion electrodes which is affected by the oxygen ion concentration (oxygen partial pressure) in the gas diffusion layer 6. It is designed to detect.
On the other hand, oxygen pump electrodes 8A and 8B (specific component pump section)
, A predetermined voltage is applied. That is, the sensing unit electrodes 7A and 7B detect the voltage generated by the oxygen partial pressure ratio between the sensing unit electrodes, and determine whether the air-fuel ratio is rich with respect to the stoichiometric air-fuel ratio (in other words, the excess air ratio λ = 1). It can detect whether it is lean.

【0030】一方、図4のようなモデル図で示すことが
できる酸素ポンプ電極部8A、8Bにおいては、所定の
電圧が印加されると、これに応じてガス拡散層6内の酸
素イオンが移動され、酸素ポンプ電極部8A、8B間に
電流が流れるようになっている。なお、酸素ポンプ電極
部8A、8B間に、所定電圧を印加したときに該電極間
を流れる電流値(限界電流)Ipは、ガス拡散層6内の
酸素イオン濃度に影響されるので、電流値(限界電流)
Ipを検出すれば、検出対象ガスの空燃比(換言すれ
ば、空気過剰率λ)を検出できることになる。
On the other hand, in the oxygen pump electrode portions 8A and 8B, which can be shown by a model diagram as shown in FIG. 4, when a predetermined voltage is applied, oxygen ions in the gas diffusion layer 6 move according to the predetermined voltage. Thus, a current flows between the oxygen pump electrode portions 8A and 8B. The current value (limit current) Ip flowing between the oxygen pump electrode portions 8A and 8B when a predetermined voltage is applied between the electrodes is affected by the oxygen ion concentration in the gas diffusion layer 6, so that the current value (Limit current)
If Ip is detected, the air-fuel ratio of the detection target gas (in other words, the excess air ratio λ) can be detected.

【0031】従って、例えば、図4のテーブルAに示す
ような酸素ポンプ電極間の電流・電圧と、検出対象ガス
の空燃比(換言すれば、空気過剰率λ)と、の相関関係
が得られることになる。なお、センシング部電極7A、
7Bのリッチ・リーン出力に基づいて、酸素ポンプ電極
部8A、8Bに対する電圧の印加方向を反転させること
で、リーン領域とリッチ領域との両方の空燃比領域にお
いて、酸素ポンプ電極部8A、8B間を流れる電流値
(限界電流)Ipに基づく広範囲な空燃比の検出を可能
にしているものである。
Accordingly, for example, a correlation between the current / voltage between the oxygen pump electrodes and the air-fuel ratio of the gas to be detected (in other words, excess air ratio λ) as shown in Table A of FIG. 4 is obtained. Will be. In addition, the sensing unit electrode 7A,
By inverting the application direction of the voltage to the oxygen pump electrode units 8A and 8B based on the rich / lean output of 7B, the oxygen pump electrode units 8A and 8B can be connected in both the lean and rich air-fuel ratio regions. This enables detection of a wide range of air-fuel ratios based on the current value (limit current) Ip flowing through.

【0032】以上のような空燃比検出原理に基づき、コ
ントロールユニット50では上流側広域空燃比センサ18の
酸素ポンプ電極部8A、8B間の電流値Ipを検出し、
例えば図4のテーブルBを参照することで、広範囲に亘
って排気の実際の空燃比(空気過剰率λ)をリニアに検
出する。ところで、三元触媒20の出口側には、従来と同
様の機能を持つ下流側酸素センサ19(理論空燃比に対す
るリッチ・リーン信号を出力するセンサ)が設けられ
る。
Based on the above-described air-fuel ratio detection principle, the control unit 50 detects the current value Ip between the oxygen pump electrode portions 8A and 8B of the upstream wide area air-fuel ratio sensor 18,
For example, the actual air-fuel ratio of the exhaust gas (excess air ratio λ) is linearly detected over a wide range by referring to Table B in FIG. On the outlet side of the three-way catalyst 20, a downstream oxygen sensor 19 (a sensor that outputs a rich / lean signal with respect to the stoichiometric air-fuel ratio) having the same function as the conventional one is provided.

【0033】また、図2で図示しないディストリビュー
タには、クランク角センサ21が内蔵されており、コント
ロールユニット50では、該クランク角センサ21から機関
回転と同期して出力されるクランク単位角信号を一定時
間カウントして、又は、クランク基準角信号の発生周期
を計測して機関回転速度Neを検出する。ところで、コ
ントロールユニット50は、CPU,ROM,RAM,A
/D変換器及び入出力インタフェイス等を含んで構成さ
れるマイクロコンピュータからなり、各種センサからの
入力信号を受け、例えば、以下のようにして、燃料噴射
弁15の噴射量(即ち、空燃比制御対象)を制御する。前
記各種のセンサとしては、前述の上流側広域空燃比セン
サ18、エアフローメータ13、水温センサ16、クランク角
センサ21等がある。
A distributor (not shown in FIG. 2) has a built-in crank angle sensor 21. The control unit 50 controls a crank unit angle signal output from the crank angle sensor 21 in synchronization with the engine rotation. The engine rotation speed Ne is detected by counting time or measuring the generation cycle of the crank reference angle signal. Incidentally, the control unit 50 includes a CPU, a ROM, a RAM,
And a microcomputer including an I / D converter and an input / output interface. The microcomputer receives input signals from various sensors, and receives, for example, the injection amount of the fuel injector 15 (that is, the air-fuel ratio) as follows. Control object). Examples of the various sensors include the above-described upstream wide-area air-fuel ratio sensor 18, the air flow meter 13, the water temperature sensor 16, the crank angle sensor 21, and the like.

【0034】即ち、エアフローメータ13からの電圧信号
から求められる吸入空気流量Qaと、クランク角センサ
22からの信号から求められる機関回転速度Neとから基
本燃料噴射パルス幅(燃料噴射量に相当)Tp=c×Q
a/Ne(cは定数)を演算すると共に、低水温時に強
制的にリッチ側に補正する水温補正係数Kwや、始動及
び始動後増量補正係数Kasや、空燃比フィードバック補
正係数α等により、最終的な有効燃料噴射パルス幅Te
=Tp×(1+Kw+Kas+・・・)×α+Tsを演算
する。Tsは、電圧補正分である。
That is, the intake air flow rate Qa obtained from the voltage signal from the air flow meter 13 and the crank angle sensor
The basic fuel injection pulse width (corresponding to the fuel injection amount) Tp = c × Q from the engine rotation speed Ne obtained from the signal from 22
a / Ne (where c is a constant) is calculated, and a final temperature is calculated by a water temperature correction coefficient Kw forcibly correcting to a rich side at a low water temperature, a start and post-start increase correction coefficient Kas, an air-fuel ratio feedback correction coefficient α, and the like. Effective fuel injection pulse width Te
= Tp x (1 + Kw + Kas + ...) x α + Ts. Ts is a voltage correction amount.

【0035】そして、この有効燃料噴射パルス幅Teが
駆動パルス信号として前記燃料噴射弁15に送られて、所
定量に調量された燃料が噴射供給されることになる。上
記空燃比フィードバック補正係数αは、上流側広域空燃
比センサ18が検出する検出値(実際の空燃比)の目標空
燃比からのズレを補正するためにコントロールユニット
50で設定される係数であり、これに基づきコントロール
ユニット50では基本燃料パルス幅Tpを補正し、空燃比
が目標空燃比(例えば理論空燃比)にフィードバック制
御されることになる。
Then, the effective fuel injection pulse width Te is sent to the fuel injection valve 15 as a drive pulse signal, and the fuel adjusted to a predetermined amount is injected and supplied. The air-fuel ratio feedback correction coefficient α is a control unit for correcting a deviation of a detection value (actual air-fuel ratio) detected by the upstream wide-range air-fuel ratio sensor 18 from a target air-fuel ratio.
The control unit 50 corrects the basic fuel pulse width Tp based on the coefficient, and the air-fuel ratio is feedback-controlled to a target air-fuel ratio (for example, a stoichiometric air-fuel ratio).

【0036】ここで、本実施形態におけるコントロール
ユニット50により実行される排気浄化触媒の異常診断制
御について、その基本的な考え方を説明する。即ち、本
実施形態における排気浄化触媒の異常診断は、定常走行
状態(機関11の定常状態)中、上流側広域空燃比センサ
18により検出される実際の空燃比(検出値)が目標空燃
比となるように空燃比制御対象(燃料噴射量或いは吸入
空気流量)をフィードバック制御している場合に、目標
空燃比を強制的に所定周期、所定幅で振幅させるように
する。
Here, the basic concept of the abnormality diagnosis control of the exhaust purification catalyst executed by the control unit 50 in the present embodiment will be described. That is, the abnormality diagnosis of the exhaust gas purification catalyst in the present embodiment is performed during the steady running state (the steady state of the engine 11) during the upstream wide area air-fuel ratio sensor.
When the air-fuel ratio control target (fuel injection amount or intake air flow rate) is feedback-controlled so that the actual air-fuel ratio (detected value) detected by 18 becomes the target air-fuel ratio, the target air-fuel ratio is forcibly set. The amplitude is set to a predetermined period and a predetermined width.

【0037】このようにすると、目標空燃比の強制的な
振幅に従って空燃比制御対象(燃料噴射量或いは吸入空
気流量)が変化されるので、三元触媒20には空燃比が所
定周期、所定幅でリッチ・リーン反転を繰り返す排気が
導入されることになる。このとき、三元触媒20が正常で
あれば、その酸素ストレージ能力が充分発揮されるの
で、導入される空燃比がリッチ・リーン反転中のリーン
側にあるときには、触媒表面上において酸素吸着成分へ
の酸素分子の吸着が行われるため、触媒表面近傍の空燃
比がリーン側から理論空燃比へ近づけられ(これにより
NOx ,CO,HCの三成分が良好に浄化される)、延
いては三元触媒20から導出される排気の空燃比が理論空
燃比へ近づけられることになる。
In this way, the air-fuel ratio control target (fuel injection amount or intake air flow rate) is changed according to the compulsory amplitude of the target air-fuel ratio. The exhaust gas which repeats the rich / lean inversion is introduced. At this time, if the three-way catalyst 20 is normal, its oxygen storage capacity is sufficiently exhibited, so that when the introduced air-fuel ratio is on the lean side during the rich / lean reversal, the oxygen adsorbing component on the catalyst surface is reduced. The air-fuel ratio in the vicinity of the catalyst surface is brought closer to the stoichiometric air-fuel ratio from the lean side (thus, the three components of NOx, CO, and HC are satisfactorily purified). The air-fuel ratio of the exhaust gas derived from the catalyst 20 approaches the stoichiometric air-fuel ratio.

【0038】一方、三元触媒20が正常であれば、導入さ
れる空燃比がリッチ・リーン反転中のリッチ側にあると
きは、触媒表面上において酸素吸着成分からの酸素分子
の離脱が行われるため、触媒表面近傍の空燃比がリッチ
側から理論空燃比へ近づけられ(これによりNOx ,C
O,HCの三成分が良好に浄化される)、延いては三元
触媒20から導出される排気の空燃比が理論空燃比へ近づ
けられることになる。
On the other hand, if the three-way catalyst 20 is normal, if the introduced air-fuel ratio is on the rich side during the rich / lean reversal, the separation of oxygen molecules from the oxygen adsorbed component is performed on the catalyst surface. Therefore, the air-fuel ratio in the vicinity of the catalyst surface approaches the stoichiometric air-fuel ratio from the rich side (this allows NOx, C
The three components of O and HC are satisfactorily purified), so that the air-fuel ratio of the exhaust gas derived from the three-way catalyst 20 approaches the stoichiometric air-fuel ratio.

【0039】つまり、三元触媒20が正常であれば、例え
三元触媒20の入口側(上流側広域空燃比センサ18取付
側)で空燃比をリッチ・リーン反転させても、触媒のも
つ酸素分子の吸着・離脱作用により、三元触媒20の出口
側(下流側酸素センサ19側)には、空燃比のリッチ・リ
ーン反転が減衰された排気が、導出されて来ることにな
るのである。
That is, if the three-way catalyst 20 is normal, even if the air-fuel ratio is rich / lean reversed at the inlet side of the three-way catalyst 20 (on the side where the upstream wide-range air-fuel ratio sensor 18 is mounted), the oxygen contained in the catalyst is not affected. Due to the molecule adsorbing / desorbing action, exhaust gas in which the rich / lean reversal of the air-fuel ratio has been attenuated is led to the outlet side (downstream oxygen sensor 19 side) of the three-way catalyst 20.

【0040】これに対し、三元触媒20に異常があれば、
酸素ストレージ能力が低下するので、正常時のように酸
素分子の吸着・離脱作用を良好に発揮できないので、三
元触媒20の入口側(上流側広域空燃比センサ18取付側)
で空燃比をリッチ・リーン反転させれば、そのリッチ・
リーン反転があまり減衰されないで出口側(下流側酸素
センサ19側)へ排気されることになる。
On the other hand, if there is an abnormality in the three-way catalyst 20,
Since the oxygen storage capacity is reduced, the adsorption and desorption of oxygen molecules cannot be exhibited as well as in a normal state, so the inlet side of the three-way catalyst 20 (the upstream side wide air-fuel ratio sensor 18 mounting side).
If the air-fuel ratio is reversed rich / lean with
Lean reversal is exhausted to the outlet side (downstream oxygen sensor 19 side) without being greatly attenuated.

【0041】よって、空燃比フィードバック制御してい
るときに、目標空燃比を強制的に所定周期、所定幅で振
幅させ、そのときの上流側広域空燃比センサ18の出力信
号のリッチ・リーン反転周期(T1、或いはコントロー
ルユニット50が与えた目標空燃比の変動周期でも良い)
と、下流側酸素センサ19の出力信号のリッチ・リーン反
転周期(T2)と、を観察すれば、三元触媒20の異常
(熱劣化、被毒、溶損等による酸素ストレージ能力の低
下)を診断することができることになるのである。
Therefore, during the air-fuel ratio feedback control, the target air-fuel ratio is forcibly made to have a predetermined period and a predetermined width, and the rich / lean inversion period of the output signal of the upstream wide area air-fuel ratio sensor 18 at that time. (T1 or the fluctuation period of the target air-fuel ratio given by the control unit 50 may be used)
When observing the rich-lean inversion cycle (T2) of the output signal of the downstream oxygen sensor 19, the abnormality of the three-way catalyst 20 (deterioration of oxygen storage capacity due to thermal deterioration, poisoning, melting, etc.) The diagnosis can be made.

【0042】なお、空燃比フィードバック制御中でなく
ても、空燃比のフィードフォワード制御によって強制的
に直接空燃比制御対象を排気空燃比がリッチ・リーン反
転するように変化させ、これに応じて検出される上流側
広域空燃比センサ18の出力信号のリッチ・リーン反転周
期(T1)と、下流側酸素センサ19の出力信号のリッチ
・リーン反転周期(T2)と、を観察しても、三元触媒
20の異常(熱劣化、被毒、溶損等による酸素ストレージ
能力の低下)を診断することができるものである。
Even if the air-fuel ratio feedback control is not being performed, the air-fuel ratio control target is forcibly directly changed by the air-fuel ratio feedforward control so that the exhaust air-fuel ratio is rich / lean inverted. Observing the rich / lean inversion cycle (T1) of the output signal of the upstream wide area air-fuel ratio sensor 18 and the rich / lean inversion cycle (T2) of the output signal of the downstream oxygen sensor 19, the three-way catalyst
It can diagnose 20 abnormalities (decrease in oxygen storage capacity due to thermal deterioration, poisoning, melting, etc.).

【0043】ところで、排気浄化触媒の異常診断のため
に、無制限に排気空燃比を変化させてしまったのでは、
三元触媒20の排気浄化性能を悪化させる惧れもあるの
で、排気空燃比を変化させる範囲(変動周期、振幅)
を、三元触媒20の排気浄化性能変化を許容できる範囲に
制限することは好ましいことである。なお、本願出願人
等が提案する触媒パータベーション制御{空燃比を広範
囲に亘って検出できる広域空燃比センサを用いた空燃比
フィードバック制御にあっては、理論空燃比に対してリ
ッチかリーンかしか検出できない酸素センサを用いた空
燃比フィードバック制御に比べ、排気浄化触媒入口部の
排気空燃比がリッチ・リーン反転する機会が少ないた
め、触媒表面上での酸素分子の吸着・離脱が効果的に行
われず三成分(NOx ,CO,HC)を同時に浄化する
効率が低下してしまう惧れがあるが、これを抑制するた
めに、強制的に触媒入口の空燃比(換言すれば、三成分
の浄化効率を最大限高められるように、広域空燃比セン
サで監視しながら、目標空燃比を所定周期、所定振幅で
振幅させる制御}の実行中に、上流側広域空燃比センサ
18の出力信号のリッチ・リーン反転周期(T1)と、下
流側酸素センサ19の出力信号のリッチ・リーン反転周期
(T2)と、を観察して、三元触媒20の異常(熱劣化、
被毒、溶損等による酸素ストレージ能力の低下)を診断
するようにすれば、触媒パータベーション制御により三
元触媒20の持つ排気浄化性能を最大に高めながら、同時
に、三元触媒20の異常診断も高精度に行うことができる
ことになるので効果的である。
By the way, if the exhaust air-fuel ratio is changed without limitation for abnormality diagnosis of the exhaust purification catalyst,
Since the exhaust gas purification performance of the three-way catalyst 20 may be deteriorated, the range in which the exhaust air-fuel ratio is changed (fluctuation cycle, amplitude)
It is preferable to restrict the change in the exhaust gas purification performance of the three-way catalyst 20 to an allowable range. Incidentally, in the catalyst perturbation control proposed by the present applicant, etc. {the air-fuel ratio feedback control using a wide-range air-fuel ratio sensor capable of detecting the air-fuel ratio over a wide range, it is only necessary to determine whether the stoichiometric air-fuel ratio is rich or lean. Compared to air-fuel ratio feedback control using an undetectable oxygen sensor, there is less opportunity for rich / lean reversal of the exhaust air-fuel ratio at the exhaust purification catalyst inlet, so adsorption and desorption of oxygen molecules on the catalyst surface is performed effectively. There is a concern that the efficiency of purifying the three components (NOx, CO, HC) at the same time may decrease, but in order to suppress this, the air-fuel ratio at the catalyst inlet (in other words, the purification of the three components) is forcibly reduced. In order to maximize efficiency, the upstream wide-range air-fuel ratio sensor is monitored during execution of control さ せ る, in which the target air-fuel ratio is made to have a predetermined period and a predetermined amplitude while monitoring with the wide-range air-fuel ratio sensor.
Observing the rich / lean inversion cycle (T1) of the output signal of the output signal 18 and the rich / lean inversion cycle (T2) of the output signal of the downstream oxygen sensor 19, the abnormality of the three-way catalyst 20 (thermal deterioration,
By diagnosing the decrease in oxygen storage capacity due to poisoning or melting, etc.), it is possible to maximize the exhaust gas purification performance of the three-way catalyst 20 by controlling the catalyst perturbation, and at the same time, to diagnose the abnormality of the three-way catalyst 20 This is also effective because it can be performed with high accuracy.

【0044】ところで、上記説明では、三元触媒20の入
口部の排気空燃比がリッチ・リーン反転を繰り返すよう
に目標空燃比或いは空燃比制御対象を制御し、そのリッ
チ・リーン反転周期等に基づき三元触媒20の異常を診断
するものとして説明したが、これに限られるものでもな
い。例えば、三元触媒20の入口部の排気空燃比がリッチ
側或いはリーン側へ切り換わるように空燃比・空燃比制
御対象の制御状態を変化させ、その切り換えタイミング
(或いは空燃比或いは空燃比制御対象を変化させたこと
で上流側空燃比センサ18が所定量変化したとき)から下
流側酸素センサ19が所定量変化するまでの時間(応答時
間)等の下流側酸素センサ19の変化度合を観察すること
によって、三元触媒20の異常(熱劣化、被毒、溶損等に
よる酸素ストレージ能力の低下)を診断することも可能
である。
In the above description, the target air-fuel ratio or the air-fuel ratio control target is controlled so that the exhaust air-fuel ratio at the inlet of the three-way catalyst 20 repeats the rich-lean inversion, and based on the rich-lean inversion cycle and the like. Although the description has been made on the assumption that the abnormality of the three-way catalyst 20 is diagnosed, the present invention is not limited to this. For example, the control state of the air-fuel ratio / air-fuel ratio control object is changed so that the exhaust air-fuel ratio at the inlet of the three-way catalyst 20 is switched to the rich side or the lean side, and the switching timing (or the air-fuel ratio or the air-fuel ratio control object) is changed. Of the downstream oxygen sensor 19, such as the time (response time) from the time when the upstream air-fuel ratio sensor 18 changes by a predetermined amount to the time when the downstream oxygen sensor 19 changes by a predetermined amount (the response time). This makes it possible to diagnose an abnormality of the three-way catalyst 20 (a decrease in oxygen storage capacity due to thermal deterioration, poisoning, melting, etc.).

【0045】即ち、三元触媒20が正常であれば、三元触
媒20の入口側で排気空燃比がリッチ側或いはリーン側へ
切り換えられても、三元触媒20の酸素ストレージ能力に
より、三元触媒20の出口側ではその切り換えが比較的長
期間経過してから現れることになるが、三元触媒20に異
常があれば、三元触媒20の酸素ストレージ能力が低下し
ているので、三元触媒20の入口側で排気空燃比がリッチ
側或いはリーン側へ切り換えられると、比較的短時間の
うちに三元触媒20の出口側でもその切り換えが現れるこ
とになる。
That is, if the three-way catalyst 20 is normal, even if the exhaust air-fuel ratio is switched to the rich side or the lean side at the inlet side of the three-way catalyst 20, the three-way catalyst 20 has a three-way At the outlet side of the catalyst 20, the switching will appear after a relatively long period of time, but if there is an abnormality in the three-way catalyst 20, the oxygen storage capacity of the three-way catalyst 20 is reduced, When the exhaust air-fuel ratio is switched to the rich side or the lean side on the inlet side of the catalyst 20, the switching appears on the outlet side of the three-way catalyst 20 in a relatively short time.

【0046】従って、空燃比或いは空燃比制御対象の制
御状態を切り換えたときから、その切り換えが下流側酸
素センサ19で検出されるまでの時間等の下流側酸素セン
サ19の出力信号の変化度合を観察することによって、三
元触媒20の異常を診断することが可能となるのである。
上記のような考え方に基づき本実施形態のコントロール
ユニット50が行う排気浄化触媒の異常診断制御を、図5
に示すフローチャートに従って説明する。なお、本発明
にかかる空燃比切換手段、異常診断手段としての機能
は、以下に示すように、コントロールユニット50がソフ
トウェア的に備えるものである。
Accordingly, the degree of change in the output signal of the downstream oxygen sensor 19, such as the time from when the air-fuel ratio or the control state of the air-fuel ratio control object is switched to when the switching is detected by the downstream oxygen sensor 19, is determined. By observing, it is possible to diagnose an abnormality of the three-way catalyst 20.
The abnormality diagnosis control of the exhaust purification catalyst performed by the control unit 50 of the present embodiment based on the above-described concept is described with reference to FIG.
This will be described according to the flowchart shown in FIG. The functions of the air-fuel ratio switching unit and the abnormality diagnosis unit according to the present invention are provided by the control unit 50 as software as described below.

【0047】ステップ(図では、Sと記してある。以
下、同様。)1では、診断許可条件成立か否かを判断す
る。即ち、例えば、下記〜の条件が成立するまで、
異常診断を許可しないようになっている。例えば、 エンジンスタートキーオン→オフ(Key on→o
ff)後一定時間経過したか(換言すれば始動後所定時
間経過したか)否かを判断し、経過していなければ診断
開始を許可しないようになっている。例えば、始動時増
量、壁流形成の影響による誤診断や、上流側広域空燃比
18、下流側酸素センサ19、三元触媒20の不活性状態下に
おいて診断が行われることによる誤診断を防止する等の
ためである。
In step (denoted by S in the figure, the same applies hereinafter), it is determined whether or not a diagnosis permission condition is satisfied. That is, for example, until the following conditions are satisfied:
Abnormality diagnosis is not allowed. For example, engine start key on → off (Key on → o
ff) It is determined whether or not a predetermined time has elapsed since the start (in other words, whether or not a predetermined time has elapsed after the start), and if it has not elapsed, the start of diagnosis is not permitted. For example, erroneous diagnosis due to the effect of increased amount at start-up and wall flow formation, and upstream wide area air-fuel ratio
This is to prevent erroneous diagnosis due to the diagnosis being performed under the inactive state of the downstream oxygen sensor 19 and the three-way catalyst 20.

【0048】上流側広域空燃比センサ18、下流側酸素
センサ19の活性判定終了か否かを判断し、終了していな
ければ異常診断を許可しないようになっている。各セン
サの不活性状態下において診断が行われることによる誤
診断を防止する等のためである。 空燃比フィードバック制御(A/Fコントロール)条
件(例えば、機関運転が定常状態)が成立し、前述した
触媒パータベーション制御が実行されているか等を判断
し、実行されていなければ異常診断を許可しないように
なっている。例えば、触媒パータベーション制御の実行
中は、三元触媒20の入口部の空燃比を広域空燃比センサ
18で監視しながら所定周期で所定量振幅させて三成分
(NOx 、CO,HC)の転換効率(浄化効率)を高め
るようにするので、排気性能を良好に維持しながら、高
精度に異常診断を行うことができるからである。
It is determined whether or not the activity determination of the upstream wide-area air-fuel ratio sensor 18 and the downstream oxygen sensor 19 has been completed. If not, the abnormality diagnosis is not permitted. This is for preventing erroneous diagnosis due to the diagnosis being performed in the inactive state of each sensor. It is determined whether the air-fuel ratio feedback control (A / F control) condition (for example, the engine operation is in a steady state) is satisfied and the above-described catalyst perturbation control is executed, and if not, the abnormality diagnosis is not permitted. It has become. For example, during execution of the catalyst perturbation control, the air-fuel ratio at the inlet of the three-way catalyst 20 is determined by a wide-range air-fuel ratio sensor.
Since the conversion efficiency (purification efficiency) of three components (NOx, CO, HC) is increased by a predetermined amount in a predetermined period while monitoring at 18, the abnormality diagnosis is performed with high accuracy while maintaining the exhaust performance well. It is because it can perform.

【0049】三元触媒20が活性化しているか否かを判
断し、活性化していなければ診断開始を許可しないよう
になっている。三元触媒20が活性化していない場合には
酸素ストレージ能力も低下しているので、高精度に三元
触媒20の異常診断を行うことができないからである。 上記〜の条件が成立すると、ステップ2へ進むが、
当該ステップ2では、目標空燃比{或いは空燃比制御対
象(燃料噴射量や吸入空気流量)の制御状態}を切り換
える。なお、触媒パータベーション制御を実行している
場合には、該ステップは省略することができる。
It is determined whether or not the three-way catalyst 20 is activated, and if it is not activated, the start of diagnosis is not permitted. This is because when the three-way catalyst 20 is not activated, the oxygen storage capacity is also reduced, so that it is not possible to perform the abnormality diagnosis of the three-way catalyst 20 with high accuracy. When the above conditions are satisfied, the process proceeds to step 2,
In step 2, the target air-fuel ratio {} or the control state {} of the air-fuel ratio control target (fuel injection amount or intake air flow rate) is switched. If the catalyst perturbation control is being executed, this step can be omitted.

【0050】ステップ3では、下流側酸素センサ19の出
力のモニタを開始する。続くステップ4では、下流側酸
素センサ19の応答判定を行う。例えば、図7に示すよう
に、目標空燃比が切り換えられた時点(或いは目標空燃
比の切り換えに応じて上流側広域空燃比センサ18の出力
が所定量変化した時点)から、下流側酸素センサ19の出
力が所定量変化するまでの時間が、所定時間(CATN
GT)以上であるか否かに基づいて判定することができ
る。所定時間(CATNGT)以上(YES)であれば
ステップ5へ進み、所定時間(CATNGT)より短い
(NOの)場合には、ステップ6へ進む。
In step 3, monitoring of the output of the downstream oxygen sensor 19 is started. In the following step 4, the response of the downstream oxygen sensor 19 is determined. For example, as shown in FIG. 7, from the time when the target air-fuel ratio is switched (or the time when the output of the upstream wide-range air-fuel ratio sensor 18 changes by a predetermined amount in accordance with the switching of the target air-fuel ratio), the downstream oxygen sensor 19 Is a predetermined time (CATN)
GT) or more. If the time is equal to or longer than the predetermined time (CATNGT) (YES), the process proceeds to step 5, and if the time is shorter than the predetermined time (CATNGT) (NO), the process proceeds to step 6.

【0051】なお、目標空燃比を変化させてから下流側
酸素センサ19の出力値が変化後の目標空燃比に相当する
値に収束するまでの所要時間を計測し、その計測結果が
所定時間以上であるか否かに基づいて判定することもで
きる。また、前記ステップ2における目標空燃比の切り
換えを、所定周期・所定振幅で行った場合、或いは触媒
パータベーション制御を行っている場合には、上流側広
域空燃比センサ18と下流側酸素センサ19の出力信号を読
み込み、リッチ・リーン反転周期(T1,T2)を検出
し、反転周波数比(HZRATE)を算出し、例えば図
11を参照することで、三元触媒20の異常を診断するこ
ともできる。なお、上流側広域空燃比センサ18のリッチ
・リーン反転周期(T1)は、目標空燃比の振幅周期と
することも可能である。
The time required for changing the target air-fuel ratio and for the output value of the downstream oxygen sensor 19 to converge to a value corresponding to the changed target air-fuel ratio is measured. It can also be determined based on whether or not. When the target air-fuel ratio is switched at a predetermined cycle and a predetermined amplitude in step 2 or when the catalyst perturbation control is performed, the upstream wide-range air-fuel ratio sensor 18 and the downstream oxygen sensor 19 are controlled. The output signal is read, the rich / lean inversion cycle (T1, T2) is detected, the inversion frequency ratio (HZRATE) is calculated, and the abnormality of the three-way catalyst 20 can be diagnosed by referring to, for example, FIG. . Note that the rich / lean inversion cycle (T1) of the upstream wide area air-fuel ratio sensor 18 may be set to the amplitude cycle of the target air-fuel ratio.

【0052】ステップ5では、下流側酸素センサ19の出
力が所定量変化するまでの時間が、所定時間(CATN
GT)以上であるので、強制的な目標空燃比の変化が、
三元触媒20の酸素ストレージ能力によりなまされている
と判断できるので、三元触媒20は正常であると判断し
(OK判定)、リターンして、異常診断を続行する。一
方、ステップ6では、下流側酸素センサ19の出力が所定
量変化するまでの時間が、所定時間(CATNGT)よ
り短い場合ので、強制的な目標空燃比の変化を、三元触
媒20の酸素ストレージ能力の低下によって充分になます
ことができていないと判断できるので、三元触媒20は異
常である(例えば、熱劣化、被毒、高温条件での失火等
による溶損、或いは物理的、サーマルショック等による
破損等により、酸素ストレージ能力が低下している)と
判断し(NG判定)、ステップ7へ進む。
In step 5, the time required for the output of the downstream oxygen sensor 19 to change by a predetermined amount is equal to a predetermined time (CATN).
GT) or more, the forcible change in the target air-fuel ratio
Since it can be determined that the three-way catalyst 20 has been stolen by the oxygen storage capacity of the three-way catalyst 20, it is determined that the three-way catalyst 20 is normal (OK determination), the process returns, and the abnormality diagnosis is continued. On the other hand, in step 6, since the time required for the output of the downstream oxygen sensor 19 to change by a predetermined amount is shorter than the predetermined time (CATNGT), the forcible change of the target air-fuel ratio is determined by the oxygen storage of the three-way catalyst 20. The three-way catalyst 20 is abnormal (for example, thermal deterioration, poisoning, erosion due to misfiring at high temperature conditions, or physical or thermal It is determined that the oxygen storage capacity is reduced due to damage due to a shock or the like (NG determination), and the process proceeds to step 7.

【0053】ステップ7では、警告灯(MIL)を点灯
等して運転者等に三元触媒20に何らかの異常がある旨を
認知させ修理等の処置を促すようにする。なお、2回
(或いは2トリップ)連続してNG判定された場合に、
ステップ7へ進ませるようにすると、1回目にNG判定
され次回OK判定されたような場合には、1回目のNG
判定が誤判定であった惧れがあるが、このような誤判定
を異常診断において考慮に入れなくすることができるの
で、三元触媒20の異常診断精度を一層高めることができ
る。
In step 7, a warning light (MIL) is turned on to make the driver or the like aware that there is some abnormality in the three-way catalyst 20 and urge the driver to take measures such as repair. In addition, when NG determination is made twice (or two trips) continuously,
If the process proceeds to step 7, if the first NG determination is made and the next OK determination is made, the first NG determination is made.
Although there is a concern that the determination may be erroneous, such erroneous determination can be omitted from consideration in the abnormality diagnosis, so that the abnormality diagnosis accuracy of the three-way catalyst 20 can be further improved.

【0054】ところで、上記では、空燃比フィードバッ
ク制御中に異常診断を行うとして説明したが、これに限
らず、例えばフィードフォワード制御により目標空燃比
或いは空燃比制御対象(吸入空気流量や燃料噴射量)の
制御状態を切り換える場合にも、その切り換えからの下
流側酸素空燃比センサ18の検出値の変化の様子を観察す
ることで、三元触媒20の異常診断を行うことができるこ
とは、前述した通りである。
In the above description, the abnormality diagnosis is performed during the air-fuel ratio feedback control. However, the present invention is not limited to this. For example, the target air-fuel ratio or the air-fuel ratio control target (intake air flow rate or fuel injection amount) may be controlled by feedforward control. Even when the control state is switched, the abnormality diagnosis of the three-way catalyst 20 can be performed by observing the state of the change in the detection value of the downstream oxygen air-fuel ratio sensor 18 after the switch, as described above. It is.

【0055】従って、上記の診断許可条件〜のすべ
てが成立したことを診断許可条件の成立とするのは一例
であって、これら〜のうちの何れか或いは適宜組み
合わせたものが成立した場合に診断許可条件の成立とす
ることができるものである。また、例えば、機関運転状
態が定常状態であることを診断許可条件とするだけで
も、機関運転状態の変化に起因する空燃比変化に影響さ
れずに、目標空燃比の切り換えに起因する下流側酸素セ
ンサ19の検出値の変化を高精度に検出できることになる
ので(空燃比をフィードバック制御しているかフィード
フォワード制御しているかに拘わらず)、高精度に三元
触媒20の異常を診断することができるものである。
Accordingly, it is merely an example that the diagnosis permission condition is satisfied when all of the above-mentioned diagnosis permission conditions are satisfied, and the diagnosis is performed when any of these or any combination thereof is satisfied. The permission condition can be satisfied. Further, for example, even if the diagnosis permission condition is simply set to the steady state of the engine operating state, the downstream side oxygen caused by the switching of the target air-fuel ratio is not affected by the air-fuel ratio change caused by the change in the engine operating state. Since the change in the detection value of the sensor 19 can be detected with high accuracy (regardless of whether the air-fuel ratio is feedback-controlled or feed-forward controlled), it is possible to diagnose the abnormality of the three-way catalyst 20 with high accuracy. You can do it.

【0056】このように、本実施形態によれば、強制的
に空燃比或いは空燃比制御対象(燃料噴射量若しくは吸
入空気流量)の制御状態を変化させ、その変化に対する
下流側酸素センサ19の出力変化(応答時間、振幅周波
数、変化の傾き等)を観察することで、三元触媒20の異
常を診断するようにしたので、三元触媒20の上流側に広
域空燃比センサ18を設けた場合においても、簡単な構成
で、迅速かつ高精度に三元触媒20の異常の有無を診断す
ることができる。
As described above, according to this embodiment, the control state of the air-fuel ratio or the control target of the air-fuel ratio (fuel injection amount or intake air flow rate) is forcibly changed, and the output of the downstream oxygen sensor 19 in response to the change. Since the abnormality of the three-way catalyst 20 is diagnosed by observing the change (response time, amplitude frequency, change gradient, etc.), when the wide-range air-fuel ratio sensor 18 is provided upstream of the three-way catalyst 20 Also, with the simple configuration, it is possible to quickly and accurately diagnose whether or not there is an abnormality in the three-way catalyst 20.

【0057】なお、広域空燃比センサの出力値に基づき
空燃比フィードバック制御を行う場合でも、最大限三元
触媒20の排気浄化性能を高めることができるように、三
元触媒20入口側の空燃比(目標空燃比)を広域空燃比セ
ンサで監視しながら所定周期・所定振幅で変化させる所
謂触媒パータベーション制御中の該目標空燃比の切り換
え時から(或いは触媒パータベーション制御に伴い上流
側空燃比センサ18の出力が所定量変化してから)の下流
側酸素センサ19の出力値の変化度合(応答時間、振幅周
波数、変化の傾き等)に基づいて、三元触媒20の異常の
有無を診断するようにすれば、三元触媒20の排気浄化性
能を最大に発揮しながら、同時に、三元触媒20の異常の
有無を診断することができる。
Even when the air-fuel ratio feedback control is performed based on the output value of the wide-range air-fuel ratio sensor, the air-fuel ratio on the inlet side of the three-way catalyst 20 is increased so that the exhaust gas purification performance of the three-way catalyst 20 can be maximized. The target air-fuel ratio is changed at a predetermined cycle and a predetermined amplitude while monitoring the (target air-fuel ratio) with a wide area air-fuel ratio sensor. Based on the degree of change (response time, amplitude frequency, change gradient, etc.) of the output value of the downstream oxygen sensor 19 (after the output of the output 18 changes by a predetermined amount), it is diagnosed whether the three-way catalyst 20 is abnormal. By doing so, it is possible to simultaneously determine whether the three-way catalyst 20 has an abnormality while maximizing the exhaust gas purification performance of the three-way catalyst 20.

【0058】次に、下流側酸素センサ19の異常診断につ
いて説明する。本実施形態では、図5のフローチャート
のステップ2において、目標空燃比{或いは空燃比制御
対象(燃料噴射量や吸入空気流量)の制御状態}を切り
換えるが、この目標空燃比或いは空燃比制御対象の制御
状態の切り換えを利用して、下流側酸素センサ19の異常
も診断することができる。
Next, abnormality diagnosis of the downstream oxygen sensor 19 will be described. In the present embodiment, in step 2 of the flowchart of FIG. 5, the target air-fuel ratio {or the control state of the air-fuel ratio control target (fuel injection amount or intake air flow rate)} is switched, but this target air-fuel ratio or air-fuel ratio control target is switched. Using the switching of the control state, it is also possible to diagnose the abnormality of the downstream oxygen sensor 19.

【0059】つまり、目標空燃比或いは空燃比制御対象
の制御状態を切り換えると、これに応じて下流側酸素セ
ンサ19の出力はリッチ→リーン反転或いはリーン→リッ
チ反転することになる。そして、このときの下流側酸素
センサ19の出力のリッチ→リーン反転変化速度或いはリ
ーン→リッチ反転変化速度は、下流側酸素センサ19の劣
化(熱、被毒による劣化、高温条件での失火、水がかり
による素子割れ、ハーネス・コネクタの接触不良や断
線、回路故障、ヒータ断線等)の度合に応じて変化する
ものである。
That is, when the control state of the target air-fuel ratio or the control target of the air-fuel ratio is switched, the output of the downstream oxygen sensor 19 is changed from rich to lean inversion or from lean to rich inversion. At this time, the output of the downstream oxygen sensor 19 at the rich → lean inversion change rate or the lean → rich inversion change rate is determined by the deterioration of the downstream oxygen sensor 19 (heat, poisoning, misfire under high temperature conditions, water It changes according to the degree of element breakage due to weighing, poor contact or disconnection of the harness / connector, circuit failure, heater disconnection, etc.).

【0060】従って、目標空燃比或いは空燃比制御対象
の制御状態の切り換え後、下流側酸素センサ19の出力の
リッチ→リーン反転変化速度或いはリーン→リッチ反転
変化速度(例えば、リッチ・リーン反転開始から所定量
出力が変化するまでの所要時間、若しくは変化の傾き
等)を観察すれば、下流側酸素センサ19の異常を診断で
きることになる。なお、このように、強制的に標空燃比
或いは空燃比制御対象の制御状態を切り換え、下流側酸
素センサ19の出力のリッチ・リーン反転開始からの下流
側酸素センサ19の出力変化度合を観察するようにすれ
ば、広域空燃比センサを用いて空燃比フィードバック制
御を行っているときでも、診断機会を確保しつつ、高精
度に下流側酸素センサ19の異常を診断できることにな
る。
Accordingly, after switching the control state of the target air-fuel ratio or the control target of the air-fuel ratio, the output of the downstream oxygen sensor 19 is changed from rich to lean inversion or from lean to rich inversion (for example, from the start of rich / lean inversion). By observing the time required for the output of the predetermined amount to change, or the slope of the change, the abnormality of the downstream oxygen sensor 19 can be diagnosed. In this way, the control state of the target air-fuel ratio or the air-fuel ratio control target is forcibly switched, and the output change degree of the downstream oxygen sensor 19 from the start of the rich / lean inversion of the output of the downstream oxygen sensor 19 is observed. By doing so, even when the air-fuel ratio feedback control is performed using the wide area air-fuel ratio sensor, it is possible to diagnose the abnormality of the downstream oxygen sensor 19 with high accuracy while securing a diagnosis opportunity.

【0061】つまり、広域空燃比センサを用いて空燃比
フィードバック制御を行う場合は、酸素センサを用いて
空燃比フィードバック制御を行う場合に比べ空燃比がリ
ッチ・リーン反転する機会が少ないため、下流側酸素セ
ンサ19の出力のリッチ・リーン反転開始からの下流側酸
素センサ19の出力変化度合を観察できるする機会が少な
く、下流側酸素センサ19の診断機会が少なくなるが、こ
れを改善することができる。また、目標空燃比或いは空
燃比制御対象の制御状態の変化量を予め設定するので、
下流側酸素センサ19の出力のリッチ・リーン反転開始か
らの下流側酸素センサ19の出力変化度合に基づく異常診
断の診断精度を向上できることにもなる。
That is, when the air-fuel ratio feedback control is performed using the wide-range air-fuel ratio sensor, the air-fuel ratio has less chance of rich / lean reversal than when the air-fuel ratio feedback control is performed using the oxygen sensor. There is less opportunity to observe the degree of output change of the downstream oxygen sensor 19 from the start of rich / lean reversal of the output of the oxygen sensor 19, and there is less diagnostic opportunity for the downstream oxygen sensor 19, but this can be improved. . Also, since the target air-fuel ratio or the amount of change in the control state of the air-fuel ratio control target is set in advance,
It is also possible to improve the diagnostic accuracy of the abnormality diagnosis based on the output change degree of the downstream oxygen sensor 19 from the start of the rich / lean inversion of the output of the downstream oxygen sensor 19.

【0062】ところで、かかる下流側酸素センサ19の異
常診断は、上述した三元触媒20の異常診断より先に行
い、下流側酸素センサ19が正常であることを確認したう
えで、三元触媒20の異常診断を行うようにするのが、三
元触媒20の異常診断の診断精度を高めるうえで好まし
い。ここで、コントロールユニット50が行う下流側酸素
センサ19の異常診断制御について、図6のフローチャー
トに従って説明する。なお、本発明の空燃比切換手段、
下流側酸素センサ異常診断手段としての機能は、以下に
示すように、コントロールユニット50がソフトウェア的
に備えるものである。
The abnormality diagnosis of the downstream oxygen sensor 19 is performed prior to the abnormality diagnosis of the three-way catalyst 20 described above, and after confirming that the downstream oxygen sensor 19 is normal, the three-way catalyst 20 is checked. It is preferable to perform the abnormality diagnosis of the three-way catalyst 20 in order to enhance the diagnosis accuracy of the abnormality diagnosis of the three-way catalyst 20. Here, the abnormality diagnosis control of the downstream oxygen sensor 19 performed by the control unit 50 will be described with reference to the flowchart of FIG. Incidentally, the air-fuel ratio switching means of the present invention,
The function as the downstream oxygen sensor abnormality diagnosis means is provided by the control unit 50 as software as described below.

【0063】ステップ11では、下流側酸素センサ19の診
断許可条件成立か否かを判断する。即ち、例えば、始動
後所定時間経過しているか、機関11が定常運転状態か、
下流側酸素センサ19が活性状態にあるか、などに基づい
て判断することができる。ステップ12では、目標空燃比
{或いは空燃比制御対象(燃料噴射量や吸入空気流量)
の制御状態}を切り換える。なお、広域空燃比センサを
用いた空燃比フィードバック制御中に強制的に目標空燃
比を振幅させる触媒パータベーション制御を実行してい
る場合には、該ステップは省略することができる。
In step 11, it is determined whether a condition for permitting diagnosis of the downstream oxygen sensor 19 is satisfied. That is, for example, whether a predetermined time has elapsed after the start, whether the engine 11 is in a steady operation state,
It can be determined based on whether the downstream oxygen sensor 19 is in the active state or the like. In step 12, target air-fuel ratio {or air-fuel ratio control target (fuel injection amount or intake air flow rate)
Switch control state}. Note that this step can be omitted if the catalyst perturbation control for forcibly increasing the target air-fuel ratio is performed during the air-fuel ratio feedback control using the wide area air-fuel ratio sensor.

【0064】ステップ13では、下流側酸素センサ19の出
力のモニタを開始する。続くステップ14では、下流側酸
素センサ19の応答判定を行う。例えば、図7に示すよう
に、目標空燃比{或いは空燃比制御対象(燃料噴射量や
吸入空気流量)の制御状態}が切り換えられ、下流側酸
素センサ19の出力がリッチ側からリーン側へ若しくはリ
ーン側からリッチ側へ移行(変化)を開始した時点か
ら、下流側酸素センサ19の出力が所定量変化するまでの
所要時間(下流側酸素センサ出力変化時間)を検出す
る。そして、所定量変化するまでの所要時間が、所定時
間(RO2NGT)より短ければ(YESであれば)ス
テップ15へ進み、所定時間(RO2NGT)以上であれ
ば(NOであれば)ステップ16へ進む。
In step 13, monitoring of the output of the downstream oxygen sensor 19 is started. In the following step 14, the response of the downstream oxygen sensor 19 is determined. For example, as shown in FIG. 7, the target air-fuel ratio {or the control state of the air-fuel ratio control target (fuel injection amount or intake air flow rate)} is switched, and the output of the downstream oxygen sensor 19 changes from the rich side to the lean side. The time required for the output of the downstream oxygen sensor 19 to change by a predetermined amount (downstream oxygen sensor output change time) from the time when the shift (change) from the lean side to the rich side is started is detected. If the time required for the change by the predetermined amount is shorter than the predetermined time (RO2NGT) (YES), the process proceeds to step 15, and if it is equal to or longer than the predetermined time (RO2NGT) (NO), the process proceeds to step 16. .

【0065】ステップ15では、下流側酸素センサ19の出
力が所定量変化するまでの時間が、所定時間(RO2N
GT)より短いので、強制的な目標空燃比の変化に応じ
て下流側酸素センサ19の出力も応答性良く変化している
ので、下流側酸素センサ19は正常であると判断し(OK
判定)、リターンして、異常診断を続行する。一方、ス
テップ16では、下流側酸素センサ19の出力が所定量変化
するまでの時間が、所定時間(RO2NGT)以上と長
いので、強制的な目標空燃比の変化に応じて下流側酸素
センサ19の出力が応答性良く変化できず応答性が低下し
ていると判断し、下流側酸素センサ19は異常である(例
えば、熱、被毒による劣化、高温条件での失火、水がか
りによる素子割れ、ハーネス・コネクタの接触不良や断
線、回路故障、ヒータ断線等している惧れがある)と判
断し(NG判定)、ステップ17へ進む。
In step 15, the time required for the output of the downstream oxygen sensor 19 to change by a predetermined amount is equal to a predetermined time (RO2N
GT), the output of the downstream oxygen sensor 19 also changes with good responsiveness in response to the forcible change in the target air-fuel ratio. Therefore, it is determined that the downstream oxygen sensor 19 is normal (OK).
Judgment) and return to continue the abnormality diagnosis. On the other hand, in step 16, since the time required for the output of the downstream oxygen sensor 19 to change by the predetermined amount is as long as the predetermined time (RO2NGT) or more, the detection of the downstream oxygen sensor 19 is performed according to the forcible change in the target air-fuel ratio. It is determined that the output cannot be changed with good responsiveness and the responsiveness is reduced, and the downstream oxygen sensor 19 is abnormal (for example, heat, deterioration due to poisoning, misfire under high temperature conditions, element cracking due to water splash, It is determined that there is a possibility that the harness / connector may have a contact failure, disconnection, circuit failure, heater disconnection, etc.) (NG determination), and the process proceeds to step S17.

【0066】なお、下流側酸素センサ19の出力がリッチ
側からリーン側へ若しくはリーン側からリッチ側へ移行
(変化)を開始した時点から、下流側酸素センサ19の出
力値が、変化後の目標空燃比に相当する値に収束するま
での所要時間を計測し、その計測結果が所定時間以上で
あるか否かに基づいて判定することもできる。また、下
流側酸素センサ19の出力がリッチ側からリーン側へ若し
くはリーン側からリッチ側へ移行(変化)を開始した時
点からの下流側酸素センサ19の出力値の変化の傾きを検
出することで、下流側酸素センサ19の異常を診断するこ
ともできる。
When the output of the downstream oxygen sensor 19 starts to change (change) from the rich side to the lean side or from the lean side to the rich side, the output value of the downstream oxygen sensor 19 changes to the target value after the change. The time required to converge to a value corresponding to the air-fuel ratio may be measured, and the determination may be made based on whether the measurement result is equal to or longer than a predetermined time. In addition, by detecting the slope of the change in the output value of the downstream oxygen sensor 19 from the time when the output of the downstream oxygen sensor 19 starts shifting (change) from the rich side to the lean side or from the lean side to the rich side. It is also possible to diagnose an abnormality of the downstream oxygen sensor 19.

【0067】ステップ37では、警告灯(MIL)を点灯
等して運転者等に下流側酸素センサ19に何らかの異常が
ある旨を認知させ修理等の処置を促すようにする。そし
て、例えば、三元触媒20の異常診断に誤診断が生じない
ように、図5のフローチャートによる三元触媒20の異常
診断制御を禁止する等の処理を行う。なお、2回(或い
は2トリップ)連続してNG判定された場合に、ステッ
プ37へ進ませるようにすると、1回目にNG判定され次
回OK判定されたような場合には、1回目のNG判定が
誤判定であった惧れがあるが、このような誤判定を異常
診断において考慮に入れなくすることができるので、下
流側酸素センサ19の異常診断精度を一層高めることがで
きる。
In step 37, a warning lamp (MIL) is turned on to make the driver or the like aware that the downstream oxygen sensor 19 has something abnormal, and to urge the driver to take measures such as repair. Then, for example, processing such as prohibiting the abnormality diagnosis control of the three-way catalyst 20 according to the flowchart of FIG. 5 is performed so that the abnormality diagnosis of the three-way catalyst 20 does not occur. If the NG determination is made twice (or two trips) consecutively, the process proceeds to step 37. If the first NG determination is made and the next OK determination is made, the first NG determination is made. May be erroneously determined, but such erroneous determination can be omitted from the abnormality diagnosis, so that the accuracy of the abnormality diagnosis of the downstream oxygen sensor 19 can be further improved.

【0068】このように、本実施形態によれば、強制的
に空燃比或いは空燃比制御対象(燃料噴射量若しくは吸
入空気流量)の制御状態を変化させ、その変化に応じて
下流側酸素センサ19の出力がリッチ側からリーン側へ若
しくはリーン側からリッチ側へ移行(変化)を開始した
時点からの下流側酸素センサ19の出力変化度合に基づい
て、下流側酸素センサ19の応答性異常を診断するように
したので、三元触媒20の上流側に設けた広域空燃比セン
サ18を用いて空燃比フィードバック制御を行うような場
合でも、簡単な構成で、迅速かつ高精度に下流側酸素セ
ンサ19の異常の有無を診断することができる。
As described above, according to this embodiment, the control state of the air-fuel ratio or the control target of the air-fuel ratio (fuel injection amount or intake air flow rate) is forcibly changed, and the downstream oxygen sensor 19 is changed in accordance with the change. Diagnosis of abnormal response of the downstream oxygen sensor 19 based on the degree of output change of the downstream oxygen sensor 19 from the time when the output of the sensor starts to shift (change) from the rich side to the lean side or from the lean side to the rich side Therefore, even when the air-fuel ratio feedback control is performed using the wide-range air-fuel ratio sensor 18 provided on the upstream side of the three-way catalyst 20, the downstream oxygen sensor 19 can be quickly and accurately formed with a simple configuration. It is possible to diagnose the presence or absence of abnormalities.

【0069】なお、触媒パータベーション制御中に上記
フローを実行すれば、三元触媒20の排気浄化性能を最大
に発揮しながら、同時に、下流側酸素センサ19の異常の
有無を診断することができる。
If the above flow is executed during the catalyst perturbation control, the exhaust gas purifying performance of the three-way catalyst 20 can be maximized, and at the same time, it can be diagnosed whether the downstream oxygen sensor 19 is abnormal. .

【0070】[0070]

【発明の効果】以上説明したように、請求項1に記載の
発明によれば、強制的に空燃比{延いては空燃比制御対
象の制御状態}を切り換え、その切り換えに対する下流
側酸素センサの出力変化を観察することで、排気浄化触
媒の異常を診断するようにしたので、排気浄化触媒の上
流側に広域空燃比センサを設けた場合のように従来の異
常診断方法では異常診断を行えないような場合でも、簡
単な構成で、迅速かつ高精度に排気浄化触媒の異常を診
断することができる。
As described above, according to the first aspect of the present invention, the air-fuel ratio (that is, the control state of the air-fuel ratio control object) is forcibly switched, and the downstream oxygen sensor responds to the switching. Since the abnormality of the exhaust purification catalyst is diagnosed by observing the output change, the abnormality diagnosis cannot be performed by the conventional abnormality diagnosis method as in the case where the wide area air-fuel ratio sensor is provided on the upstream side of the exhaust purification catalyst. Even in such a case, it is possible to quickly and accurately diagnose the abnormality of the exhaust gas purification catalyst with a simple configuration.

【0071】請求項2に記載の発明によれば、簡単な構
成で、迅速かつ高精度に排気浄化触媒の異常の有無を診
断することができる。請求項3に記載の発明によれば、
空燃比の切り換え指示が出されても、実際には排気浄化
触媒上流側の空燃比が良好に切り換わっていないような
場合や、空燃比の切り換え指示が出されてから実際に排
気浄化触媒上流側の空燃比が切り換わるまで比較的長期
間応答遅れがある場合等における誤診断発生の惧れを防
止することができるので、本発明の異常診断精度を一層
高めることができる。
According to the second aspect of the present invention, it is possible to quickly and accurately diagnose the presence or absence of an abnormality in the exhaust purification catalyst with a simple configuration. According to the invention described in claim 3,
Even when the air-fuel ratio switching instruction is issued, the air-fuel ratio on the upstream side of the exhaust purification catalyst is not actually switched well, or after the air-fuel ratio switching instruction is issued, Since it is possible to prevent the possibility of erroneous diagnosis occurring when there is a response delay for a relatively long time until the air-fuel ratio on the side is switched, the abnormality diagnosis accuracy of the present invention can be further enhanced.

【0072】請求項4に記載の発明によれば、例えば、
触媒パータベーション制御中に、排気浄化触媒の異常診
断を行えるので、触媒パータベーション制御による排気
浄化触媒の浄化性能の最大化を図りつつ、同時に、簡単
な構成で、迅速かつ高精度に排気浄化触媒の異常の有無
を診断することができる。請求項5に記載の発明による
と、一層高精度に、排気浄化触媒の異常を診断できる。
According to the invention described in claim 4, for example,
Diagnosis of exhaust gas purifying catalyst can be diagnosed during catalyst perturbation control, so maximizing the purifying performance of exhaust gas purifying catalyst by catalyst perturbation control, and at the same time, with a simple configuration, quickly and with high accuracy. It is possible to diagnose the presence or absence of abnormalities. According to the fifth aspect of the present invention, the abnormality of the exhaust gas purification catalyst can be diagnosed with higher accuracy.

【0073】請求項6に記載の発明によれば、例えば、
機関固体差、燃料系・吸気系の製造バラツキ、経時変化
等により、与えた空燃比の変化以上に実際の空燃比が変
化したり、与えたはずの空燃比の変化まで実際の空燃比
が変化しなかったりした場合に、所定以上空燃比がリッ
チ化或いはリーン化して排気浄化性能が悪化したり、機
関安定性・ハンチング等が悪化する惧れがあるが、排気
浄化触媒上流側の実際の空燃比の変化(変化幅、振幅周
期等)を所定(目標)に制御することができるので、か
かる惧れを確実に排除することができる。
According to the invention described in claim 6, for example,
The actual air-fuel ratio changes more than the given air-fuel ratio, or the actual air-fuel ratio changes until the given air-fuel ratio changes due to engine individual differences, fuel / intake system manufacturing variations, aging, etc. If not, the air-fuel ratio may become richer or leaner than a predetermined value, resulting in deterioration of the exhaust purification performance and deterioration of engine stability and hunting. Since the change in the fuel ratio (change width, amplitude cycle, etc.) can be controlled to a predetermined (target), such fear can be reliably eliminated.

【0074】請求項7に記載の発明によれば、強制的に
空燃比{延いては空燃比制御対象の制御状態}を切り換
え、その切り換えに応じて下流側酸素センサの出力がリ
ッチ側からリーン側へ若しくはリーン側からリッチ側へ
移行(変化)を開始した時点からの下流側酸素センサの
出力変化度合に基づいて、下流側酸素センサの応答性異
常を診断するので、簡単な構成で、迅速かつ高精度に下
流側酸素センサの異常の有無を診断することができる。
また、排気空燃比がリッチ・リーン反転する機会が少な
く診断機会の少ない広域空燃比センサを用いて空燃比フ
ィードバック制御を行うような場合でも、下流側酸素セ
ンサの異常診断機会を確保することができる。
According to the seventh aspect of the invention, the air-fuel ratio (ie, the control state of the air-fuel ratio control target) is forcibly switched, and the output of the downstream oxygen sensor is switched from the rich side to the lean side in response to the switching. Since the responsiveness abnormality of the downstream oxygen sensor is diagnosed based on the output change degree of the downstream oxygen sensor from the time when the transition (change) from the lean side or the lean side to the rich side is started, a simple configuration and a quick In addition, it is possible to diagnose with high accuracy whether or not the downstream oxygen sensor is abnormal.
Further, even in the case where the air-fuel ratio feedback control is performed using a wide-range air-fuel ratio sensor that has few opportunities for the exhaust air-fuel ratio to undergo rich / lean reversal and few diagnostic opportunities, it is possible to secure an abnormality diagnosis opportunity for the downstream oxygen sensor. .

【0075】請求項8に記載の発明によれば、簡単な構
成で、迅速かつ高精度に、請求項7に記載の発明の作用
効果を奏することができる。請求項9に記載の発明によ
れば、例えば、触媒パータベーション制御中に、排気浄
化触媒の異常診断を行えるので、触媒パータベーション
制御による排気浄化触媒の浄化性能の最大化を図りつ
つ、同時に、簡単な構成で、迅速かつ高精度に下流側酸
素センサの異常の有無を診断することができる。
According to the eighth aspect of the invention, the operation and effect of the seventh aspect of the invention can be achieved quickly and accurately with a simple configuration. According to the ninth aspect of the present invention, for example, an abnormality diagnosis of the exhaust gas purification catalyst can be performed during the catalyst perturbation control. Therefore, while maximizing the purification performance of the exhaust gas purification catalyst by the catalyst perturbation control, at the same time, With a simple configuration, it is possible to quickly and accurately diagnose the presence or absence of an abnormality in the downstream oxygen sensor.

【0076】請求項10に記載の発明によれば、例え
ば、機関固体差、燃料系・吸気系の製造バラツキ、経時
変化等により、与えた空燃比の変化以上に実際の空燃比
が変化したり、与えたはずの空燃比の変化まで実際の空
燃比が変化しなかったりした場合に、所定以上空燃比が
リッチ化或いはリーン化して排気浄化性能が悪化した
り、機関安定性・ハンチング等が悪化する惧れがある
が、排気浄化触媒上流側の実際の空燃比の変化(変化
幅、振幅周期等)を所定(目標)に制御することができ
るので、下流側酸素センサの異常診断のために空燃比を
切り換えても、かかる惧れを確実に排除することができ
る。
According to the tenth aspect of the present invention, the actual air-fuel ratio may change more than the given air-fuel ratio due to, for example, engine individual differences, manufacturing variations of the fuel system / intake system, and aging. If the actual air-fuel ratio does not change until the change in the air-fuel ratio that should have been given, the air-fuel ratio becomes richer or leaner than a predetermined value and the exhaust purification performance deteriorates, and the engine stability and hunting deteriorate. However, since the actual change in the air-fuel ratio (change width, amplitude cycle, etc.) on the upstream side of the exhaust purification catalyst can be controlled to a predetermined value (target), it is necessary to diagnose the abnormality of the downstream oxygen sensor. Even if the air-fuel ratio is switched, such fear can be reliably eliminated.

【0077】請求項11に記載の発明によれば、先に下
流側酸素センサが正常があることを確認してから、排気
浄化触媒の異常を診断するので、下流側酸素センサの出
力に基づく排気浄化触媒の異常診断精度を格段に向上さ
せることができる。
According to the eleventh aspect of the present invention, the abnormality of the exhaust gas purifying catalyst is diagnosed after confirming that the downstream oxygen sensor is normal. Therefore, the exhaust gas based on the output of the downstream oxygen sensor is determined. The abnormality diagnosis accuracy of the purification catalyst can be remarkably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示すブロック図FIG. 1 is a block diagram showing the configuration of the present invention.

【図2】本発明の一実施形態の全体構成図FIG. 2 is an overall configuration diagram of an embodiment of the present invention.

【図3】広域空燃比センサの構造の一例を示す図FIG. 3 is a diagram showing an example of the structure of a wide area air-fuel ratio sensor;

【図4】広域空燃比センサの検出原理説明図FIG. 4 is a diagram illustrating the detection principle of a wide area air-fuel ratio sensor.

【図5】本実施形態における排気浄化触媒の異常診断制
御を説明するフローチャート
FIG. 5 is a flowchart illustrating abnormality diagnosis control of the exhaust gas purification catalyst according to the embodiment.

【図6】本実施形態における下流側酸素センサの異常診
断制御を説明するフローチャート
FIG. 6 is a flowchart for explaining abnormality diagnosis control of a downstream oxygen sensor in the embodiment.

【図7】本実施形態における排気浄化触媒・下流側酸素
センサの異常診断制御を説明するためのタイムチャート
FIG. 7 is a time chart for explaining abnormality diagnosis control of the exhaust gas purification catalyst and the downstream oxygen sensor according to the embodiment;

【図8】従来の装置の全体構成図FIG. 8 is an overall configuration diagram of a conventional device.

【図9】従来の反転周波数比(HZRATE=f2/f
1)に基づく三元触媒の異常診断制御を説明するフロー
チャート
FIG. 9 shows a conventional inversion frequency ratio (HZRATE = f2 / f).
Flowchart for explaining three-way catalyst abnormality diagnosis control based on 1)

【図10】上流側酸素センサの出力信号のリッチ・リー
ン反転周期(T1)と、下流側酸素センサの出力信号の
リッチ・リーン反転周期(T2)と、を説明する図
FIG. 10 is a diagram illustrating a rich / lean inversion cycle (T1) of an output signal of an upstream oxygen sensor and a rich / lean inversion cycle (T2) of an output signal of a downstream oxygen sensor.

【図11】触媒の劣化度合いとHZRATEとの関係を
示す図
FIG. 11 is a diagram showing the relationship between the degree of catalyst deterioration and HZRATE.

【符号の説明】[Explanation of symbols]

11 内燃機関 12 吸気通路 13 エアフローメータ 14 絞り弁 15 燃料噴射弁 17 排気通路 18 上流側広域空燃比センサ 19 下流側酸素センサ 20 三元触媒(排気浄化触媒) 21 クランク角センサ 50 コントロールユニット 11 Internal combustion engine 12 Intake passage 13 Air flow meter 14 Throttle valve 15 Fuel injection valve 17 Exhaust passage 18 Upstream wide area air-fuel ratio sensor 19 Downstream oxygen sensor 20 Three-way catalyst (exhaust purification catalyst) 21 Crank angle sensor 50 Control unit

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排気を浄化する排気浄化触媒の
異常診断装置であって、 機関吸入混合気の空燃比を切り換える空燃比切換手段
と、 前記排気浄化触媒の排気下流側に設けられ、当該排気浄
化触媒下流側の排気中の特定成分の濃度を検出し所定空
燃比に対するリッチ・リーン信号を出力する下流側酸素
センサと、 前記空燃比切換手段によって空燃比が切り換えられたと
きからの下流側酸素センサの出力変化に基づいて、排気
浄化触媒の異常を診断する異常診断手段と、 を含んで構成したことを特徴とする排気浄化触媒の異常
診断装置。
1. An abnormality diagnosis device for an exhaust purification catalyst for purifying exhaust gas of an internal combustion engine, comprising: air-fuel ratio switching means for switching an air-fuel ratio of an engine intake air-fuel mixture; A downstream oxygen sensor that detects the concentration of a specific component in the exhaust gas downstream of the exhaust purification catalyst and outputs a rich / lean signal for a predetermined air-fuel ratio; and a downstream oxygen sensor when the air-fuel ratio is switched by the air-fuel ratio switching unit. An abnormality diagnosing device for an exhaust purification catalyst, comprising: an abnormality diagnosing means for diagnosing an abnormality of the exhaust purification catalyst based on a change in the output of the side oxygen sensor.
【請求項2】前記異常診断手段が、前記目標空燃比切換
手段によって空燃比が切り換えられたときから、下流側
酸素センサの出力が切換後の空燃比に向けて所定量変化
するまでの所要時間に基づいて、排気浄化触媒の異常を
診断することを特徴とする請求項1に記載の排気浄化触
媒の異常診断装置。
2. The time required for the abnormality diagnosis means to change the output of the downstream oxygen sensor by a predetermined amount toward the air-fuel ratio after switching from when the air-fuel ratio is switched by the target air-fuel ratio switching means. The abnormality diagnosis device for an exhaust purification catalyst according to claim 1, wherein the abnormality of the exhaust purification catalyst is diagnosed on the basis of:
【請求項3】前記排気浄化触媒の上流側に排気中の特定
成分の濃度を検出し空燃比をリニアに検出する上流側空
燃比センサを備えた場合に、 前記空燃比切換手段によって空燃比が切り換えられたと
きを、前記上流側空燃比センサの出力の切換後の空燃比
に向けた変化に基づいて検出することを特徴とする請求
項1または請求項2に記載の排気浄化触媒の異常診断装
置。
3. An air-fuel ratio switching device comprising: an upstream-side air-fuel ratio sensor for detecting a concentration of a specific component in exhaust gas and detecting an air-fuel ratio linearly on an upstream side of the exhaust purification catalyst; 3. An abnormality diagnosis of the exhaust purification catalyst according to claim 1, wherein the switching is detected based on a change in the output of the upstream air-fuel ratio sensor toward the air-fuel ratio after the switching. apparatus.
【請求項4】前記空燃比切換手段が、空燃比を振幅させ
る手段であることを特徴とする請求項1〜請求項3の何
れか1つに記載の広域空燃比センサの異常診断装置。
4. The apparatus for diagnosing abnormality of a wide-range air-fuel ratio sensor according to claim 1, wherein said air-fuel ratio switching means is means for oscillating an air-fuel ratio.
【請求項5】前記異常診断手段が、前記空燃比切換手段
による空燃比の切換周期と、前記下流側酸素センサの出
力変化周期と、に基づいて、排気浄化触媒の異常を診断
する手段として構成されたことを特徴とする請求項1、
請求項3、請求項4の何れか1つに記載の排気浄化触媒
の異常診断装置。
5. An abnormality diagnosis means for diagnosing an abnormality of an exhaust purification catalyst based on a switching cycle of an air-fuel ratio by the air-fuel ratio switching means and an output change cycle of the downstream oxygen sensor. The method according to claim 1,
An abnormality diagnosis device for an exhaust purification catalyst according to any one of claims 3 and 4.
【請求項6】前記排気浄化触媒の上流側に排気中の特定
成分の濃度を検出し空燃比をリニアに検出する上流側空
燃比センサを備えた場合に、 前記空燃比切換手段による空燃比の切り換えに伴う排気
浄化触媒上流側の実際の空燃比の変化が所定となるよう
に、上流側空燃比センサの出力に基づいて、空燃比制御
対象をフィードバック制御することを特徴とする請求項
1〜請求項5の何れか1つに記載の内燃機関の空燃比制
御装置。
6. An air-fuel ratio switching means for detecting an air-fuel ratio by an air-fuel ratio switching means, comprising an upstream air-fuel ratio sensor for detecting a concentration of a specific component in exhaust gas and detecting an air-fuel ratio linearly on an upstream side of the exhaust purification catalyst. An air-fuel ratio control target is feedback-controlled based on an output of an upstream-side air-fuel ratio sensor so that a change in an actual air-fuel ratio on the upstream side of the exhaust purification catalyst accompanying the switching becomes a predetermined value. An air-fuel ratio control device for an internal combustion engine according to claim 5.
【請求項7】内燃機関の排気を浄化する排気浄化触媒の
下流側に設けられ、当該排気浄化触媒下流側の排気中の
特定成分の濃度を検出し所定空燃比に対するリッチ・リ
ーン信号を出力する下流側酸素センサの異常診断装置で
あって、 機関吸入混合気の空燃比を切り換える空燃比切換手段
と、 前記空燃比切換手段によって空燃比が切り換えられたあ
と、下流側酸素センサの出力が切換後の空燃比に向けて
変化を開始したときからの下流側酸素センサの出力変化
に基づいて、下流側酸素センサの異常を診断する下流側
酸素センサ異常診断手段と、 を含んで構成したことを特徴とする酸素センサの異常診
断装置。
7. An exhaust purification catalyst for purifying exhaust gas from an internal combustion engine, which detects a concentration of a specific component in exhaust gas downstream of the exhaust purification catalyst and outputs a rich / lean signal for a predetermined air-fuel ratio. An abnormality diagnosis device for a downstream oxygen sensor, comprising: air-fuel ratio switching means for switching an air-fuel ratio of an engine intake air-fuel mixture; and after the output of the downstream oxygen sensor is switched after the air-fuel ratio is switched by the air-fuel ratio switching means. Downstream oxygen sensor abnormality diagnosing means for diagnosing an abnormality of the downstream oxygen sensor based on a change in the output of the downstream oxygen sensor from when the change is started toward the air-fuel ratio of Diagnostic device for oxygen sensor.
【請求項8】前記下流側酸素センサ異常診断手段が、前
記空燃比切換手段によって空燃比が切り換えられたあ
と、下流側酸素センサの出力が切換後の空燃比に向けて
変化を開始したときから所定量変化するまでの所要時間
に基づいて、下流側酸素センサの異常を診断することを
特徴とする請求項7に記載の酸素センサの異常診断装
置。
8. The method according to claim 1, wherein the downstream oxygen sensor abnormality diagnostic means starts changing the output of the downstream oxygen sensor toward the switched air-fuel ratio after the air-fuel ratio is switched by the air-fuel ratio switching means. The oxygen sensor abnormality diagnostic device according to claim 7, wherein the abnormality of the downstream oxygen sensor is diagnosed based on a time required until the predetermined amount changes.
【請求項9】前記空燃比切換手段が、空燃比を振幅させ
る手段であることを特徴とする請求項7または請求項8
に記載の酸素センサの異常診断装置。
9. The air-fuel ratio switching device according to claim 7, wherein the air-fuel ratio switching device is a device for making the air-fuel ratio oscillate.
An abnormality diagnostic device for an oxygen sensor according to claim 1.
【請求項10】前記排気浄化触媒の上流側に排気中の特
定成分の濃度を検出し空燃比をリニアに検出する上流側
空燃比センサを備えた場合に、 前記空燃比切換手段による空燃比の切り換えに伴う排気
浄化触媒上流側の実際の空燃比の変化が所定となるよう
に、上流側空燃比センサの出力に基づいて、空燃比制御
対象をフィードバック制御することを特徴とする請求項
7〜請求項9の何れか1つに記載の内燃機関の空燃比制
御装置。
10. When an upstream air-fuel ratio sensor for detecting the concentration of a specific component in exhaust gas and linearly detecting an air-fuel ratio is provided upstream of the exhaust gas purification catalyst, The air-fuel ratio control target is feedback-controlled based on an output of an upstream air-fuel ratio sensor so that a change in an actual air-fuel ratio on the upstream side of the exhaust purification catalyst accompanying the switching becomes a predetermined value. An air-fuel ratio control device for an internal combustion engine according to claim 9.
【請求項11】請求項7〜請求項10の何れか1つに記
載の酸素センサの異常診断装置により、下流側酸素セン
サが正常であると診断されたときに、排気浄化触媒の異
常診断装置が作動するようにしたことを特徴とする請求
項1〜請求項6の何れか1つに記載の排気浄化触媒の異
常診断装置。
11. An abnormality diagnosing device for an exhaust purification catalyst when the oxygen diagnosing device for an oxygen sensor according to any one of claims 7 to 10 diagnoses that the downstream oxygen sensor is normal. The abnormality diagnosis device for an exhaust purification catalyst according to any one of claims 1 to 6, wherein the device operates.
JP8331016A 1996-12-11 1996-12-11 Diagnosing device for exhaust emission control catalyst and abnormality diagnosing device for oxygen sensor Pending JPH10169494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8331016A JPH10169494A (en) 1996-12-11 1996-12-11 Diagnosing device for exhaust emission control catalyst and abnormality diagnosing device for oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8331016A JPH10169494A (en) 1996-12-11 1996-12-11 Diagnosing device for exhaust emission control catalyst and abnormality diagnosing device for oxygen sensor

Publications (1)

Publication Number Publication Date
JPH10169494A true JPH10169494A (en) 1998-06-23

Family

ID=18238894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8331016A Pending JPH10169494A (en) 1996-12-11 1996-12-11 Diagnosing device for exhaust emission control catalyst and abnormality diagnosing device for oxygen sensor

Country Status (1)

Country Link
JP (1) JPH10169494A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1471238A2 (en) 2003-04-23 2004-10-27 HONDA MOTOR CO., Ltd. Deterioration detecting device for oxygen concentration sensor
JP2008203141A (en) * 2007-02-21 2008-09-04 Ngk Spark Plug Co Ltd Method and device for failure diagnosis of gas sensor
JP2008203140A (en) * 2007-02-21 2008-09-04 Ngk Spark Plug Co Ltd Method and device for failure diagnosis of gas sensor
JP2010127091A (en) * 2008-11-25 2010-06-10 Toyota Motor Corp Deterioration detecting method of exhaust emission control catalyst
WO2015049726A1 (en) * 2013-10-01 2015-04-09 トヨタ自動車株式会社 Abnormality diagnosis system for air-fuel ratio sensor
JP2016194289A (en) * 2015-03-31 2016-11-17 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
US20220044503A1 (en) * 2020-08-07 2022-02-10 Kawasaki Jukogyo Kabushiki Kaisha Abnormality detection device for exhaust gas sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1471238A2 (en) 2003-04-23 2004-10-27 HONDA MOTOR CO., Ltd. Deterioration detecting device for oxygen concentration sensor
US7040085B2 (en) 2003-04-23 2006-05-09 Honda Motor Co., Ltd. Deterioration detecting device for oxygen concentration sensor
EP1471238A3 (en) * 2003-04-23 2006-07-19 HONDA MOTOR CO., Ltd. Deterioration detecting device for oxygen concentration sensor
JP2008203141A (en) * 2007-02-21 2008-09-04 Ngk Spark Plug Co Ltd Method and device for failure diagnosis of gas sensor
JP2008203140A (en) * 2007-02-21 2008-09-04 Ngk Spark Plug Co Ltd Method and device for failure diagnosis of gas sensor
JP2010127091A (en) * 2008-11-25 2010-06-10 Toyota Motor Corp Deterioration detecting method of exhaust emission control catalyst
WO2015049726A1 (en) * 2013-10-01 2015-04-09 トヨタ自動車株式会社 Abnormality diagnosis system for air-fuel ratio sensor
AU2013402365B2 (en) * 2013-10-01 2016-09-22 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis system for air-fuel ratio sensor
JP6020739B2 (en) * 2013-10-01 2016-11-02 トヨタ自動車株式会社 Air-fuel ratio sensor abnormality diagnosis device
JP2016194289A (en) * 2015-03-31 2016-11-17 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
US20220044503A1 (en) * 2020-08-07 2022-02-10 Kawasaki Jukogyo Kabushiki Kaisha Abnormality detection device for exhaust gas sensor
US11869287B2 (en) * 2020-08-07 2024-01-09 Kawasaki Motors, Ltd. Abnormality detection device for exhaust gas sensor

Similar Documents

Publication Publication Date Title
KR0127495B1 (en) Failure determination method for o2 sensor
JP4497132B2 (en) Catalyst degradation detector
JPH10169493A (en) Abnormality diagnosing device for wide range airfuel ratio sensor
JPH11264340A (en) Abnormality diagnostic device for wide area air-fuel ratio sensor
JP2010532443A (en) Cylinder air-fuel ratio variation abnormality detecting device and method for multi-cylinder internal combustion engine
JP2009030455A (en) Apparatus and method for detecting abnormal air-fuel ratio variation among cylinders of multicylinder internal combustion engine
JPH11107830A (en) Air-fuel ratio sensor system abnormality diagnostic device for internal combustion engine
JP3855877B2 (en) Deterioration detection device for air-fuel ratio detection device
JP2004204772A (en) Diagnostic device for air-fuel ratio sensor
JP3175459B2 (en) Air-fuel ratio control device for internal combustion engine
JP3525545B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JPH10169494A (en) Diagnosing device for exhaust emission control catalyst and abnormality diagnosing device for oxygen sensor
JP3572927B2 (en) Air-fuel ratio control device for internal combustion engine
JPH11271272A (en) Air fuel ratio control unit for internal combustion engine
JP3988073B2 (en) Abnormality diagnosis device for exhaust gas sensor
US6957563B2 (en) Abnormality detection device for air-fuel ratio sensor
JPH10246139A (en) Air-fuel ratio control device for internal combustion engine
JP3855720B2 (en) Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine
JP3834898B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP2814718B2 (en) Oxygen sensor deterioration detection device
JP4411755B2 (en) Exhaust purification catalyst deterioration state diagnosis device
JP2006126218A (en) Deterioration detector for air-fuel ratio detection device
JP2001215205A (en) Device for determining trouble for oxygen concentration sensor
JPH10159640A (en) Diagnostic device for abnormality of air-fuel ratio sensor
JP2001215206A (en) Device for determining trouble for oxygen concentration sensor