JPH03264757A - Intake air control device of internal combustion engine - Google Patents

Intake air control device of internal combustion engine

Info

Publication number
JPH03264757A
JPH03264757A JP6281990A JP6281990A JPH03264757A JP H03264757 A JPH03264757 A JP H03264757A JP 6281990 A JP6281990 A JP 6281990A JP 6281990 A JP6281990 A JP 6281990A JP H03264757 A JPH03264757 A JP H03264757A
Authority
JP
Japan
Prior art keywords
valve
intake
cylinder
pressure
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6281990A
Other languages
Japanese (ja)
Inventor
Makoto Anzai
安斎 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6281990A priority Critical patent/JPH03264757A/en
Publication of JPH03264757A publication Critical patent/JPH03264757A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To substantially reduce a pumping loss by interposing the second open/close valve in a communication path, provided so as to bypass the first open/close valve in an intake passage, and controlling this second open/close valve in accordance with a result of deciding whether an engine speed is less than a predetermined value or not. CONSTITUTION:The second open/close valve F is provided in a communication path E, provided so as to bypass the first open/close valve D for opening/closing an intake passage C connected to an intake valve A of each cylinder, and open/close driven by a drive means G. This drive means G is controlled by the first control means J, so that an intake air flow amount, passing through the second open/close valve F in an opening period of the intake valve A, is larger than an intake air flow amount, passing through the second open/close valve F just after the intake valve A is opened, when an engine speed, detected by an engine speed detecting means H, is decided less than a predetermined value by an engine speed deciding means I. On the other hand, the second open/ close valve F is held to a predetermined opening by the second control means K when the engine speed is decided in a predetermined value or more.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、シリンダに吸入される空気量を制御する内燃
機関の吸入空気制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an intake air control device for an internal combustion engine that controls the amount of air taken into a cylinder.

〈従来の技術〉 内燃機関の吸入空気制御装置の従来例として、S、A、
E、 ペーパー880388の第2図に示すようなもの
がある。
<Prior art> Conventional examples of intake air control devices for internal combustion engines include S, A,
E. There is something like the one shown in Figure 2 of paper 880388.

すなわち、吸気弁上流の吸気通路にロータリバルブを介
装し、このロークリバルブを吸気弁の開閉に同期して開
弁させるようにしている。そして、吸気弁とロータリバ
ルブとの開弁オーバラップ時に、空気を燃焼室にピスト
ンの下降によって吸入するようにしている。ここで、ロ
ータリバルブによって、吸気弁の開弁初期にロークリバ
ルブ下流の空気圧力を略大気圧にすることによりポンピ
ングロスを低減するようにしている。
That is, a rotary valve is interposed in the intake passage upstream of the intake valve, and the rotary valve is opened in synchronization with the opening and closing of the intake valve. When the intake valve and the rotary valve open overlap, air is sucked into the combustion chamber by the downward movement of the piston. Here, pumping loss is reduced by using the rotary valve to bring the air pressure downstream of the rotary valve to approximately atmospheric pressure at the initial stage of opening of the intake valve.

また、ロータリバルブと吸気弁との間の吸気通路容積が
比較的大きいときには、ポンピングロスの低減効果が小
さくなるがロータリバルブ上流の吸気通路に絞弁を設け
るようにしている(S、A。
Furthermore, when the volume of the intake passage between the rotary valve and the intake valve is relatively large, a throttle valve is provided in the intake passage upstream of the rotary valve, although the effect of reducing pumping loss is reduced (S, A).

°E、ペーパー880388の第9図参照)。そして、
絞弁により空気を絞り吸気通路内の圧力を予め大気圧よ
りも低下させておくことにより、ピストンが下死点に位
置するときの燃焼室圧力をアイドル運転時に例えば−5
50,、H、に設定できるようにしている。
°E, see Figure 9 of paper 880388). and,
By throttling the air with a throttle valve and lowering the pressure in the intake passage below atmospheric pressure in advance, the combustion chamber pressure when the piston is at bottom dead center can be reduced to -5, for example, during idling operation.
50,,H, can be set.

さらに、吸気弁上流にロータリバルブを備えるものとし
て、特開昭55−148932号公報等が挙げられる。
Furthermore, Japanese Patent Application Laid-Open No. 148932/1984 is a method that includes a rotary valve upstream of the intake valve.

〈発明が解決しようとする課題〉 しかしながら、このような従来の吸入空気制御装置にお
いては、吸気弁と直列にロータリバルブを設けるように
しているので、ロータリバルブの回転位相を変化させる
ためにギアを複数個組合わ廿て行う複雑な構造になるた
め、lI!擦損失が大きく総合的に見るとポンピングロ
スの低減効果が低下するという不具合がある。また、複
雑な構造のため気筒毎に吸入空気流量を制御するのが困
難であるという不具合がある。
<Problems to be Solved by the Invention> However, in such conventional intake air control devices, a rotary valve is provided in series with the intake valve, so a gear is required to change the rotational phase of the rotary valve. Because it is a complex structure that requires multiple pieces to be combined, lI! There is a problem in that the friction loss is large and the overall effect of reducing pumping loss is reduced. Further, due to the complicated structure, it is difficult to control the intake air flow rate for each cylinder.

これを解決するために、本願出願人は、特願平1−29
6072号にて、気筒毎に独立して設けられた絞弁のバ
イパス通路に開閉弁を介装し、これら開閉弁を吸気弁の
開閉に応して電磁アクチュエータにより開閉駆動して低
負荷域の吸入空気流量をポンピングロスを低減しつつ制
御するものを、提案している。しかし、電磁アクチュエ
ータの応答速度は高速のものであって20〜30□S−
でありかつ吸入空気の慣性による吸気供給の応答遅れが
発生するのて、高回転域では開閉弁を開閉駆動すると応
答遅れにより吸入空気流量制御が不正確になり未だ改良
の余地がある。
In order to solve this problem, the applicant of the present application filed the patent application No. 1-29
In No. 6072, on-off valves are interposed in the bypass passages of the throttle valves provided independently for each cylinder, and these on-off valves are driven to open and close by electromagnetic actuators in response to the opening and closing of the intake valves, thereby reducing the load in the low load range. We have proposed a system that controls the intake air flow rate while reducing pumping loss. However, the response speed of electromagnetic actuators is fast, 20 to 30□S-
In addition, there is a delay in the response of the intake air supply due to the inertia of the intake air, so when the on-off valve is opened and closed in a high rotation range, the response delay makes the intake air flow rate control inaccurate, and there is still room for improvement.

これを具体的に説明すると、例えば機関回転速度が10
00.、 、、 、、のときには−行程が約120.、
cであり、応答遅れを考慮しても吸入空気流量制御は可
能である。しかし、機関回転速度が5000.、 、、
 、。
To explain this specifically, for example, the engine rotation speed is 10
00. When , , , , the -stroke is about 120. ,
c, and it is possible to control the intake air flow rate even if the response delay is taken into account. However, the engine rotation speed is 5000. , ,,
,.

のときには−行程が24.s−となるので、応答遅れに
より吸入空気流量制御が不正確となる。かかる状態で、
高回転域にて開閉弁を吸気弁の開閉に応して開閉駆動し
ようとすると、応、−答遅れによって吸入空気流量が殆
ど変化しないうちに開閉弁が繰り返して開閉駆動されて
、本来の目的である吸気弁の閉弁期間中に開閉弁を通過
する吸入空気流量を増大させることができない。このた
め、高回転域で絞弁を全閉すると吸入行程時の燃焼室圧
力が高負圧となり燃焼室へのオイル上がり等が発生する
という不具合がある。
When -stroke is 24. s-, the intake air flow rate control becomes inaccurate due to the response delay. In such a state,
If you try to open and close the on-off valve in response to the opening and closing of the intake valve in a high rotation range, the response delay will cause the on-off valve to open and close repeatedly before the intake air flow rate has changed much. It is not possible to increase the flow rate of intake air passing through the opening/closing valve during the closing period of the intake valve. For this reason, when the throttle valve is fully closed in a high rotation range, the pressure in the combustion chamber during the intake stroke becomes a high negative pressure, causing a problem such as oil rising into the combustion chamber.

本発明は、このような実状に鑑みてなされたもので、ア
イドル運転時等の低負荷運転時の出力トルク(機関回転
速度)を最適に維持しつつ簡易な構成で気筒毎に吸入空
気流量を制御でき、しかも高回転域でのオイル上がり等
を防止できる内燃機関の吸入空気制御装置を提供するこ
とを目的とする。
The present invention has been developed in view of the above-mentioned circumstances, and it is possible to control the intake air flow rate for each cylinder with a simple configuration while maintaining the output torque (engine speed) at an optimum level during low-load operation such as idling. An object of the present invention is to provide an intake air control device for an internal combustion engine that can control the air and prevent oil leakage in a high rotation range.

〈課題を解決するための手段〉 このため、本発明は第1図に示すようtこ、ピストン下
降時に吸気弁Aを開いて燃焼室Bに空気を吸入するよう
にしたものにおいて、気筒毎に設けられ各気筒の吸気弁
Aに連通ずる吸気道IaCを開閉路する第1開閉弁りと
、各第1開閉弁り下流の吸気通路Cに少なくとも連通す
る連通路Eと、これら連通路を夫々開閉する第2開閉弁
Fと、各第2開閉弁を駆動する駆動手段Gと、機関回転
速度を検出する回転速度検出絞弁Hと、検出された機関
回転速度が所定値以上か否かを判定する回転速度判定手
段1と、機関回転速度が所定値未満と判定されたときに
、前記吸気弁Aが開く時点で前記第1開閉弁り下流の吸
気圧力が略大気圧カムこなるように吸気弁が閉してから
開くまでの期間に前記第2開閉弁Fを通過する吸入空気
流量を、前記吸気弁Aが開いた直後に前記第2開閉弁F
を′i!i通する吸入空気流量よりも多くすべく前記第
2開閉弁Fを前記吸気弁六の開閉動作に応して制御する
第1制御手段Jと、機関回転速度が所定値以上と判定さ
れたときに、前記第2開閉弁Fを前記吸気弁Aの開閉動
作に拘わらず所定開度に保持させる第2制御手段にと、
を備えるようにした。
<Means for Solving the Problems> For this reason, the present invention, as shown in FIG. A first on-off valve that opens and closes the intake passage IaC that is provided and communicates with the intake valve A of each cylinder; a communication passage E that communicates at least with the intake passage C downstream of each first on-off valve; A second on-off valve F that opens and closes, a driving means G that drives each of the second on-off valves, a rotation speed detection throttle valve H that detects the engine rotation speed, and a detection throttle valve H that detects whether the detected engine rotation speed is equal to or higher than a predetermined value. A rotational speed determining means 1 for determining the engine rotational speed is configured such that when the engine rotational speed is determined to be less than a predetermined value, the intake pressure downstream of the first opening/closing valve is approximately equal to the atmospheric pressure cam at the time when the intake valve A is opened. The flow rate of intake air passing through the second on-off valve F during the period from when the intake valve closes to when the intake valve opens is determined by controlling the intake air flow rate to the second on-off valve F immediately after the intake valve A opens.
'i! a first control means J that controls the second on-off valve F in accordance with the opening/closing operation of the intake valve six to increase the flow rate of intake air to be greater than the flow rate of intake air passing through the engine; a second control means for maintaining the second opening/closing valve F at a predetermined opening degree regardless of the opening/closing operation of the intake valve A;
We prepared the following.

〈作用〉 このようにして、第1開閉弁下流の吸気!路に連通ずる
連通路に第2開閉弁を介装して、機関回転速度が所定値
未満のときには、吸気弁が閉じてから開くまでの期間に
第2開閉弁を通過する吸入空気流量を、吸気弁が開いた
直後の吸入空気流量よりも多くなるように第2開閉弁を
制御するようにした。
<Operation> In this way, the intake air downstream of the first on-off valve! A second on-off valve is interposed in the communication path communicating with the airway, and when the engine speed is less than a predetermined value, the flow rate of intake air passing through the second on-off valve during the period from when the intake valve closes to when the intake valve opens is controlled. The second on-off valve is controlled so that the intake air flow rate is greater than the intake air flow rate immediately after the intake valve opens.

これにより、吸気行程における燃焼室での吸気圧力変化
を最適に制御してポンピングロスの低減効果を大幅に向
上させ、もって特に低負荷運転時において機関の出力ト
ルクを最大塵に発揮できると共に気筒毎に吸入空気流量
を制御できるようにした。
As a result, the intake pressure change in the combustion chamber during the intake stroke is optimally controlled, greatly improving the effect of reducing pumping loss.This allows the engine to maximize its output torque, especially during low-load operation, and allows each cylinder to The intake air flow rate can now be controlled.

さらに、機関回転速度が所定値以上のときには、吸気弁
の開閉動作に拘わらず第2開閉弁を所定開度に保持させ
ることにより、第2開閉弁を通過する吸入空気流量を所
定量に制御して吸入空気流量を確保しつつ燃焼室の高負
圧化を防止してオイル上がり等を防止するようにした。
Furthermore, when the engine speed is above a predetermined value, the second on-off valve is held at a predetermined opening regardless of the opening/closing operation of the intake valve, thereby controlling the flow rate of intake air passing through the second on-off valve to a predetermined amount. This ensures a sufficient flow of intake air while preventing high negative pressure in the combustion chamber and preventing oil leakage.

〈実施例〉 以下に、本発明の一実施例を第2図〜第13図に基づい
て説明する。尚、本実施例においては、4気筒内燃機関
を例にとり説明する。
<Example> An example of the present invention will be described below based on FIGS. 2 to 13. In this embodiment, a four-cylinder internal combustion engine will be described as an example.

第2図及び第3図において、気筒毎に独立した吸気通路
1にはアクセルペダルの踏込動作に連動する第1開閉弁
としてのバタフライ式の絞弁2が吸気弁3と直列に配設
されて夫々介装され、各絞弁2をバイパスする連通路と
してのバイパス通路4が夫々形成されている。前記バイ
パス通路4には第2開閉弁5が夫々介装され、第2開閉
弁5は駆動手段としての電磁式アクチュエータ5Aによ
り開閉駆動される。前記アクチュエータ5Aには制御装
置6から制御信号が入力されている。ここで、前記絞弁
2から吸気弁3に至る吸気通路1の容積は、燃焼室の最
大容積(ピストンが下死点にあるときの燃焼室容積)の
約172に設定されている。
In FIGS. 2 and 3, a butterfly-type throttle valve 2 as a first opening/closing valve that is linked to the depression of an accelerator pedal is arranged in series with an intake valve 3 in an intake passage 1 that is independent for each cylinder. A bypass passage 4 as a communication passage that bypasses each throttle valve 2 is formed between each throttle valve 2 . A second on-off valve 5 is interposed in each of the bypass passages 4, and the second on-off valve 5 is driven to open and close by an electromagnetic actuator 5A serving as a driving means. A control signal is input from the control device 6 to the actuator 5A. Here, the volume of the intake passage 1 from the throttle valve 2 to the intake valve 3 is set to about 172, which is the maximum volume of the combustion chamber (combustion chamber volume when the piston is at the bottom dead center).

前記制御装置6には、クランク角センサ7からのレファ
レンス信号(クランク角度で180°毎)及びポジショ
ン信号(クランク角度で例えば1゜毎)と、各気筒の点
火栓8の座金部に埋込まれた筒内圧センサ(図示せず)
からの筒内圧検出信号と、が入力されている。
The control device 6 receives a reference signal (every 180 degrees in crank angle) and a position signal (for example, every 1 degree in crank angle) from a crank angle sensor 7, and a signal embedded in the washer of the spark plug 8 of each cylinder. cylinder pressure sensor (not shown)
The in-cylinder pressure detection signal from is input.

前記制御装置6は、機関回転速度が所定値(例えば20
00.、 、、 、、 )未満のときに、第4図〜第7
図のフローチャートに従って作動し、制御信号をアクチ
ュエータ5Aに出力して第2開閉弁を吸気弁3の開閉動
作に応して開閉制御するようになっている。
The control device 6 controls the engine rotation speed to a predetermined value (for example, 20
00. , , , , , ), Figures 4 to 7
It operates according to the flowchart shown in the figure, and outputs a control signal to the actuator 5A to control the opening and closing of the second on-off valve in accordance with the opening and closing operations of the intake valve 3.

また、制御装置6は、吸気弁が前記所定値以上のときに
は、機関回転速度に応じて設定された目標開度に、第2
開閉弁5を吸気弁3の開閉動作に拘わらず保持するよう
に、制御するようになっている。
Further, when the intake valve is at or above the predetermined value, the control device 6 adjusts the second opening to the target opening set according to the engine rotation speed.
The on-off valve 5 is controlled to be held regardless of the opening/closing operation of the intake valve 3.

ここでは、制御装置6が回転速度判定手段と第1及び第
2制御手段とを構成する。
Here, the control device 6 constitutes the rotational speed determination means and the first and second control means.

尚、9は燃料噴射弁である。Note that 9 is a fuel injection valve.

次に作用を説明する。Next, the effect will be explained.

まず、機関回転速度が所定値未満のときの作用を第4図
〜第7図のフローチャートに従って説明する。ここで、
第4図及び第7図のフローチャートに示すルーチンは第
8図に示すようにクランク角センサ7からレファレンス
信号が入力される毎に割り込みルーチン番こよって実行
される(第8図中レフアレンスジゴブと称す)。また、
第5図のフローチャートに示すルーチンは第8図に示す
ように後述の設定クランク角度(#l気筒の上死点付近
)になったときに割り込みルーチンによって実行される
(第8図中クランクジョブと称す)。
First, the operation when the engine rotational speed is less than a predetermined value will be explained according to the flowcharts shown in FIGS. 4 to 7. here,
The routines shown in the flowcharts of FIGS. 4 and 7 are executed by the interrupt routine number each time a reference signal is input from the crank angle sensor 7 as shown in FIG. ). Also,
The routine shown in the flowchart in Fig. 5 is executed by an interrupt routine when the set crank angle (near the top dead center of #l cylinder), which will be described later, is reached as shown in Fig. 8 (crank job in Fig. 8). ).

第6図のフローチャートに示すルーチンは、前記割り込
みルーチンが実行されていないときに、常に実行される
The routine shown in the flowchart of FIG. 6 is always executed when the interrupt routine is not executed.

まず、第4図のフローチャートについて説明する。First, the flowchart shown in FIG. 4 will be explained.

Slでは、第5図のフローチャートに示すルーチンを実
行させるための設定クランク角度をセントする。この設
定クランク角度は、第9図に示すように、#1気筒の圧
縮行程において混合気が燃焼開始(点火開始)直前の上
死点付近の値に設定されている。
At Sl, the set crank angle for executing the routine shown in the flowchart of FIG. 5 is set. As shown in FIG. 9, this set crank angle is set to a value near the top dead center immediately before the start of combustion of the air-fuel mixture (start of ignition) in the compression stroke of the #1 cylinder.

S2では、レファレンス信号から#1気筒か否かを判定
し、YESのときにはS3に進みNOのときにはS6に
進む。
In S2, it is determined from the reference signal whether or not it is the #1 cylinder. If YES, the process proceeds to S3; if NO, the process proceeds to S6.

S3では変数カウンタ便に1を加算してS4に進む。In S3, 1 is added to the variable counter value and the process proceeds to S4.

S4では、加算された変数カウンタ値が3になったか否
かを判定し、YESのときにはS5に進みNOのときに
はS6に進む。
In S4, it is determined whether or not the added variable counter value has reached 3. If YES, the process proceeds to S5, and if NO, the process proceeds to S6.

S5では、変数カウンタ値をOに初期化する。In S5, the variable counter value is initialized to O.

したがって、変数カウンタ値は、0,1.2,3゜0.
1.2と繰り返され、#1気筒が圧縮行程にあるときの
レファレンス信号入力時に値が切換えられる。
Therefore, the variable counter values are 0, 1.2, 3°0.
1.2 is repeated, and the value is switched when the reference signal is input when the #1 cylinder is in the compression stroke.

S6では、後述のルーチンで読込まれた燃焼室圧力を、
メモリ(RAM>に、気筒毎に前記変数カウンタ値に対
応するアドレスに記憶させる。したがって、気筒毎に、
4つの燃焼室圧力のデータが第10図破線示の如くメモ
リに記憶される。そして、燃焼室圧力は古いデータから
順次新たなデータに書き換えられる。
In S6, the combustion chamber pressure read in the routine described later is
Each cylinder is stored in a memory (RAM) at an address corresponding to the variable counter value. Therefore, for each cylinder,
Four combustion chamber pressure data are stored in the memory as shown by the broken lines in FIG. Then, the combustion chamber pressure is sequentially rewritten from old data to new data.

S7では、各気筒毎に、メモリに記憶されている4つの
データを単純平均して平均燃焼室圧力(第10図中細線
示)を演算する。
In S7, the average combustion chamber pressure (indicated by the thin line in FIG. 10) is calculated by simply averaging the four pieces of data stored in the memory for each cylinder.

次に、第5図及び第6図のフローチャートを説明すると
、第5図のSllにおいては、前記設定クランク各毎に
A/D変換器(図示せず)を起動させて筒内圧センサに
より検出された燃焼開始直前の燃焼室圧力を読込む。こ
こでは、燃焼開始直前の燃焼室圧力から機関の出力トル
クを予測するのである。また、第6図の321において
は、クランク角センサ7からのレファレンス信号の人力
周期に基づいて機関回転速度を読込む。
Next, to explain the flowcharts of FIGS. 5 and 6, in Sll of FIG. 5, an A/D converter (not shown) is activated for each set crank, and the cylinder pressure sensor detects Read the combustion chamber pressure just before the start of combustion. Here, the output torque of the engine is predicted from the combustion chamber pressure just before the start of combustion. Further, at 321 in FIG. 6, the engine rotational speed is read based on the manual cycle of the reference signal from the crank angle sensor 7.

次に、第7図のフローチャートを説明する。Next, the flowchart shown in FIG. 7 will be explained.

S31では、前記S21にて読込まれた機関回転速度と
目標回転速度との回転差NVARを演算する。
In S31, the rotational difference NVAR between the engine rotational speed read in S21 and the target rotational speed is calculated.

S32では、演算された回転差NVARを前回の回転積
分値12に加算して回転積分値を新たに算出する。また
、新たに求められた回転積分値に定数KIOを乗算した
積分分と、前記回転差NVARに定数Kllを乗算した
比例分と、を加算してNPIを算出する。
In S32, the calculated rotational difference NVAR is added to the previous rotational integral value 12 to calculate a new rotational integral value. Further, NPI is calculated by adding the integral obtained by multiplying the newly obtained rotation integral value by a constant KIO and the proportional component obtained by multiplying the rotation difference NVAR by a constant Kll.

S33では、前記S7にて演算された各気筒の平均燃焼
室圧力を加算した後それを気筒数で除算して総平均燃焼
室圧力TOTALAVEを算出する。
In S33, the average combustion chamber pressure of each cylinder calculated in S7 is added and then divided by the number of cylinders to calculate the total average combustion chamber pressure TOTALAVE.

S34では、気筒毎に、前記総平均燃焼室圧力T○TA
LAVEからその気筒の平均燃焼室圧力を減算してずれ
分CYLVARを算出する。また、気筒毎に算出された
ずれ分CYLVARと前回のCYL積分値とを加算して
、気筒毎に、CYL積分値を新たに算出する。さらに、
算出されたCYL積分値に定数に20を乗した積分分と
、前記ずれ分CYLVARに定数に21を乗した比例分
と、を加算して、CYLPIを気筒毎に全気筒の出力ト
ルクが略同様になるよう乙こ算出する。
In S34, the total average combustion chamber pressure T○TA is determined for each cylinder.
The deviation CYLVAR is calculated by subtracting the average combustion chamber pressure of that cylinder from LAVE. Furthermore, a new CYL integral value is calculated for each cylinder by adding the deviation CYLVAR calculated for each cylinder and the previous CYL integral value. moreover,
By adding the integral of the calculated CYL integral value to the constant multiplied by 20 and the proportional part of the constant multiplied by 21 to the deviation CYLVAR, the output torque of all cylinders is determined to be approximately the same for each cylinder by CYLPI. Calculate it so that it becomes.

S35では、算出されたCYLPIと、前記NPIにに
30を乗した値と、を加算して、アクチュエータ5Aの
制御値を気筒毎に算出する。
In S35, the calculated CYLPI and the value obtained by multiplying the NPI by 30 are added to calculate the control value of the actuator 5A for each cylinder.

そして、算出された制御値に対応する制御信号を対応す
る気筒のアクチュエータ5Aに出力し、第2開閉弁50
開度を気筒毎に制御する。
Then, a control signal corresponding to the calculated control value is output to the actuator 5A of the corresponding cylinder, and the second on-off valve 50
The opening degree is controlled for each cylinder.

かかる制御時における第2開閉弁5の開度変化及び絞り
弁2下流の吸気圧力変化を第11図のタイムチャートに
従って説明する。尚、この説明では絞り弁2の全閉時す
なわちアイドル運転時を例にとり説明し、第11図中吸
は吸気行程を示し圧は圧縮行程を示し、爆は爆発行程を
示し、排は排気行程を示す。
Changes in the opening degree of the second on-off valve 5 and changes in the intake pressure downstream of the throttle valve 2 during such control will be explained with reference to the time chart of FIG. 11. In this explanation, the case is taken when the throttle valve 2 is fully closed, that is, during idling operation. shows.

すなわち、吸気弁3が開き始める吸気行程開始時におい
て、絞弁2下流の吸気圧力が大気圧になるように、圧縮
行程から爆発行程にて第2開閉弁5を全開させる。これ
により、絞弁2下流の吸気圧力は、第11図中Cに示す
ように、吸気行程におけるピストン下死点時の吸気圧力
(吸気行程終了時の吸気圧であってアイドル運転時には
例え↓よ550〜−570□H9から大気圧力付近まで
上デする。
That is, at the start of the intake stroke when the intake valve 3 begins to open, the second on-off valve 5 is fully opened from the compression stroke to the explosion stroke so that the intake pressure downstream of the throttle valve 2 becomes atmospheric pressure. As a result, the intake pressure downstream of the throttle valve 2 is determined by the intake pressure at the bottom dead center of the piston during the intake stroke (the intake pressure at the end of the intake stroke, as shown in Fig. 550~-570□H9 to near atmospheric pressure.

ここで、吸気行程開始時の吸気圧力が大気圧になるよう
に第2開閉弁5を常時一定開度に保持させて開弁すると
、吸気圧力は第11図中Aに示すようになり燃焼室に吸
入される吸入空気流量が希望値よりも多くなる。また、
ピストン下死点時の吸気圧力が前記−550〜−570
,、H,になるように第2開閉弁5の開度を常時小さく
設定すると、吸気行程開始時の吸気圧力が第11図中B
に示すように大気圧にならない。
Here, if the second opening/closing valve 5 is always maintained at a constant opening and opened so that the intake pressure at the start of the intake stroke becomes atmospheric pressure, the intake pressure becomes as shown in A in Fig. 11, and the combustion chamber The intake air flow rate sucked into the unit becomes higher than the desired value. Also,
The intake pressure at the bottom dead center of the piston is -550 to -570 as mentioned above.
If the opening degree of the second on-off valve 5 is always set small so that ,,H, the intake pressure at the start of the intake stroke becomes B in Fig.
The pressure does not reach atmospheric pressure as shown in .

そこで、本実施例では、吸気弁3が開く時点で第2開閉
弁5の開度を全開から所定開度まで閉弁駆動する。これ
により、第11図中Cに示すように吸気弁3が開く時点
での吸気圧力を大気圧付近に設定すると共に吸気行程終
了時の吸気圧力を所定値に設定し、吸入空気流量を所定
値に設定できるようにしたのである。具体的には、吸気
弁3の開閉期間中に第2開閉弁5を全開し吸気弁3が開
く直前に第2開閉弁5を所定開度まで閉弁する。
Therefore, in this embodiment, when the intake valve 3 opens, the opening degree of the second on-off valve 5 is driven to close from fully open to a predetermined opening degree. As a result, as shown in C in Fig. 11, the intake pressure at the time when the intake valve 3 opens is set to near atmospheric pressure, the intake pressure at the end of the intake stroke is set to a predetermined value, and the intake air flow rate is set to a predetermined value. This allows it to be set to . Specifically, the second on-off valve 5 is fully opened during the opening/closing period of the intake valve 3, and immediately before the intake valve 3 opens, the second on-off valve 5 is closed to a predetermined opening degree.

このようにして、第2開閉弁5の開度を制御すると、第
2開閉弁5の開度は機関回転速度に比例した単純な制御
で行える。これは吸気行程開始時の吸気圧力が大気圧と
すると、絞り弁2下流の吸気通路1の容積と、ピストン
の下降に伴って増加する燃焼室の容積と、の比から吸気
空気流量を知ることができ、これによって不足分を第2
開閉弁5の開度制御により補えば良いからである。
By controlling the opening degree of the second on-off valve 5 in this manner, the opening degree of the second on-off valve 5 can be simply controlled in proportion to the engine rotation speed. This means that when the intake pressure at the start of the intake stroke is atmospheric pressure, the intake air flow rate can be determined from the ratio of the volume of the intake passage 1 downstream of the throttle valve 2 and the volume of the combustion chamber, which increases as the piston descends. This allows the shortfall to be replaced by the second
This is because it can be compensated for by controlling the opening degree of the on-off valve 5.

ここで、第11図において第2開閉弁5の閉弁タイミン
グを吸気行程開始前(排気行程に入ったところ)に設定
しているのは、制御系の応答遅れを考慮しているためで
あり、実際には第2開閉弁5は吸気弁3が開く直前に所
定開度に切換られる。
Here, the reason why the closing timing of the second on-off valve 5 is set before the start of the intake stroke (at the beginning of the exhaust stroke) in FIG. 11 is to take into account the response delay of the control system. In reality, the second opening/closing valve 5 is switched to a predetermined opening degree immediately before the intake valve 3 opens.

次に、機関回転速度が所定値以上のときの作用を説明す
る。
Next, the operation when the engine rotational speed is equal to or higher than a predetermined value will be explained.

クランク角センサ7により検出された機関回転速度が所
定値以上になると、制御装置6は検出された機関回転速
度に基づいて第2開閉弁5の目標開度をマツプから検索
する。この目標開度は、第12図に示すように、機関回
転速度が高くなるに従って大きくなるように設定されて
いる。
When the engine speed detected by the crank angle sensor 7 exceeds a predetermined value, the control device 6 searches the map for the target opening degree of the second on-off valve 5 based on the detected engine speed. As shown in FIG. 12, this target opening degree is set to increase as the engine rotation speed increases.

そして、制御6は、電磁式アクチュエータ5Aを介して
金気筒の第2開閉弁5の開度を吸気弁3の開閉動作に拘
わらず前記目標開度に保持するように制御する。
Then, the control 6 controls the opening degree of the second on-off valve 5 of the gold cylinder to be maintained at the target opening degree regardless of the opening/closing operation of the intake valve 3 via the electromagnetic actuator 5A.

尚、アクチュエータ5Aをオン・オフデユーティ信号に
より制御してバイパス通路4の吸入空気流量を前述の如
く制御してもよい。
Incidentally, the intake air flow rate of the bypass passage 4 may be controlled as described above by controlling the actuator 5A using an on/off duty signal.

次に、前記制御装置6のハードウェア構成の一例を第1
3図に基づいて説明する。
Next, an example of the hardware configuration of the control device 6 will be explained as follows.
This will be explained based on Figure 3.

すなわち、所定クランク角度における筒内圧力を各気筒
毎に平均化処理回路11A〜11Dにより平均化処理し
た後、それらを加算器12にて加算する。
That is, after the cylinder pressure at a predetermined crank angle is averaged for each cylinder by the averaging processing circuits 11A to 11D, the adder 12 adds them together.

そして、加算された全気筒の筒内圧力を除算器13にて
気筒数で除して金気筒の平均圧力を算出する。
Then, the added cylinder pressure of all the cylinders is divided by the number of cylinders by the divider 13 to calculate the average pressure of the gold cylinders.

算出された全気筒の平均圧力から各気筒毎の平均圧力を
差分器14A〜14Bにて夫々滅じて各気筒毎の圧力差
を算出した後、各気筒毎の圧力差の比例分と積分分とを
PI処理回路15A〜15Dにて夫々算出する。
After calculating the pressure difference for each cylinder by subtracting the average pressure for each cylinder from the calculated average pressure of all cylinders using differentiators 14A to 14B, the proportional and integral parts of the pressure difference for each cylinder are calculated. are calculated by the PI processing circuits 15A to 15D, respectively.

また、クランク角センサ7等により検出された実際の機
関回転速度と目標回転速度との差を差分器16により算
出した後、この回転速度差の比例分と積分分とをPI処
理回路17にて算出する。そして、前記圧力差の比例分
及び積分分と回転速度差の比例分及び積分分とを加算器
18A−18Dにて加算して各気筒毎の補正値を求めて
切換スイッチ19A〜19Dの一入力端子に人力する。
Further, after the difference between the actual engine rotation speed detected by the crank angle sensor 7 and the target rotation speed is calculated by the differentiator 16, the proportional part and the integral part of this rotation speed difference are calculated by the PI processing circuit 17. calculate. Then, adders 18A to 18D add the proportional and integral parts of the pressure difference and the proportional and integral parts of the rotational speed difference to obtain a correction value for each cylinder, which is then input to one of the changeover switches 19A to 19D. Manually connect the terminal.

また、検出された機関回転速度から目標開度を設定する
目標開度設定部20が設けられ、設定された目標開度は
前記切換スイッチ19A〜19Dの他入力端子に入力さ
れている。また、検出された機関回転速度が所定値以上
か否かを判定する回転速度判定部21が設けられている
。この回転速度判定部21は、機関回転速度が所定値未
満のときに前記加算器18A〜18Bの補正値を出力す
る一方、機関回転速度が所定値以上のときに前記目標開
度設定部20からの目標開度を出力するように、前記切
換スイッチ19A〜19Dを切換制机する。
Further, a target opening degree setting section 20 is provided which sets a target opening degree from the detected engine rotational speed, and the set target opening degree is inputted to other input terminals of the changeover switches 19A to 19D. Further, a rotation speed determining section 21 is provided that determines whether the detected engine rotation speed is equal to or higher than a predetermined value. This rotational speed determination section 21 outputs the correction value of the adders 18A to 18B when the engine rotational speed is less than a predetermined value, and outputs the correction value from the target opening degree setting section 20 when the engine rotational speed is equal to or higher than the predetermined value. The changeover switches 19A to 19D are controlled so as to output the target opening degree.

以上説明したように、絞り弁2をバイパスするバイパス
通路4に第2開閉弁5を気筒毎に配設すると共に、各絞
弁2下流の吸気通路1の容積を燃焼室の最大容積の27
1に設定し、かつ機関回転速度が所定値未満のときには
、吸気弁3が開く時点の絞り弁2下流の吸気圧力を大気
圧近傍になるように第2開閉弁5を全開させると共に吸
気行程においては第2開閉弁5を所定開度まで閉弁駆動
させるようにしたので、以下の効果がある。
As explained above, the second on-off valve 5 is provided for each cylinder in the bypass passage 4 that bypasses the throttle valve 2, and the volume of the intake passage 1 downstream of each throttle valve 2 is set to 27% of the maximum volume of the combustion chamber.
1 and when the engine speed is less than a predetermined value, the second on-off valve 5 is fully opened so that the intake pressure downstream of the throttle valve 2 at the time the intake valve 3 opens is close to atmospheric pressure, and during the intake stroke. Since the second on-off valve 5 is driven to close to a predetermined opening degree, the following effects can be obtained.

すなわち、吸気弁3が開き始めたときには燃焼室圧力(
吸気通路1の吸気圧力と略同様)が大気圧近傍に維持さ
れるので、ピストンの下降に伴って燃焼室圧力は大気圧
からアイドル運転時におけるピストン下死点位置での燃
焼室圧力(例えば=550〜−570□HI )まで略
直線的に低下する。
That is, when the intake valve 3 begins to open, the combustion chamber pressure (
Since the intake pressure in the intake passage 1 is maintained near atmospheric pressure, as the piston descends, the combustion chamber pressure changes from atmospheric pressure to the combustion chamber pressure at the bottom dead center position of the piston during idling (for example, = It decreases approximately linearly from 550 to -570□HI).

したがって従来の絞り弁制御のみによる吸気圧力変化よ
りもポンピングロスを大幅に低減できるため、機関出力
を最大限に発揮できる。また、バイパス通路4の第2開
閉弁5を電磁式アクチュエータ5Aにより制御するよう
にしたので従来のものより構造を簡易化できる。
Therefore, pumping loss can be significantly reduced compared to changes in intake pressure due to conventional throttle valve control alone, and the engine output can be maximized. Furthermore, since the second on-off valve 5 of the bypass passage 4 is controlled by the electromagnetic actuator 5A, the structure can be simplified compared to the conventional one.

ここで、絞り弁2から吸気弁3ムこ至る吸気通路lの容
積を、燃焼室の最大容積の172以下に設定する理由を
説明する。前記燃焼室の最大容積をAと設定し、絞り弁
2から吸気弁3に至る吸気通路1の容積をBと仮定し圧
縮比を1710と仮定し、またアイドル運転時のピスト
ン下死点位置における燃焼室圧力(吸気圧力)を−45
6,、H,(高回転型のエンジンではバルブオーバーラ
ンプ期間が大きいのでこの程度の値になる)と仮定して
説明する。
Here, the reason why the volume of the intake passage 1 extending from the throttle valve 2 to the intake valve 3 is set to 172 mm or less, which is the maximum volume of the combustion chamber, will be explained. The maximum volume of the combustion chamber is set as A, the volume of the intake passage 1 from the throttle valve 2 to the intake valve 3 is assumed to be B, the compression ratio is assumed to be 1710, and the piston bottom dead center position during idle operation is Combustion chamber pressure (intake pressure) -45
6,,H, (in a high-speed engine, the valve over-ramp period is long, so the value will be about this value).

すなわち、ピストン上死点上死点における吸気通路1と
燃焼室との総容積は(A/10+ B )となり、また
ピストン下死点上死点における吸気通路1と燃焼室との
総容積は(A+B)となる。かかる状態で大気圧(1気
圧)から−450,、H9(0,4気圧)に燃焼室圧力
及び吸気圧力が変化するときには(A/10+B)/ 
(A十B)=0.4となり、これを解くとA=2Bとな
る。
That is, the total volume of the intake passage 1 and the combustion chamber at the top dead center of the piston is (A/10+B), and the total volume of the intake passage 1 and the combustion chamber at the bottom dead center of the piston is ( A+B). When the combustion chamber pressure and intake pressure change from atmospheric pressure (1 atm) to -450, H9 (0.4 atm) under such conditions, (A/10+B)/
(A + B) = 0.4, and solving this gives A = 2B.

したがって、前記吸気通路1の容積が燃焼室の最大容積
の約172以下のときに、アイドル運転時等の低負荷運
転時に最適なピストン下死点位置における燃焼室圧力を
確保できるのである。
Therefore, when the volume of the intake passage 1 is less than or equal to the maximum volume of the combustion chamber, which is about 172, it is possible to ensure the optimal combustion chamber pressure at the bottom dead center position of the piston during low load operation such as during idling operation.

また、金気筒の総平均燃焼室圧力TOTALAVEから
各気筒毎にズレ分(偏差)CYLVARを求めるように
したので、各気筒の燃焼室圧力が前記総平均燃焼室圧力
TOTALAVEに近づくようになるため、燃焼圧力を
金気筒にて略同様にできる。これによって金気筒の出力
トルクを略同様にできるので、アイドル運転時の運転性
を安定化できる。また、各気筒の機関回転速度の目標回
転速度からの回転差(偏差)NVARを求めた後各気筒
毎にNPIを求めて、前記アクチュエータ5Aの制御値
に機関回転速度に依存するNPIを付加するようにした
ので、これによってもアクチュエータ運転時の運転性を
安定化できる。
In addition, since the deviation (deviation) CYLVAR is calculated for each cylinder from the total average combustion chamber pressure TOTALAVE of the golden cylinder, the combustion chamber pressure of each cylinder approaches the total average combustion chamber pressure TOTALAVE. Combustion pressure can be made almost the same with a gold cylinder. This allows the output torques of the gold cylinders to be made substantially the same, making it possible to stabilize the drivability during idling operation. Further, after determining the rotational difference (deviation) NVAR of the engine rotational speed of each cylinder from the target rotational speed, NPI is determined for each cylinder, and the NPI that depends on the engine rotational speed is added to the control value of the actuator 5A. This also makes it possible to stabilize the drivability during actuator operation.

また、各気筒において、−燃焼行程(レファレンス信号
)毎にアクチュエータ5Aの制御値を求めるようにした
ので、各気筒においても、出力トルク及び機関回転速度
を略同様にでき、これによってもアイドル運転時の運転
性を安定化できる。
In addition, since the control value of the actuator 5A is determined for each combustion stroke (reference signal) in each cylinder, the output torque and engine speed can be made almost the same in each cylinder, and this also allows drivability can be stabilized.

さらに、機関回転速度が所定値以上のときには、第2開
閉弁5を機関回転速度に応して設定された目標開度に吸
気弁3の開閉動作の開閉動作に拘わらず保持するように
したので、高回転時においても第2開閉弁5を介して吸
入空気が流通するため、高回転域において絞弁2を全閉
しても燃焼室圧力が過度に高負圧となるのを防止でき、
もってオイル上がり等を防止できる。
Furthermore, when the engine speed is above a predetermined value, the second on-off valve 5 is held at the target opening set according to the engine speed, regardless of the opening/closing operation of the intake valve 3. Since the intake air flows through the second on-off valve 5 even at high speeds, it is possible to prevent the combustion chamber pressure from becoming an excessively high negative pressure even if the throttle valve 2 is fully closed in the high speed range.
This prevents oil from rising.

尚、実施例においては、燃焼室圧力から機関の出力トル
クを予測するようにしたが、吸気圧力、吸入空気流量、
機関の空燃比(例えば排気中の酸素濃度から空燃比を検
出する酸素センサの検出信号)或いは実際の出力トルク
に基づいて第2開閉弁を制御してもよい。また、絞り弁
をバイパスするバイパス通路に第2開閉弁を介装するよ
うにしたが、例えば外部に設けられた蓄圧式のタンクと
絞り弁下流の吸気通路とを連通させこの連通路に第2開
閉弁を介装させるようにしてもよい。
In the example, the output torque of the engine was predicted from the combustion chamber pressure, but the intake pressure, intake air flow rate,
The second on-off valve may be controlled based on the air-fuel ratio of the engine (for example, a detection signal from an oxygen sensor that detects the air-fuel ratio from the oxygen concentration in exhaust gas) or the actual output torque. In addition, a second on-off valve is interposed in the bypass passage that bypasses the throttle valve, but for example, an external pressure accumulating tank is connected to the intake passage downstream of the throttle valve, and a second on-off valve is installed in this communication passage. An on-off valve may be provided.

〈発明の効果〉 本発明は、以上説明したように、各気筒毎に設けられた
第1開閉弁下流の吸気通路に連通ずる連通路に第2開閉
弁を介装し、機関回転速度が所定値未満のときに、吸気
弁が閉してから開くまでの期間に第2開閉弁を通過する
吸入空気流量を吸気弁が開いた直後の吸入空気流量より
も多くしで、吸気弁が開いた時点での第1開閉弁下流の
吸気圧力を大気圧力近傍になるように第2開閉弁を制御
するようにしたので、簡易な構成でポンピングロスを大
幅に低減して低負荷運転時における出力トルクを向上で
きると共に気筒毎に吸入空気量を制御できる。
<Effects of the Invention> As explained above, the present invention includes a second on-off valve interposed in the communication passage communicating with the intake passage downstream of the first on-off valve provided for each cylinder, so that the engine rotation speed is maintained at a predetermined level. When the value is less than the value, the intake air flow rate passing through the second opening/closing valve during the period from when the intake valve closes until it opens is made larger than the intake air flow rate immediately after the intake valve opens, and the intake valve opens. Since the second on-off valve is controlled so that the intake pressure downstream of the first on-off valve is close to atmospheric pressure at the moment, the pumping loss can be significantly reduced with a simple configuration and the output torque during low-load operation can be increased. It is possible to improve the intake air amount for each cylinder and to control the amount of intake air for each cylinder.

また、機関回転速度が所定値以上のときには、第2開閉
弁を吸気弁の開閉動作に拘わらず所定開度に保持させる
ようにしたので、第2開閉弁を所定の吸入空気が流通す
るため高回転時に第1開閉弁を全閉しても燃焼室圧力が
過度に高負圧となるのを防止でき、オイル上がり等を防
止できる。
In addition, when the engine rotational speed is above a predetermined value, the second on-off valve is held at a predetermined opening regardless of the opening/closing operation of the intake valve, so that the second on-off valve is held at a predetermined opening so that the predetermined amount of intake air flows through the second on-off valve. Even if the first on-off valve is fully closed during rotation, the combustion chamber pressure can be prevented from becoming an excessively high negative pressure, and oil leakage can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す構成国、第3図は同上の要部拡大図、第4
図〜第7図は同上のフローチャート、第8図〜第12図
は同上の作用を説明するための図、第13図は同上のハ
ードウェア構成図である。 1・・・吸気通路  2・・・絞弁  4・・・バイパ
ス通路  5・・・第2開閉弁  5A・・・電磁式圧
力 6・・・制御装置
Fig. 1 is a diagram corresponding to the claims of the present invention, Fig. 2 is a constituent country showing an embodiment of the present invention, Fig. 3 is an enlarged view of the main parts of the same, and Fig. 4 is a diagram corresponding to the claims of the present invention.
7 to 7 are flowcharts of the same, FIGS. 8 to 12 are diagrams for explaining the operation of the same, and FIG. 13 is a hardware configuration diagram of the same. 1... Intake passage 2... Throttle valve 4... Bypass passage 5... Second on-off valve 5A... Electromagnetic pressure 6... Control device

Claims (1)

【特許請求の範囲】[Claims] ピストン下降時に吸気弁を開いて燃焼室に空気を吸入す
るようにした内燃機関において、気筒毎に設けられ各気
筒の吸気弁に連通する吸気通路を開閉路する第1開閉弁
と、各第1開閉弁下流の吸気通路に少なくとも連通する
連通路と、これら連通路を夫々開閉する第2開閉弁と、
各第2開閉弁を駆動する駆動手段と、機関回転速度を検
出する回転速度検出手段と、検出された機関回転速度が
所定値以上か否かを判定する回転速度判定手段と、機関
回転速度が所定値未満と判定されたときに、前記吸気弁
が開く時点で前記第1開閉弁下流の吸気圧力が略大気圧
力になるように吸気弁が閉じてから開くまでの期間に前
記第2開閉弁を通過する吸入空気流量を、前記吸気弁が
開いた直後に前記第2開閉弁を通過する吸入空気流量よ
りも多くすべく、前記第2開閉弁を前記開閉弁の開閉動
作に応じて制御する第1制御手段と、機関回転速度が所
定値以上と判定されたときに、前記第2開閉弁を前記吸
気弁の開閉動作に拘わらず所定開度に保持させる第2制
御手段と、を備えたことを特徴とする内燃機関の吸入空
気制御装置。
In an internal combustion engine in which an intake valve is opened when a piston descends to draw air into a combustion chamber, a first on-off valve is provided for each cylinder and opens and closes an intake passage communicating with the intake valve of each cylinder; A communication passage that communicates with at least the intake passage downstream of the on-off valve, and a second on-off valve that opens and closes each of these communication passages, respectively;
A driving means for driving each second on-off valve, a rotational speed detection means for detecting the engine rotational speed, a rotational speed determination means for determining whether the detected engine rotational speed is equal to or higher than a predetermined value, When the intake valve is determined to be less than a predetermined value, the second on-off valve is operated during the period from when the intake valve closes to when the intake valve opens so that the intake pressure downstream of the first on-off valve becomes approximately atmospheric pressure when the intake valve opens. The second on-off valve is controlled in accordance with the opening/closing operation of the on-off valve so that the flow rate of intake air passing through the intake valve is greater than the flow rate of intake air passing through the second on-off valve immediately after the intake valve opens. a first control means; and a second control means for maintaining the second on-off valve at a predetermined opening degree regardless of the opening/closing operation of the intake valve when the engine rotational speed is determined to be equal to or higher than a predetermined value. An intake air control device for an internal combustion engine, characterized in that:
JP6281990A 1990-03-15 1990-03-15 Intake air control device of internal combustion engine Pending JPH03264757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6281990A JPH03264757A (en) 1990-03-15 1990-03-15 Intake air control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6281990A JPH03264757A (en) 1990-03-15 1990-03-15 Intake air control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH03264757A true JPH03264757A (en) 1991-11-26

Family

ID=13211324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6281990A Pending JPH03264757A (en) 1990-03-15 1990-03-15 Intake air control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH03264757A (en)

Similar Documents

Publication Publication Date Title
US5095874A (en) Method for adjusted air and fuel quantities for a multi-cylinder internal combustion engine
EP1384875A2 (en) Fuel control system and method of engine
US8050846B2 (en) Apparatus and method for controlling engine
US5113826A (en) Intake air control system for internal combustion engine
US5960769A (en) Air intake method and controller for engines performing stratified charge combustion
US8006676B2 (en) Control device for engine
US11333092B2 (en) Control device and control method for internal combustion engine
JPH04128527A (en) Fuel supply device of internal combustion engine
EP1249593B1 (en) Control system and method for a multi-cylinder internal combustion engine
JP2003527527A (en) Operating method of multi-cylinder internal combustion engine
US5121724A (en) Multi-cylinder internal combustion engine with individual port throttles upstream of intake valves
US6446596B1 (en) Method of operating an internal combustion engine
JPH03264757A (en) Intake air control device of internal combustion engine
JPH03242438A (en) Intake air controller of internal combustion engine
JP2897570B2 (en) Intake control device for internal combustion engine
JPH04101031A (en) Fuel feeder of internal combustion engine
JPH03237237A (en) Output controller of internal combustion engine
JPH03279624A (en) Intake air controller of internal combustion engine
JP2845984B2 (en) Engine pumping loss reduction device
JPH03237215A (en) Intake air controller for internal combustion engine
JPH03160120A (en) Intake air controller of internal combustion engine
JPH0229849B2 (en)
JPH03217631A (en) Intake air controller of internal combustion engine
US20190226412A1 (en) Control device for internal combustion engine
JP3349723B2 (en) Engine control device