JPH0370849A - Exhaust air purifying device of internal combustion engine - Google Patents

Exhaust air purifying device of internal combustion engine

Info

Publication number
JPH0370849A
JPH0370849A JP1206943A JP20694389A JPH0370849A JP H0370849 A JPH0370849 A JP H0370849A JP 1206943 A JP1206943 A JP 1206943A JP 20694389 A JP20694389 A JP 20694389A JP H0370849 A JPH0370849 A JP H0370849A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
nitrogen oxide
abnormality
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1206943A
Other languages
Japanese (ja)
Inventor
Akira Uchikawa
晶 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP1206943A priority Critical patent/JPH0370849A/en
Publication of JPH0370849A publication Critical patent/JPH0370849A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To obtain a regularly stable exhaust purifying efficiency by providing, in the lower stream of a catalytic converter rhodium, a diagnostic sensor having two detecting elements for outputting electromotive forces according to oxygen concentration, with either of the elements having a nitrogen oxide reducing catalyst layer so that it can also sense the oxygen in nitrogen oxide. CONSTITUTION:A nitrogen oxide reducing catalyst layer is provided only on either of two oxygen concentration detecting elements of a diagnostic sensor (e) so that it can also sense the oxygen in nitrogen oxide. Thus, according to an increase in nitrogen oxide in the exhaust air, a difference is caused in the electromotive forces outputted from the two detecting elements of the diagnostic sensor (e). An abnormality detecting means (f) detects abnormality of nitrogen oxide exhaust quantity by this difference of the electromotive forces. When the abnormality is detected, the exhaust reflux quantity by an exhaust reflux control means (d) is increased and changed. Namely, when the nitrogen oxide in the exhaust air in the lower stream of a catalytic converter rhodium is increased, the exhaust reflux quantity is increased to reduce the combustion temperature, whereby the reduction effect of nitrogen oxide by exhaust reflux is stably ensured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の排気浄化装置に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to an exhaust gas purification device for an internal combustion engine.

〈従来の技術〉 従来の排気浄化装置としては、以下に示すようなものが
ある。
<Prior Art> Conventional exhaust gas purification devices include the following.

即ち、排気通路に排気中のCO,HCを酸化すると共に
、NOxを還元して浄化する三元触媒を介装したものが
一般化している。
That is, it has become common to have a three-way catalyst installed in the exhaust passage that oxidizes CO and HC in the exhaust gas and reduces and purifies NOx.

この三元触媒は転化効率(浄化効率)が理論空燃比燃焼
時の排気状態で有効に機能するように設定されている。
The conversion efficiency (purification efficiency) of this three-way catalyst is set so that it functions effectively under the exhaust conditions during combustion at the stoichiometric air-fuel ratio.

そこで、特に高出力が要求される高負荷運転時等以外の
通常運転時は、三元触媒上流の排気通路に設けた空燃比
センサにより排気中の酸素濃度を検出することにより空
燃比を検出し、該空燃比を理論空燃比近傍に制御するこ
とが一般に行われている。
Therefore, during normal operation other than during high-load operation where particularly high output is required, the air-fuel ratio is detected by detecting the oxygen concentration in the exhaust with an air-fuel ratio sensor installed in the exhaust passage upstream of the three-way catalyst. Generally, the air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio.

上記空燃比センサの例としては、特開昭58−2043
65号公報等に示されるようなものがある。
As an example of the above air-fuel ratio sensor, Japanese Patent Application Laid-open No. 58-2043
There are some as shown in Publication No. 65 and the like.

この空燃比センサの起電圧は、理論空燃比近傍で急変す
る特性を有しており、この起電圧を基準電圧(スライス
レベル)と比較して、混合気の空燃比が理論空燃比に対
してリッチかり−ンかを判定する。
The electromotive force of this air-fuel ratio sensor has a characteristic that it changes suddenly near the stoichiometric air-fuel ratio, and by comparing this electromotive force with a reference voltage (slice level), the air-fuel ratio of the air-fuel mixture is compared to the stoichiometric air-fuel ratio. Determine whether it is rich or not.

そして、例えば、空燃比がリーン(リッチ)の場合には
、燃料噴射量Tiを増量(減量)することで、空燃比を
理論空燃比近傍に制御するようにしている。
For example, when the air-fuel ratio is lean (rich), the air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio by increasing (reducing) the fuel injection amount Ti.

このようにして、三元触媒が有効に機能するように調整
している。
In this way, the three-way catalyst is adjusted to function effectively.

しかし、このような空燃比センサによる空燃比制御では
、次のような問題を生じていた。
However, air-fuel ratio control using such an air-fuel ratio sensor has caused the following problems.

即ち、本来NOx中の酸素は、排気中酸素濃度として検
出されるべきものであるが、この空燃比センサでは、こ
れを捉えることができないため、Noχ濃度が高くなる
程、真の理論空燃比よりリーン側で起電圧が反転し、こ
れにより、空燃比がリーン側に制御される。
In other words, the oxygen in NOx should originally be detected as the oxygen concentration in the exhaust gas, but this air-fuel ratio sensor cannot detect this, so the higher the NOx concentration, the lower the true stoichiometric air-fuel ratio. The electromotive force is reversed on the lean side, thereby controlling the air-fuel ratio to the lean side.

このように、制御点(反転点)がリーン側にシフトされ
、空燃比がリーン制御されると、ある程度までは燃費向
上を図れるため却って好都合な制御となるのであるが、
高回転、高負荷になってNOxが増加する運転条件(高
燃焼温度条件)になると、リーン側に大きくシフトされ
るので、三元触媒のNOx還元機能が損なわれ、NOx
発生量が大きく増加してしまう。
In this way, if the control point (reversal point) is shifted to the lean side and the air-fuel ratio is controlled to be lean, fuel efficiency can be improved to a certain extent, so it is actually an advantageous control.
Under operating conditions (high combustion temperature conditions) where NOx increases due to high rotation and high load, the NOx reduction function of the three-way catalyst is impaired and NOx
The amount generated will increase significantly.

そこで、燃焼温度が上昇して、NOxの排出量が増加す
る高負荷運転時は、排気の一部を吸気通路に還流して、
燃焼温度を下げることにより、NOxの排出量を少なく
するようにしている。
Therefore, during high-load operation when the combustion temperature rises and the amount of NOx emissions increases, part of the exhaust gas is returned to the intake passage.
By lowering the combustion temperature, the amount of NOx emissions is reduced.

この場合、排気通路から吸気通路に連通ずる排気還流通
路を形成して、この通路途中に制御弁を設け、機関運転
状態に応じて、排気還流量を制御するようにしている。
In this case, an exhaust gas recirculation passage is formed that communicates from the exhaust passage to the intake passage, and a control valve is provided in the middle of this passage to control the amount of exhaust gas recirculation depending on the engine operating state.

〈発明が解決しようとする課題〉 しかしながら、排気還流は吸気通路内の負圧を利用して
排気を還流しているが、高度による気圧の変化、燃焼圧
の変化及び排気還流通路のオリフィス等の劣化により排
気還流量が変化して、NOxの安定制御ができないとい
う問題点があった。
<Problems to be Solved by the Invention> However, although exhaust gas recirculation utilizes the negative pressure in the intake passage, there are problems such as changes in atmospheric pressure due to altitude, changes in combustion pressure, and the orifice of the exhaust recirculation passage. There was a problem in that the amount of exhaust gas recirculation changed due to deterioration, making stable control of NOx impossible.

本発明は、このような従来の問題点に鑑み、常に安定し
た排気浄化効率を得られる排気浄化装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION In view of these conventional problems, it is an object of the present invention to provide an exhaust gas purification device that can always obtain stable exhaust gas purification efficiency.

く課題を解決するための手段〉 上記の目的を達成するため、本発明は、第1図に示すよ
うに、 機関の排気通路に、三元触媒(a)を備えると共に、三
元触媒上流から排気の一部を吸気通路へ還流する排気還
流通路(b)と、 該排気還流通路に介装され排気還流量を制御する制御弁
(C)と、 機関の運転状態に基づいて排気還流量を設定し、制御弁
を介して排気還流量を制御する排気還流量制御手段(d
)と、 を備える排気浄化装置において、 前記三元触媒の下流に、酸素に感応し、酸素濃度に応じ
た起電圧を出力する2個の検出素子を有し、その一方に
のみ窒素酸化物還元触媒層を設けて窒素酸化物中の酸素
にも感応できるようにした診断センサ(e)を配設する
一方、 前記2個の検出素子の起電圧の差に基づいて、窒素酸化
物排出量の異常を検出する異常検出手段(f)と、 該異常検出手段による異常検出時に、前記排気還流量制
御手段による排気還流量を増量変更する変更手段(8)
と、 を設ける構成とする。
Means for Solving the Problems> In order to achieve the above object, the present invention, as shown in FIG. An exhaust gas recirculation passage (b) that recirculates part of the exhaust gas to the intake passage; a control valve (C) that is interposed in the exhaust gas recirculation passage and controls the amount of exhaust gas recirculation; and a control valve (C) that controls the amount of exhaust gas recirculation based on the operating state of the engine. Exhaust recirculation amount control means (d
), and an exhaust gas purification device comprising two detection elements downstream of the three-way catalyst that are sensitive to oxygen and output an electromotive force according to the oxygen concentration, and only one of which detects nitrogen oxide reduction. A diagnostic sensor (e) is provided with a catalyst layer so that it can also be sensitive to oxygen in nitrogen oxides, and the amount of nitrogen oxides discharged can be determined based on the difference in electromotive force between the two detection elements. an abnormality detecting means (f) for detecting an abnormality; and a changing means (8) for increasing or changing the amount of exhaust gas recirculated by the exhaust gas recirculation amount control means when the abnormality is detected by the abnormality detecting means.
The configuration includes: and .

〈作用〉 上記の構成においては、診断センサの2個の検出素子の
うち一方にのみ窒素酸化物還元触媒層を設けて窒素酸化
物中の酸素にも感応できるようにしているので、排気中
に窒素酸化物が増加するのに伴って、診断センサの2個
の検出素子から出力される起電圧に差が生じてくる。
<Function> In the above configuration, only one of the two detection elements of the diagnostic sensor is provided with a nitrogen oxide reduction catalyst layer so that it can also be sensitive to oxygen in nitrogen oxides. As nitrogen oxides increase, a difference arises in the electromotive voltages output from the two detection elements of the diagnostic sensor.

そこで、異常検出手段において、その起電圧の差を以て
、窒素酸化物排出量の異常を検出するようにしている。
Therefore, the abnormality detection means detects an abnormality in the amount of nitrogen oxide discharged based on the difference in electromotive voltage.

そして、異常が検出されると、排気還流制御手段による
排気還流量を増量変更するようにしている。
When an abnormality is detected, the exhaust gas recirculation amount by the exhaust gas recirculation control means is increased or changed.

つまり、三元触媒下流の排気中に窒素酸化物が多くなる
と、排気還流量を増加して、燃m温度をrげることによ
り、排気中の窒素酸化物濃度を下げて、排気還流による
窒素酸化物の低減効果を安定的に確保するようにしてい
る。
In other words, when nitrogen oxides increase in the exhaust gas downstream of the three-way catalyst, the amount of exhaust gas recirculation is increased and the fuel temperature is lowered, thereby lowering the concentration of nitrogen oxides in the exhaust gas. Efforts are made to ensure a stable oxide reduction effect.

〈実施例〉 以下に本発明の実施例を第2図〜第9図に基づいて説明
する。
<Example> Examples of the present invention will be described below based on FIGS. 2 to 9.

第2図を参照し、本発明に係る一実施例のシステムを説
明する。
Referring to FIG. 2, a system according to an embodiment of the present invention will be described.

内燃機関21の吸気通路22には、吸入空気流量Qを検
出するエアフローメータ23及びアクセルペダルに連動
して吸入空気流量Qを制御するスロットル弁24が設け
られ、下流のマニホールド部には、気筒毎に電磁式の燃
料噴射弁25が設けられる。
The intake passage 22 of the internal combustion engine 21 is provided with an air flow meter 23 that detects the intake air flow rate Q and a throttle valve 24 that controls the intake air flow rate Q in conjunction with the accelerator pedal. An electromagnetic fuel injection valve 25 is provided.

燃料噴射弁25は、マイクロコンピュータを内蔵したコ
ントロールユニット26からの噴射パルス信号によって
開弁駆動し、図示しない燃料ポンプから圧送されてプレ
ッシャレギュレータにより所定圧力に制御された燃料を
噴射供給する。
The fuel injection valve 25 is driven to open by an injection pulse signal from a control unit 26 having a built-in microcomputer, and injects fuel that is pressure-fed from a fuel pump (not shown) and controlled to a predetermined pressure by a pressure regulator.

更に、排気通路28に空燃比センサ29が設けられ、更
に下流側に排気中のCo、HCの酸化とNOxの還元と
を行って排気を浄化する三元触媒30が設けられる。
Further, an air-fuel ratio sensor 29 is provided in the exhaust passage 28, and further downstream a three-way catalyst 30 is provided that purifies the exhaust gas by oxidizing Co and HC and reducing NOx.

また、排気通路2Bからスロットル弁24下流の吸気通
路22に連通ずる排気還流通路31が形成され、排気の
一部が還流されるようになっている。
Further, an exhaust gas recirculation passage 31 is formed which communicates with the intake passage 22 downstream of the throttle valve 24 from the exhaust passage 2B, so that a portion of the exhaust gas is recirculated.

そして、排気還流通路31の途中には、排気還流量を制
御する制御弁32が介装されている。
A control valve 32 for controlling the amount of exhaust gas recirculation is interposed in the middle of the exhaust gas recirculation passage 31.

排気還流量は、機関運転状態のパラメータである機関回
転数Nと基本燃料噴射量Tp (=に−Q/N ; K
は定数)とから予め設定したマツプによりそのときの運
転状態に応じた排気還流量をコントロー/LzLニント
26により求め、該コントロールユニット26によって
制御弁32を制御して、その開度により、制御される。
The amount of exhaust gas recirculation is determined by the engine speed N, which is a parameter of the engine operating state, and the basic fuel injection amount Tp (= to -Q/N; K
is a constant), the exhaust gas recirculation amount according to the operating state at that time is determined by the controller/LzLnint 26 from a map set in advance, and the control valve 32 is controlled by the control unit 26, and the control valve 32 is controlled by its opening degree. Ru.

更に、三元触媒30の下流には、後述する診断センサ1
1が設けられており、その出力をコントロールユニット
26に入力するようになっている。
Further, downstream of the three-way catalyst 30, a diagnostic sensor 1, which will be described later, is installed.
1 is provided, and its output is input to the control unit 26.

また、図示しないディストリビュータにはクランク角セ
ンサ33が内蔵されており、該クランク角センサ33か
ら機関回転と同期して出力されるクランク角単位角信号
を一定時間カウントして、又は、クランク角基準角信号
の周期を計測して機関回転数Nが検出される。
Further, the distributor (not shown) has a built-in crank angle sensor 33, and the crank angle unit angle signal outputted from the crank angle sensor 33 in synchronization with engine rotation is counted for a certain period of time, or the crank angle reference angle is The engine rotation speed N is detected by measuring the period of the signal.

第3図及び第4図を参照し、診断センサ11の構成を説
明する。
The configuration of the diagnostic sensor 11 will be explained with reference to FIGS. 3 and 4.

診断センサ11には、第1検出素子12及び第2検出素
子13がアルミナ等の絶縁部材14により所定の間隙を
有して取付けられている。
A first detection element 12 and a second detection element 13 are attached to the diagnostic sensor 11 with a predetermined gap between them by an insulating member 14 made of alumina or the like.

各検出素子12.13には、例えば酸化ジルコニウム(
ZrO2)を主成分とする固体電解質部材12A、13
Aにより中空状の大気導入室12B、13Bがそれぞれ
形成され、これら大気導入室12B、 13Bに臨む第
1及び第2内側電極15A、16Aと、これら内側電極
15A、16Aに固体電解質部材12A、 13Aを介
して対向し、排気に接触する第1及び第2外側電極15
B、16Bとが形成されている。これら電極は、白金(
Pt)で形成されている。
Each detection element 12.13 includes, for example, zirconium oxide (
Solid electrolyte members 12A, 13 whose main component is ZrO2)
Hollow air introduction chambers 12B, 13B are formed by A, and first and second inner electrodes 15A, 16A facing these air introduction chambers 12B, 13B, and solid electrolyte members 12A, 13A are attached to these inner electrodes 15A, 16A. first and second outer electrodes 15 facing each other and in contact with the exhaust gas;
B, 16B are formed. These electrodes are made of platinum (
Pt).

前記第1及び第2外側電極15B、16Bは第1及び第
2電極保護N17.18により覆われている。
The first and second outer electrodes 15B, 16B are covered by first and second electrode protection N17.18.

ここで、前記第1検出素子12側の第1外側電極15B
を覆う第1電極保護[17は、例えば、ガンマアルくす
(T−A1203)、酸化チタン(Ti02)、酸化ラ
ンタン(LazO:+)等の多孔質セラミックからなる
担体に、ロジウム(Rh)。
Here, the first outer electrode 15B on the first detection element 12 side
The first electrode protection [17] covers, for example, rhodium (Rh) on a carrier made of porous ceramic such as gamma alkoxide (T-A1203), titanium oxide (Ti02), lanthanum oxide (LazO:+), etc.

ルテニウム(Ru)等少なくとも一種のNOx還元反応
を促進させる触媒の粒子を混在させて、NOx還元機能
を有するように形成されている。
It is formed to have a NOx reduction function by mixing particles of at least one catalyst such as ruthenium (Ru) that promotes the NOx reduction reaction.

一方、第2検出素子13例の第2外側電極16Bを覆う
第2電極保護118は、マグネシウムスピネル層で形成
されている。
On the other hand, the second electrode protection 118 that covers the second outer electrode 16B of the 13 second detection elements is formed of a magnesium spinel layer.

そして、第1検出素子12例の第を内側電極15Aと第
1外側電極15Bとの間に生じる起電圧■1、及び、第
2検出素子13例の第2内側電極16Aと第2外側電極
16Bとの間に生じる起電圧V2がそれぞれ独立に取出
され、コントロールユニット26に入力される。
Then, an electromotive force (1) generated between the inner electrode 15A and the first outer electrode 15B of the 12 first detection elements, and the second inner electrode 16A and the second outer electrode 16B of the 13 second detection elements. The electromotive voltage V2 generated between the two is independently taken out and input to the control unit 26.

かかる構造を有した診断センサ11において、第1検出
素子12の第1内側電極15Aと第1外側電極15Bと
の間に生じる起電圧特性は、第5図に実線で示すように
、第■電極保護層17のNOx還元触媒粒子のNOx還
元作用により、NOx中の酸素も排気中の酸素濃変分と
して良好に検出され、NOx増大時も理論空燃比に近い
点で急変する特性となる。つまり、Noxtに関係なく
平均起電圧は一定した値となる。
In the diagnostic sensor 11 having such a structure, the electromotive force characteristic generated between the first inner electrode 15A and the first outer electrode 15B of the first detection element 12 is as shown by the solid line in FIG. Due to the NOx reduction action of the NOx reduction catalyst particles in the protective layer 17, oxygen in NOx is also well detected as a variation in oxygen concentration in the exhaust gas, and even when NOx increases, the characteristic is that the air-fuel ratio suddenly changes at a point close to the stoichiometric air-fuel ratio. In other words, the average electromotive voltage has a constant value regardless of Noxt.

これに対し、第2検出素子13の第2内側電極16Aと
第2外側電極16Bとの間に生じる起電圧特性は第5図
に点線で示すように、NOx中の酸素が排気中酸素濃度
分として検出されず、NOx?a度の増大に応じて起電
圧が急変する点が、NOxが多い時はどリーン側にシフ
トする特性となる。つまり、NOxが多いとき程平均起
電圧は高い値になる。
On the other hand, the electromotive voltage characteristic generated between the second inner electrode 16A and the second outer electrode 16B of the second detection element 13 is as shown by the dotted line in FIG. Not detected as NOx? The point where the electromotive force suddenly changes as the temperature increases is a characteristic that shifts to the lean side when there is a lot of NOx. In other words, the more NOx there is, the higher the average electromotive voltage becomes.

更に、詳しくは、運転状態が通常の状態で、排気中にN
Oxの少ないときは、第6図に示すように、診断センサ
11の第1検出素子12及び第2検出素子13からの平
均起電圧は共に0.5V付近で安定しているが、第7図
に示すように、高負荷状態になり、NOxが増える運転
状態になると、第1検出素子12は、NOx中の酸素も
排気中の酸素として検出できるので、平均起電圧に変化
はないが、第2検出素子13は、NOx中の酸素は検出
できないので、その分、平均起電圧が高くなり、遂に、
第2検出素子13からの起電圧V2はIV付近で安定す
るようになる。
Furthermore, in detail, when the operating condition is normal, there is no N in the exhaust gas.
When Ox is low, as shown in FIG. 6, the average electromotive voltage from the first detection element 12 and second detection element 13 of the diagnostic sensor 11 are both stable around 0.5V, but as shown in FIG. As shown in FIG. 2, when the load is high and the operating state is such that NOx increases, the first detection element 12 can detect oxygen in NOx as oxygen in the exhaust gas, so there is no change in the average electromotive force, but the first detection element 12 Since the second detection element 13 cannot detect oxygen in NOx, the average electromotive voltage increases accordingly, and finally,
The electromotive voltage V2 from the second detection element 13 becomes stable around IV.

第8図を参照し、排気還流量設定ルーチンを説明する。The exhaust gas recirculation amount setting routine will be explained with reference to FIG.

ステップ1(図中31と記す。以下同様。)では、エア
フローメータ23により検出される吸入空気流itQと
クランク角センサ33から検出される機関回転数Nとを
入力する。
In step 1 (denoted as 31 in the figure; the same applies hereinafter), the intake air flow itQ detected by the air flow meter 23 and the engine rotation speed N detected by the crank angle sensor 33 are input.

ステップ2では、吸入空気流量Qと機関回転数Nとから
基本燃料噴射量Tp (=に−Q/N;には定数)を演
算する。
In step 2, a basic fuel injection amount Tp (=-Q/N; is a constant) is calculated from the intake air flow rate Q and the engine speed N.

ステップ3では、予め設定されたマ・ノブからそのとき
の機関回転数Nと基本燃料噴射量Tpとに対応した排気
還流量Eoを検索する。
In step 3, the exhaust gas recirculation amount Eo corresponding to the engine speed N and basic fuel injection amount Tp at that time is searched from the preset MA knob.

ステップ4では、第1検出素子12からの起電圧vlを
入力する。
In step 4, the electromotive voltage vl from the first detection element 12 is input.

ステップ5では、第2検出素子13からの起電圧V2を
入力する。
In step 5, the electromotive voltage V2 from the second detection element 13 is input.

ステップ6では、それらの電圧差ΔV (=V。In step 6, the voltage difference ΔV (=V.

=■、)を演算する。=■,) is calculated.

ステップ7では電圧差ΔVを所定値(例えば200+s
V )と比較して、所定値未満のときは、ステ・ノブ8
に進んで、ステップ3で検索した排気還流量Eoを排気
還流31Eに代入する。
In step 7, the voltage difference ΔV is set to a predetermined value (for example, 200+s
V), if the value is less than the predetermined value, the steering knob 8
Then, the exhaust gas recirculation amount Eo retrieved in step 3 is substituted into the exhaust gas recirculation 31E.

所定値以上のときは、ステ・ノブ9に進んで、ステップ
3で設定した排気還流量Eoを例えば5〜10%増加さ
せて、ステップ10で排気還流通路に代入する(E4−
Eo (1+α)、αは例えば0.05或いは0.1)
If it is equal to or greater than the predetermined value, proceed to step knob 9, increase the exhaust gas recirculation amount Eo set in step 3 by, for example, 5 to 10%, and substitute it into the exhaust gas recirculation passage in step 10 (E4-
Eo (1+α), α is for example 0.05 or 0.1)
.

ここで、ステップ8.10.11が排気還流量制御手段
に相当し、ステップ4.5.6.7が異常検出手段に相
当し、ステップ9が変更手段に相当する。
Here, step 8.10.11 corresponds to the exhaust gas recirculation amount control means, step 4.5.6.7 corresponds to the abnormality detection means, and step 9 corresponds to the change means.

ステップ8又はステップ10を経た後、ステップ11に
進んで、排気還流31Eを制御弁32に出力してこのル
ーチンを終了する。
After passing through step 8 or step 10, the routine proceeds to step 11, where the exhaust gas recirculation 31E is output to the control valve 32, and this routine ends.

これにより、高度による気圧の変化、燃焼圧の変化及び
排気還流通路のオリフィス等の劣化により、通常の排気
還流量の制御では、三元触媒通過後の排気中に有害成分
であるNOxが残っているときは、第1検出素子及び第
2検出素子の平均起電圧の差から、NOx排出量の異常
を検出して、排気還流量を増量し、燃焼温度を下げて、
NOxを低減させ、三元触媒を有効に機能させることが
できる。
As a result, due to changes in atmospheric pressure due to altitude, changes in combustion pressure, and deterioration of the orifice of the exhaust recirculation passage, the harmful component NOx remains in the exhaust gas after passing through the three-way catalyst. When there is a difference in the average electromotive force between the first detection element and the second detection element, an abnormality in the amount of NOx emissions is detected, the amount of exhaust gas recirculation is increased, and the combustion temperature is lowered.
It is possible to reduce NOx and make the three-way catalyst function effectively.

また、−個の診断センサ11で済むので、センサ取付ス
ペースも少しで済み、低コストで実施できる。
Furthermore, since only - number of diagnostic sensors 11 are required, the sensor installation space is also small, and the present invention can be implemented at low cost.

第9図は診断センサの別の構成を示す。但し、第3図及
び第4図に示した例と同一要素には同一符号を付して説
明を省略する。
FIG. 9 shows another configuration of the diagnostic sensor. However, the same elements as those in the example shown in FIGS. 3 and 4 are given the same reference numerals, and the explanation thereof will be omitted.

即ち、単一の大気導入室19の対向する位置に第1及び
第2検出素子12.13の第1及び第2内側電極15A
、16Aを設け、大気導入室19を第1及び第2検出素
子12.13で共用するようにしたものである。起電圧
の取出し方については前述の例と同様である。
That is, the first and second inner electrodes 15A of the first and second detection elements 12.13 are placed at opposing positions in the single atmosphere introduction chamber 19.
, 16A are provided, and the atmosphere introduction chamber 19 is shared by the first and second detection elements 12.13. The method of extracting the electromotive voltage is the same as in the previous example.

かかる構成においても、前述の例と同様な機能が得られ
、センサをより小型化できる。
Even in such a configuration, the same functions as in the above-mentioned example can be obtained, and the sensor can be further miniaturized.

〈発明の効果〉 以上説明したように、本発明によると、三元触媒の下流
に設けられた診断センサの2個の検出素子からの起電圧
に基づいて、排気中の窒素酸化物排出量の異常を検出し
て、異常検出時には、排気還流量を増量変更し、排気中
への窒素酸化物の排出量を少なくして、三元触媒が有効
に機能するようにした。
<Effects of the Invention> As explained above, according to the present invention, the amount of nitrogen oxide emissions in the exhaust gas can be reduced based on the electromotive force from the two detection elements of the diagnostic sensor provided downstream of the three-way catalyst. When an abnormality is detected, the amount of exhaust gas recirculated is increased to reduce the amount of nitrogen oxides emitted into the exhaust gas, allowing the three-way catalyst to function effectively.

よって、排気の浄化が促進されるという効果が得られる
Therefore, the effect of promoting purification of exhaust gas can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示す機能ブロック図、第2図は
一実施例を示すシステム図、第3図は本発明の実施例に
係る診断センサの構成を示す図、第4図は同上のIV−
rV矢視断面図、第5図は同上の診断センサの起電圧特
性を示す線図、第6図及び第7図はセンサの出力を示す
線図、第8図は制御内容を示すフローチャート、第9図
は診断センサの別の実施例を示す図である。 11・・・診断センサ  12・・・第1検出素子  
13・・・第2検出素子  25・・・燃料噴射弁  
26・・・コントロールユニット  29・・・空燃比
センサ  31・・・排気還流通路  32・・・制御
弁  33・・・クランク角センサ 特許出国人    日本電子機器株式会社代 理 人 
  弁理士 笹 島 冨二雄第2図 第5図 第4図 第9図
Fig. 1 is a functional block diagram showing the configuration of the present invention, Fig. 2 is a system diagram showing one embodiment, Fig. 3 is a diagram showing the structure of a diagnostic sensor according to the embodiment of the present invention, and Fig. 4 is the same as above. IV-
5 is a diagram showing the electromotive force characteristics of the same diagnostic sensor as above; FIGS. 6 and 7 are diagrams showing the output of the sensor; FIG. 8 is a flowchart showing control details; FIG. 9 is a diagram showing another embodiment of the diagnostic sensor. 11...Diagnostic sensor 12...First detection element
13...Second detection element 25...Fuel injection valve
26... Control unit 29... Air-fuel ratio sensor 31... Exhaust recirculation passage 32... Control valve 33... Crank angle sensor Patent holder Representative of Japan Electronics Co., Ltd.
Patent Attorney Fujio SasashimaFigure 2Figure 5Figure 4Figure 9

Claims (1)

【特許請求の範囲】 機関の排気通路に、三元触媒を備えると共に、三元触媒
上流から排気の一部を吸気通路へ還流する排気還流通路
と、 該排気還流通路に介装されて排気還流量を制御する制御
弁と、 機関の運転状態に基づいて排気還流量を設定し、前記制
御弁を介して排気還流量を制御する排気還流量制御手段
と、 を備える排気浄化装置において、 前記三元触媒の下流に、酸素に感応し、酸素濃度に応じ
た起電圧を出力する2個の検出素子を有し、その一方に
のみ窒素酸化物還元触媒層を設けて窒素酸化物中の酸素
にも感応できるようにした診断センサを配設する一方、 前記2個の検出素子の起電圧の差に基づいて、窒素酸化
物排出量の異常を検出する異常検出手段と、 該異常検出手段による異常検出時に、前記排気還流量制
御手段による排気還流量を増量変更する変更手段と、 を設けたことを特徴とする内燃機関の排気浄化装置。
[Scope of Claims] A three-way catalyst is provided in the exhaust passage of the engine, and an exhaust recirculation passage that recirculates part of the exhaust gas from upstream of the three-way catalyst to the intake passage; An exhaust gas purification device comprising: a control valve that controls a flow rate; and an exhaust recirculation amount control means that sets an exhaust recirculation amount based on the operating state of the engine and controls the exhaust recirculation amount via the control valve. Downstream of the main catalyst, there are two detection elements that are sensitive to oxygen and output an electromotive force according to the oxygen concentration. and an abnormality detection means for detecting an abnormality in nitrogen oxide emissions based on the difference in electromotive voltage between the two detection elements; An exhaust gas purification device for an internal combustion engine, comprising: a changing means for increasing the amount of exhaust gas recirculated by the exhaust gas recirculation amount control means upon detection.
JP1206943A 1989-08-11 1989-08-11 Exhaust air purifying device of internal combustion engine Pending JPH0370849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1206943A JPH0370849A (en) 1989-08-11 1989-08-11 Exhaust air purifying device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1206943A JPH0370849A (en) 1989-08-11 1989-08-11 Exhaust air purifying device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0370849A true JPH0370849A (en) 1991-03-26

Family

ID=16531605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1206943A Pending JPH0370849A (en) 1989-08-11 1989-08-11 Exhaust air purifying device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0370849A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878709A2 (en) * 1997-03-21 1998-11-18 NGK Spark Plug Co. Ltd. Method and apparatus for measuring NOx gas concentration

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878709A2 (en) * 1997-03-21 1998-11-18 NGK Spark Plug Co. Ltd. Method and apparatus for measuring NOx gas concentration
EP0878709A3 (en) * 1997-03-21 1999-04-28 NGK Spark Plug Co. Ltd. Method and apparatus for measuring NOx gas concentration
EP1074833A1 (en) * 1997-03-21 2001-02-07 Ngk Spark Plug Co., Ltd Method and apparatus for measuring NOx gas concentration
EP1074834A1 (en) * 1997-03-21 2001-02-07 Ngk Spark Plug Co., Ltd Method and apparatus for measuring NOx gas concentration
EP1077375A1 (en) * 1997-03-21 2001-02-21 Ngk Spark Plug Co., Ltd Method and apparatus for measuring NOx gas concentration
US6375828B2 (en) 1997-03-21 2002-04-23 Ngk Spark Plug Co., Ltd. Methods and apparatus for measuring NOx gas concentration, for detecting exhaust gas concentration and for calibrating and controlling gas sensor
US6743352B2 (en) 1997-03-21 2004-06-01 Ngk Spark Plug Co., Ltd. Method and apparatus for correcting a gas sensor response for moisture in exhaust gas
US6923902B2 (en) 1997-03-21 2005-08-02 Ngk Spark Plug Co, Ltd. Methods and apparatus for measuring NOx gas concentration, for detecting exhaust gas concentration and for calibrating and controlling gas sensor

Similar Documents

Publication Publication Date Title
US10151262B2 (en) Abnormality diagnosis system of air-fuel ratio sensors
US10234418B2 (en) Gas sensor control device
JPH0688520A (en) Device for purifying exhaust gas flow
JP2015086861A (en) Abnormality diagnostic device of internal combustion engine
JPS61195349A (en) Device for detecting air fuel ratio for internal-combustion engine
US4773376A (en) Oxygen gas concentration-detecting apparatus and air-fuel ratio-controlling apparatus using same in internal combustion engine
JP3316066B2 (en) Failure diagnosis device for exhaust gas purification device
CN112392615B (en) Method for controlling operation of vehicle engine and vehicle system
JP2001124730A (en) Hydrogen concentration detecting device and catalyst degradation detecting device for internal combustion engine
CN109386354B (en) Exhaust gas purification device for internal combustion engine
JPS63231252A (en) Detection of time for deterioration of catalyst by using oxygen sensor
JPH0370849A (en) Exhaust air purifying device of internal combustion engine
JP2501643B2 (en) Catalyst deterioration detection device
US10968807B2 (en) Catalyst deterioration detection system
JPH0466716A (en) Catalyst converter device for internal combustion engine
JPH01458A (en) Oxygen sensor for internal combustion engine
JPH0754851Y2 (en) Air-fuel ratio feedback control system for internal combustion engine
JPH0713608B2 (en) Oxygen sensor for internal combustion engine
JPS63255541A (en) Air-to-fuel ratio control device of internal combustion engine
US11434806B2 (en) Catalyst deterioration detection system
EP3686416A1 (en) Control system of internal combustion engine
JPS63271156A (en) Air-fuel ratio controller for internal combustion engine
JPH032655A (en) Air/fuel ratio sensor of internal combustion engine
JP2024010970A (en) Control device for internal combustion engine and catalyst abnormality diagnosis method
JPH0697001B2 (en) Air-fuel ratio controller for internal combustion engine using alcohol fuel