JPH03217631A - Intake air controller of internal combustion engine - Google Patents

Intake air controller of internal combustion engine

Info

Publication number
JPH03217631A
JPH03217631A JP1181990A JP1181990A JPH03217631A JP H03217631 A JPH03217631 A JP H03217631A JP 1181990 A JP1181990 A JP 1181990A JP 1181990 A JP1181990 A JP 1181990A JP H03217631 A JPH03217631 A JP H03217631A
Authority
JP
Japan
Prior art keywords
valve
intake
opening
cylinder
idle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1181990A
Other languages
Japanese (ja)
Inventor
Toshimi Anpo
安保 敏巳
Makoto Anzai
安斎 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1181990A priority Critical patent/JPH03217631A/en
Publication of JPH03217631A publication Critical patent/JPH03217631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To control intake air quantity high accurately by storing a control result set at an idle-up operation time of a second opening/closing valve arranged parallelly to a first opening/closing valve, and controlling the second opening/closing valve at a normal idle operation time based thereon. CONSTITUTION:A second opening/closing valve F is arranged at a communication passage E which communicates with the downstream of a first opening/ closing valve D of an intake passage C at every cylinder. Intake air flow quantity passes therethrough is varied according to closing/opening of an intake valve A. The second opening/closing valve F is controlled by an idle-up timing control means G by correcting an unbalance condition of output torque between cylinders at the idle-up operation condition set higher than the normal idle operation timing. The control result is stored in a memory means H by means of a writing means I, and the control result from the memory means H is retrieved by a retrieving means J at the normal idle operation time. Each control opening/closing valve F is controlled by a normal idle timing control; means K based on the control result. With this simple structure, a pumping loss is decreased, and an intake air flow quantity is controlled accurately.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、シリンダに吸入される空気量を制御する内燃
機関の吸入空気制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an intake air control device for an internal combustion engine that controls the amount of air taken into a cylinder.

く従来の技術) 内燃機関の吸入空気制御装置の従来例として、S.A.
E,ペーパー880388の第2図に示すようなものが
ある。
(Prior Art) As a conventional example of an intake air control device for an internal combustion engine, the S. A.
There is one as shown in Fig. 2 of E. Paper 880388.

すなわち、吸気弁上流の吸気通路にロータリハルプを介
装し、このロータリバルブを吸気弁の開閉に同期して開
弁させるようにしている。そして、吸気弁とロークリバ
ルブとの開弁オーパラップ時に、空気を燃焼室にピスト
ンの下降によって吸入するようにしている。ここで、ロ
ータリハルブによって、吸気弁の開弁初期にロータリハ
ルブ下流の空気圧力を略大気圧にすることにより、ボン
ビングロスを低減するようにしている。
That is, a rotary harp is interposed in the intake passage upstream of the intake valve, and the rotary valve is opened in synchronization with the opening and closing of the intake valve. Then, when the intake valve and the low-return valve overlap, air is sucked into the combustion chamber by the downward movement of the piston. Here, bombing loss is reduced by using the rotary hull to bring the air pressure downstream of the rotary hull to approximately atmospheric pressure at the initial stage of opening of the intake valve.

また、ロータリハルブと吸気弁との間の吸気通路容積が
比較的大きいときには、ポンビングロスの低減効果が小
さくなるがロータリハルブ上流の吸気通路に絞弁を設け
るようにしている(S. A.E.ペーパー88038
8の第9図参照)。そして、絞弁により空気を絞り吸気
通路内の圧力を予め大気圧よりも低下させておくことに
より、ピストンが下死点に位置するときの燃焼室圧力を
アイドル運転時に例えば−550mm H gに設定で
きるようにしている。
Furthermore, when the volume of the intake passage between the rotary hull and the intake valve is relatively large, a throttle valve is provided in the intake passage upstream of the rotary hull, although the effect of reducing pumping loss is reduced (S.A.E. paper 88038
(See Figure 9 of 8). Then, by throttling the air with a throttle valve and lowering the pressure in the intake passage below atmospheric pressure in advance, the combustion chamber pressure when the piston is at bottom dead center is set to, for example, -550 mm Hg during idling operation. I'm trying to make it possible.

さらに、吸気弁上流にロータリハルブを備えるものとし
て、特開昭55−148932号公報等が挙げられる。
Furthermore, Japanese Patent Application Laid-Open No. 148932/1984 is a device that includes a rotary hull upstream of the intake valve.

〈発明が解決しようとする課題〉 しかしながら、このような従来の吸入空気制御装置にお
いては、吸気弁と直列にロータリバルブを設けるように
しているので、ロータリバルブの回転位相を変化させる
ためにギアを複数個組合わせて行う複雑な構造になるた
め、摩擦損失が大きく総合的に見るとポンビングロスの
低減効果が低下するという不具合がある。また、複雑な
構造のため気筒毎に吸入空気流量を制御するのが困難で
あるという不具合がある。
<Problems to be Solved by the Invention> However, in such conventional intake air control devices, a rotary valve is provided in series with the intake valve, so a gear is required to change the rotational phase of the rotary valve. Since it has a complicated structure in which multiple pieces are combined, there is a problem in that the friction loss is large and the overall effect of reducing pumping loss is reduced. Further, due to the complicated structure, it is difficult to control the intake air flow rate for each cylinder.

本発明は、このような実状に鑑みてなされたもので、簡
易な構成でポンビングロスを大幅に低減しつつ吸入空気
流量を気筒毎に高精度に制御できる内燃機関の吸入空気
制御装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an intake air control device for an internal combustion engine that can highly accurately control the intake air flow rate for each cylinder while significantly reducing pumping loss with a simple configuration. With the goal.

〈課題を解決するための手段〉 このため、本発明は第1図に示すように、ピストン下降
時に吸気弁Aを開いて燃焼室Bに空気を吸入するように
したものにおいて、気筒毎に設けられ各気筒の吸気弁A
に連通ずる吸気通路Cを開閉する第1開閉弁Dと、各第
1開閉弁D下流の吸気通路Cに少なくとも連通する連通
路Eと、これら連通路Eを夫々開閉する第2開閉弁Fと
、を備え、前記第2開閉弁Fを通過する吸入空気流量を
前記吸気弁Aの開閉に応じて変化させるものであって、
機関のアイドル回転速度が通常アイドル運転時よりも高
く設定されているアイドルアップ運転条件のときに気筒
間の出力トルクのアンハランスを修正すべく前記第2開
閉弁Fを制御するアイドルアップ時制御手段Gと、該ア
イドルアップ時制御手段Gの制御結果を記憶手段Hに書
き込む書込み手段Iと、通常アイドル運転時に前記記憶
手段Hから制御結果を検索する検索手段Jと、検索され
た制御結果に基づいて前記各第2開閉弁Fを制御する通
常アイドル時制御手段Kと、を備えるようにした。
<Means for Solving the Problems> For this reason, the present invention, as shown in FIG. Intake valve A of each cylinder
A first on-off valve D that opens and closes the intake passage C that communicates with the first on-off valve D, a communication passage E that communicates at least with the intake passage C downstream of each first on-off valve D, and a second on-off valve F that opens and closes the communication passage E, respectively. The intake air flow rate passing through the second on-off valve F is changed according to the opening and closing of the intake valve A,
Idle-up control means G for controlling the second on-off valve F to correct imbalance in output torque between cylinders during idle-up operating conditions in which the idle rotational speed of the engine is set higher than during normal idle operation; , a writing means I for writing the control result of the control means G during idle up into the storage means H, a retrieval means J for retrieving the control result from the storage means H during normal idle operation, and a retrieval means J for retrieving the control result from the storage means H during normal idle operation, A normal idle control means K for controlling each of the second on-off valves F is provided.

〈作用〉 このようにして、気筒毎に設けられた第1開閉弁と並列
に第2開閉弁を介装することにより、簡易な構成でボン
ビングロスを大幅に低減しっつ気筒毎に吸入空気流量を
制御できるようにした。また、始動時或いは暖機中等の
アイドルアップ運転条件のときに記憶された制御結果に
基づいて、通常アイドル運転時に第2開閉弁を制御する
ことにより、制御応答性を向上できるようにした。
<Operation> In this way, by interposing the second on-off valve in parallel with the first on-off valve provided for each cylinder, bombing loss can be significantly reduced with a simple configuration, while the intake air flow rate for each cylinder can be reduced. was able to be controlled. Furthermore, control responsiveness can be improved by controlling the second on-off valve during normal idling operation based on the control results stored during idle-up operating conditions such as startup or warm-up.

〈実施例〉 以下に、本発明の一実施例を第2図〜第11図に基づい
て説明する。尚、実施例においては、4気筒内燃機関を
例にとり説明する。
<Example> An example of the present invention will be described below based on FIGS. 2 to 11. In the embodiment, a four-cylinder internal combustion engine will be described as an example.

第2図及び第3図において、気筒毎に独立した吸気通路
1にはアクセルペダルの踏込動作に連動する第1開閉弁
としてのバタフライ式の絞弁2が吸気弁3と直列に配設
されて夫々介装され、各校弁2をバイパスする連通路と
してのバイパス通路4が夫々形成されている。前記バイ
パス通路4には第2開閉弁5が夫々介装され、第2開閉
弁5は電磁式アクチュエータ5Aにより開閉駆動される
In FIGS. 2 and 3, a butterfly-type throttle valve 2 as a first opening/closing valve that is linked to the depression of an accelerator pedal is arranged in series with an intake valve 3 in an intake passage 1 that is independent for each cylinder. Bypass passages 4 are respectively interposed and serve as communication passages that bypass each calibration valve 2. A second on-off valve 5 is interposed in each of the bypass passages 4, and the second on-off valve 5 is driven to open and close by an electromagnetic actuator 5A.

前記アクチュエータ5Aには制御装置6から制御信号が
入力されている。ここで、前記絞弁2から吸気弁3に至
る吸気通路1の容積は、燃焼室の最大容積(ピストンが
下死点にあるときの燃焼室容積)の約2に設定されてい
る。
A control signal is input from the control device 6 to the actuator 5A. Here, the volume of the intake passage 1 from the throttle valve 2 to the intake valve 3 is set to about 2 of the maximum volume of the combustion chamber (combustion chamber volume when the piston is at the bottom dead center).

前記制御装置6には、クランク角センサ7からのレファ
レンス信号(クランク角度で180゜毎)及びポジショ
ン信号(クランク角度で例えばピ毎)と、各気筒の点火
栓8の座金部に埋込まれた筒内圧センサ(図示せず)か
らの筒内圧検出信号と、が入力されている。
The control device 6 receives a reference signal (every 180 degrees in crank angle) and a position signal (for example, every 180 degrees in crank angle) from a crank angle sensor 7, and a signal embedded in the washer of the spark plug 8 of each cylinder. A cylinder pressure detection signal from a cylinder pressure sensor (not shown) is input.

前記制御装置6は、第4図〜第7図のフローチャートに
従って作動し、制御信号をアクチュエータ5Aに出力し
て第2開閉弁5を開閉制御するようになっている。
The control device 6 operates according to the flowcharts shown in FIGS. 4 to 7, and outputs a control signal to the actuator 5A to control the opening and closing of the second on-off valve 5.

ここでは、制御装置6が記憶手段(RAM)と書込手段
と検索手段を構成する。また、電磁式アクチュエータ5
Aと制御装置6とがアイドルアップ時制御手段と通常ア
イドル時制御手段とを構成する。
Here, the control device 6 constitutes a storage means (RAM), a writing means, and a retrieval means. In addition, the electromagnetic actuator 5
A and the control device 6 constitute an idle-up control means and a normal idle control means.

尚、9は燃料噴射弁である。Note that 9 is a fuel injection valve.

次にイ竹用を第4図〜第7図のフローチャートに従って
説明する。ここで、第4図及び第7図のフローチャート
に示すルーチンは第8図に示すようにクランク角センサ
7からレファレンス信号が入力される毎に割込ルーチン
によって実行される(第8図中レファレンスジョブと称
す)。また、第5図のフローチャートに示すルーチンは
第8図に示すように後述の設定クランク角度(#1気筒
の上死点付近)になったときに割込ルーチンによって実
行される(第8図中クランクジョブと称す)。
Next, the process for Itake will be explained according to the flowcharts shown in FIGS. 4 to 7. Here, the routine shown in the flowcharts of FIGS. 4 and 7 is executed by an interrupt routine every time a reference signal is input from the crank angle sensor 7 as shown in FIG. ). Further, the routine shown in the flowchart in Fig. 5 is executed by an interrupt routine when the set crank angle (near the top dead center of #1 cylinder), which will be described later, is reached as shown in Fig. 8. (referred to as a crank job).

第6図のフローチャートに示すルーチンは、前記割込ル
ーチンが実行されていないときに、常に実行される。
The routine shown in the flowchart of FIG. 6 is always executed when the interrupt routine is not executed.

まず、第4図のフローチャートについて説明する。First, the flowchart shown in FIG. 4 will be explained.

S1では、第5図のフローチャートに示すルーチンを実
行させるための設定クランク角度をセットする。この設
定クランク角度は、第9図に示すように、#1気筒の圧
縮行程において混合気が燃焼開始(点火開始)直前の上
死点付近の値に設定されている。
In S1, a set crank angle is set for executing the routine shown in the flowchart of FIG. As shown in FIG. 9, this set crank angle is set to a value near the top dead center immediately before the start of combustion of the air-fuel mixture (start of ignition) in the compression stroke of the #1 cylinder.

S2では、レファレンス信号から#1気筒か否かを判定
し、YESのときにはS3に進みNoのときにはS6に
進む。
In S2, it is determined from the reference signal whether or not it is the #1 cylinder. If YES, the process proceeds to S3; if NO, the process proceeds to S6.

S3では、変数カウンタ値に1を加算してS4に進む。In S3, 1 is added to the variable counter value and the process proceeds to S4.

S4では、加算された変数カウンタ値が3になったか否
かを判定し、YESのときにはS5に進みNoのときに
はS6に進む。
In S4, it is determined whether or not the added variable counter value has reached 3. If YES, the process proceeds to S5, and if NO, the process proceeds to S6.

S5では、変数カウンタ値を0に初期化する。In S5, the variable counter value is initialized to 0.

したがって、変数カウンタ値は、0,1,2,3.0,
1.2と繰返され、#1気筒が圧縮行程にあるときのレ
ファレンス信号入力時に値が切換えられる。
Therefore, the variable counter values are 0, 1, 2, 3.0,
1.2 is repeated, and the value is switched when the reference signal is input when the #1 cylinder is in the compression stroke.

S6では、後述のルーチンで読込まれた燃焼室圧力を、
メモリ(RAM)に、気筒毎に前記変数カウンタ値に対
応するアドレスに記憶させる。したがって、気筒毎に、
4つの燃焼室圧力のデータが第10図破線禾の如くメモ
リに記憶される。そして、燃焼室圧力は古いデータから
順次新たなデータに書換えられる。
In S6, the combustion chamber pressure read in the routine described later is
It is stored in a memory (RAM) at an address corresponding to the variable counter value for each cylinder. Therefore, for each cylinder,
Data of four combustion chamber pressures are stored in the memory as indicated by the broken line in FIG. Then, the combustion chamber pressure is sequentially rewritten from old data to new data.

S7では、各気筒毎に、メモリに記憶されている4つの
データを単純平均して平均燃焼室圧力(第10図中細線
示)を演算する。
In S7, the average combustion chamber pressure (indicated by the thin line in FIG. 10) is calculated by simply averaging the four pieces of data stored in the memory for each cylinder.

次に、第5図及び第6図のフローチャートを説明すると
、第5図のSllにおいては、前記設定クランク角度毎
にA/D変換器(図示せず)を起動させて筒内圧センサ
により検出された燃焼開始直前の燃焼室圧力を読込む。
Next, to explain the flowcharts of FIGS. 5 and 6, in Sll of FIG. Read the combustion chamber pressure just before the start of combustion.

ここでは、燃焼開始直前の燃焼室圧力から機関の出力ト
ルクを予測するのである。また、第6図の321におい
ては、クランク角センサ7からのレファレンス信号の人
力周期に基づいて機関回転速度を読込む。
Here, the output torque of the engine is predicted from the combustion chamber pressure just before the start of combustion. Further, at 321 in FIG. 6, the engine rotational speed is read based on the manual cycle of the reference signal from the crank angle sensor 7.

次に、第7図のフローチャートを説明する。Next, the flowchart shown in FIG. 7 will be explained.

S31では、機関運転状態がアイドルアップ運転条件か
否かを判定し、YES (アイドルアップ運転時)のと
きにはS32に進みNO(通常アイドル時)のときには
338に進む。前記アイドルアンプ運転条件は、始動直
後や暖機中のアイドル回転速度が通常アイドル運転時よ
りも高いときである。
In S31, it is determined whether the engine operating state is an idle-up operating condition. If YES (during idle-up operation), the process proceeds to S32; if NO (during normal idle), the process proceeds to 338. The idle amplifier operating condition is when the idle rotation speed immediately after starting or during warm-up is higher than during normal idle operation.

これは、通常アイドル運転時は本質的に燃焼が不安定で
あり気筒毎の吸入空気流量調整を行ってデータをサンプ
リングするにはデータが気筒間でばらつくためこのとき
のデータによって吸入空気流量調整を行うと不安定さを
助長するおそれがあるからアイドルアップ運転条件のと
きに332に進むのである。
This is because combustion is essentially unstable during normal idling operation, and if data is sampled by adjusting the intake air flow rate for each cylinder, the data will vary between cylinders. If this is done, there is a risk of promoting instability, so the process proceeds to 332 when the idle-up operating condition is present.

そして、前記アイドルアップ運転条件のときには、S3
2で、前記S21にて読込まれた機関回転速度と目標回
転速度との回転差NVARを演算する。
Then, when the idle up operation condition is met, S3
2, the rotational difference NVAR between the engine rotational speed read in S21 and the target rotational speed is calculated.

S33では、演算された回転差NVARを前回の回転積
分値を加算して回転積分値を新たに算出する。また、新
たに求められた回転積分値に定数KlOを乗算した積分
分と、前記回転差NVARに定数Kllを乗算した比例
分と、を加算してNPIを算出する。
In S33, a new rotation integral value is calculated by adding the previous rotation integral value to the calculated rotation difference NVAR. Further, NPI is calculated by adding an integral obtained by multiplying the newly obtained rotational integral value by a constant KlO and a proportional component obtained by multiplying the rotational difference NVAR by a constant Kll.

S34では、前記S7にて演算された各気筒の平均燃焼
室圧力を加算した後それを気箇数で除算して総平均燃焼
室圧力TOTALAVEを算出する。
In S34, the total average combustion chamber pressure TOTALAVE is calculated by adding the average combustion chamber pressure of each cylinder calculated in S7 and then dividing it by the number of cylinders.

S35では、気筒毎に、前記総平均燃焼室圧力TOTA
LAVEからその気筒の平均燃焼室圧力を減算してずれ
分’C Y L V A Rを算出する。また、気筒毎
に算出されたずれ分CYLVARと前回のCYL積分値
とを加算して、気筒毎に、CYL積分値を新たに算出す
る。さらに、算出されたCYL積分値に定数K20を乗
じた積分分と、前記ずれ分CYLVARに定数K21を
乗じた比例分と、を加算して、CYLPTを気筒毎に全
気筒の出力トルクが略同様になるように算出する。
In S35, the total average combustion chamber pressure TOTA is determined for each cylinder.
The average combustion chamber pressure of the cylinder is subtracted from LAVE to calculate the deviation 'C Y L V A R. Furthermore, a new CYL integral value is calculated for each cylinder by adding the deviation CYLVAR calculated for each cylinder and the previous CYL integral value. Furthermore, by adding the integral obtained by multiplying the calculated CYL integral value by a constant K20 and the proportional component obtained by multiplying the deviation CYLVAR by a constant K21, CYLPT is calculated so that the output torque of all cylinders is approximately the same for each cylinder. Calculate so that

S36では、S35にて算出された燃焼室圧力のずれ分
CYLVARが所定値以下か否かを各気筒毎に判定し、
YESのときには燃焼が安定していると判断してS37
に進みNOのときにはS42に進む。
In S36, it is determined for each cylinder whether the combustion chamber pressure deviation CYLVAR calculated in S35 is less than or equal to a predetermined value.
If YES, it is determined that combustion is stable and S37
If the answer is NO, the process advances to S42.

S37では、算出されたCYLPIを学習値CYLLと
して気筒ナンバーに対応させてRAMに記憶させる。
In S37, the calculated CYLPI is stored in the RAM as a learning value CYLL in correspondence with the cylinder number.

一方、通常アイドル運転時には、338において、前記
S32と同様に、回転差NVARを演算する。
On the other hand, during normal idling operation, at 338, the rotational difference NVAR is calculated in the same manner as S32.

S39では、前記S33と同様に、回転積分値を算出し
た後、NPIを算出する。
In S39, similarly to S33 above, after calculating the rotational integral value, NPI is calculated.

S40では、前記S34と同様に、前記S7にて演算さ
れた各気筒の平均燃焼室圧力に基づいて全気筒の総平均
燃焼室圧力TOTALAVEを算出する。
In S40, as in S34, the total average combustion chamber pressure TOTALAVE of all cylinders is calculated based on the average combustion chamber pressure of each cylinder calculated in S7.

341では、S40にて演算された総平均燃焼室圧力T
OTALAVEから各気筒の平均燃焼室圧力を減じてず
れ分CYVARを気筒毎に算出する。
341, the total average combustion chamber pressure T calculated in S40
The deviation CYVAR is calculated for each cylinder by subtracting the average combustion chamber pressure of each cylinder from OTALAVE.

また、各気筒毎に算出されたずれ分CYLVARと前回
のCYL積分値とを加えて、新たなCYL積分値を気筒
毎に算出する。さらに、前記RAMから学習値CYLL
を気筒毎に検索すると共に、検索された学習値CYLL
と、前記算出されたCYL積分値に定数K30を乗じた
積分分と、前記ずれ分CYLVARに定数K31を乗じ
た比例分と、を加算して、CYLPIを気筒毎に算出す
る。ここで前記定数(ゲイン)K30、K31は、S3
5においてCYLPIを算出するための定数(ゲイン)
K20、21よりも小さく設定されており、これによっ
てCYLPIを学習値CYLLに大きく依存させて設定
するようになっている。
Furthermore, a new CYL integral value is calculated for each cylinder by adding the deviation CYLVAR calculated for each cylinder and the previous CYL integral value. Furthermore, the learned value CYLL is stored in the RAM.
is searched for each cylinder, and the searched learning value CYLL
CYLPI is calculated for each cylinder by adding the integral obtained by multiplying the calculated CYL integral value by a constant K30, and the proportional component obtained by multiplying the deviation CYLVAR by a constant K31. Here, the constants (gains) K30 and K31 are S3
Constant (gain) for calculating CYLPI in 5
It is set smaller than K20 and K21, so that CYLPI is set to be largely dependent on learned value CYLL.

S42では、S35若しくはS41にて算出されたCY
LP Iと、S32若しくはS38にて算出されたNP
Iに定数40を乗じた値と、を加算して、アクチュエー
タの制御値を気筒毎に算出する。
In S42, CY calculated in S35 or S41
LP I and NP calculated in S32 or S38
A value obtained by multiplying I by a constant 40 is added to calculate the actuator control value for each cylinder.

そして、算出された制御値に対応する制御信号を、対応
する気筒のアクチュエータ5Aに出力し、第2開閉弁5
の開度を気筒毎に制御する。
Then, a control signal corresponding to the calculated control value is output to the actuator 5A of the corresponding cylinder, and the second on-off valve 5
The opening degree is controlled for each cylinder.

かかる制御時における第2開閉弁5の開度変化及び絞弁
2下流の吸気圧力変化を第11図のタイムチャートに従
って説明する。尚、この説明では絞弁2の全閉時すなわ
ちアイドル運転時を例にとり説明し、第11図中吸は吸
気行程を示し圧は圧縮行程を示し爆は爆発行程を示し徘
は排気行程を示す。
Changes in the opening degree of the second on-off valve 5 and changes in the intake pressure downstream of the throttle valve 2 during such control will be explained with reference to the time chart of FIG. 11. In addition, in this explanation, an example will be given when the throttle valve 2 is fully closed, that is, during idling operation, and in FIG. .

すなわち、吸気弁3が開き始める吸気行程開始時におい
て、絞弁2下流の吸気圧力が大気圧になるように、圧縮
行程から爆発行程にて第2開閉弁5を全開させる。これ
により、絞弁2下流の吸気圧力は第11図中Cに示すよ
うに、吸気行程におけるピストン下死点時の吸気圧力(
吸気行程終了時の吸気圧であってアイドル運転時には例
えば550〜570,, H ,から大気圧力付近まで
上昇する。
That is, at the start of the intake stroke when the intake valve 3 begins to open, the second on-off valve 5 is fully opened from the compression stroke to the explosion stroke so that the intake pressure downstream of the throttle valve 2 becomes atmospheric pressure. As a result, the intake pressure downstream of the throttle valve 2 is changed to the intake pressure (
This is the intake pressure at the end of the intake stroke, and increases from, for example, 550 to 570, H, to near atmospheric pressure during idling operation.

ここで、吸気行程開始時の吸気圧力が大気圧になるよう
に第2開閉弁5を常時一定開度に保持させて開弁すると
、吸気圧力は第11図中Aに示すようになり燃焼室に吸
入される吸入空気流量が希望値よりも多くなる。また、
ピストン下死点時の吸気圧力が前記550〜570,.
 H gになるように第2開閉弁5の開度を常時小さく
設定すると、吸気行程開始時の吸気圧力が第11図中B
に示すように大気圧にならない。
Here, if the second opening/closing valve 5 is always maintained at a constant opening and opened so that the intake pressure at the start of the intake stroke becomes atmospheric pressure, the intake pressure becomes as shown in A in Fig. 11, and the combustion chamber The intake air flow rate sucked into the unit becomes higher than the desired value. Also,
The intake pressure at the bottom dead center of the piston is 550 to 570, .
If the opening degree of the second on-off valve 5 is always set small so that Hg, the intake pressure at the start of the intake stroke will be B in Fig. 11.
The pressure does not reach atmospheric pressure as shown in .

そこで、本実施例では、第11図に示すように、吸気弁
3が開く時点で第2開閉弁5の開度を全開から所定開度
まで閉弁駆動する。これにより、第11図中Cに示すよ
うに吸気弁3が開く時点での吸気圧力を大気圧付近に設
定すると共に吸気行程終了時の吸気圧力を所定値に設定
し、吸入空気流量を希望値に設定できるようにしたので
ある。具体的には、吸気弁3が閉した時点で第2開閉弁
5を全開し吸気弁3が開く直前に第2開閉弁5を所定開
度まで閉弁する。
Therefore, in this embodiment, as shown in FIG. 11, when the intake valve 3 opens, the second opening/closing valve 5 is driven to close from fully open to a predetermined opening. As a result, as shown in C in Fig. 11, the intake pressure at the time the intake valve 3 opens is set to near atmospheric pressure, the intake pressure at the end of the intake stroke is set to a predetermined value, and the intake air flow rate is set to the desired value. This allows it to be set to . Specifically, when the intake valve 3 closes, the second on-off valve 5 is fully opened, and immediately before the intake valve 3 opens, the second on-off valve 5 is closed to a predetermined opening degree.

このようにして、第2開閉弁5の開度を制御すると、第
2開閉弁5の開度は機関回転速度に比例した単純な制御
で行える。これは吸気行程開始時の吸気圧力が大気圧と
すると、絞弁2下流の吸気通路1の容積と、ピストンの
下降に伴って増加する燃焼室の容積と、の比から吸入空
気流量を知ることが−でき、これによって不足分を第2
開閉弁5の開度制御により補えば良いからである。
By controlling the opening degree of the second on-off valve 5 in this manner, the opening degree of the second on-off valve 5 can be simply controlled in proportion to the engine rotation speed. This means that when the intake pressure at the start of the intake stroke is atmospheric pressure, the intake air flow rate can be determined from the ratio of the volume of the intake passage 1 downstream of the throttle valve 2 and the volume of the combustion chamber, which increases as the piston descends. This allows the shortfall to be reduced to the second
This is because it can be compensated for by controlling the opening degree of the on-off valve 5.

ここで、第11図において第2開閉弁5の開度を切り換
えるタイミングを吸気行程開始前(排気行程に入ったと
ころ)に設定しているのは、制御系の応答遅れを考慮し
ているためであり、実際には第2開閉弁5は吸気弁3が
開く時に所定開度に切換られる。このようにすると、吸
気弁3の閉弁期間にバイパス通路4を通過する吸入空気
流量は吸気弁3の開弁期間よりも多くなる。尚、アクチ
ュエータ5Aをオン・オフデューティ信号により制御し
てバイパス通路4の吸入空気流量を前述の如く制御して
もよい。
Here, in FIG. 11, the timing for switching the opening degree of the second on-off valve 5 is set before the start of the intake stroke (at the beginning of the exhaust stroke) to take into account the response delay of the control system. In reality, the second on-off valve 5 is switched to a predetermined opening degree when the intake valve 3 opens. In this way, the flow rate of intake air passing through the bypass passage 4 during the period when the intake valve 3 is closed becomes greater than during the period when the intake valve 3 is open. Incidentally, the intake air flow rate of the bypass passage 4 may be controlled as described above by controlling the actuator 5A using an on/off duty signal.

以上説明したように、絞弁2をハイパスするハイパス通
路4に第2開閉弁5を気筒毎に配設すると共に、各絞弁
2下流の吸気通路1の容積を燃焼室の最大容積の172
に設定し、かつ吸気弁3が開く時点の絞弁2下流の吸気
圧力を大気圧近傍になるように第2開閉弁5を全開させ
ると共に吸気行程においては第2開閉弁5を所定開度ま
で閉弁駆動させるようにしたので、以下の効果がある。
As explained above, the second on-off valve 5 is disposed for each cylinder in the high-pass passage 4 that passes through the throttle valve 2, and the volume of the intake passage 1 downstream of each throttle valve 2 is set to 172, which is the maximum volume of the combustion chamber.
and fully open the second on-off valve 5 so that the intake pressure downstream of the throttle valve 2 at the time the intake valve 3 opens is close to atmospheric pressure, and during the intake stroke, the second on-off valve 5 is opened to a predetermined opening degree. Since the valve is driven to close, the following effects can be obtained.

すなわち、吸気弁3が開き始めたときには燃焼室圧力(
吸気通路1の吸気圧力と略同様)大気圧?傍に維持され
るので、ピストンの下降に伴って燃焼室圧力は大気圧か
らアイドル運転時におけるピストン下死点位置での燃焼
室圧力(例えば−550〜−570,ffiHg)まで
略直線的に低下する。したがって従来の絞弁制御のみに
よる吸気圧力変化よりもポンピングロスを大幅に低減で
きるため、期間出力を最大限に発揮できる。また、ハイ
パス通路4の第2開閉弁5を電磁式アクチュエータ5A
により制御するようにしたので従来のものより構造を簡
易化できる。
That is, when the intake valve 3 begins to open, the combustion chamber pressure (
Almost the same as the intake pressure in intake passage 1) Atmospheric pressure? As the piston descends, the combustion chamber pressure decreases approximately linearly from atmospheric pressure to the combustion chamber pressure at the bottom dead center position of the piston during idling operation (e.g. -550 to -570, ffiHg). do. Therefore, pumping loss can be significantly reduced compared to changes in intake pressure due to conventional throttle valve control alone, and period output can be maximized. In addition, the second on-off valve 5 of the high-pass passage 4 is operated by an electromagnetic actuator 5A.
Since the structure is controlled by , the structure can be simplified compared to the conventional one.

ここで、絞弁2から吸気弁3に至る吸気通路1の容積を
、燃焼室の最大容積の172以下に設定する理由を説明
する。前記燃焼室の最大容積をAと仮定し、絞弁2から
吸気弁3に至る吸気通路1の容積をBと仮定し圧縮比を
1/10と仮定し、またアイドル運転時のピストン下死
点位置における燃焼室圧力(吸気圧力)を−456■H
9(高回転型のエンジンではハルブオーバーラップ期間
が大きいのでこの程度の値になる)と仮定して説明する
Here, the reason why the volume of the intake passage 1 from the throttle valve 2 to the intake valve 3 is set to 172 or less, which is the maximum volume of the combustion chamber, will be explained. Assume that the maximum volume of the combustion chamber is A, that the volume of the intake passage 1 from the throttle valve 2 to the intake valve 3 is B, that the compression ratio is 1/10, and that the piston bottom dead center during idling operation is Combustion chamber pressure (intake pressure) at -456■H
The explanation will be made assuming that the value is 9 (in a high-speed engine, the hull overlap period is long, so the value is about this value).

すなわち、ピストン上死点時における吸気通路1と燃焼
室との総容積は(A/10+B)となり、またピストン
下死点時における吸気通路1と燃焼室との総容積は(A
+B)となる。かかる状態で大気圧(1気圧)から−4
56,,H,(0.  4気圧)に燃焼室圧力及び吸気
圧力が変化するときには(A/IO十B)/ (A+B
) 一0.4となり、これを解くとA=2Bとなる。
That is, the total volume of the intake passage 1 and the combustion chamber at the piston top dead center is (A/10+B), and the total volume of the intake passage 1 and the combustion chamber at the piston bottom dead center is (A
+B). Under such conditions, the atmospheric pressure (1 atm) decreases by -4
When the combustion chamber pressure and intake pressure change to 56,,H, (0.4 atm), (A/IO + B) / (A + B
) -0.4, and solving this gives A=2B.

したがって、前記吸気通路lの容積が燃焼室の最大容積
の約1/2以下のときに、アイドル運転時等の低負荷運
転時に最適なピストン下死点位置における燃焼室圧力を
確保できるのである。
Therefore, when the volume of the intake passage 1 is approximately 1/2 or less of the maximum volume of the combustion chamber, an optimum combustion chamber pressure at the piston bottom dead center position can be ensured during low load operation such as idling operation.

また、全気筒の総平均燃焼室圧力TOTALAVEから
各気筒毎にズレ分(偏差)CYLVARを求めるように
したので、各気筒の燃焼室圧力が前記総平均燃焼室圧力
TOTALAVEに近づくようになるため、燃焼室圧力
を全気筒にて略同様にできる。これによって、全気筒の
出力トルクを略同様にできるので、アイドル運転時の運
転性を安定化できる。また、各気筒の機関回転速度の目
標回転速度からの回転差(偏差)NVARを求めた後各
気筒毎にNPIを求めて、前記アクチュエータ5Aの制
御値に機関回転速度に依存するNPIを付加するように
したので、全気筒の機関回転速度を略同様にでき、これ
によってもアイドル運転時の運転性を安定化できる。
In addition, since the deviation (deviation) CYLVAR is calculated for each cylinder from the total average combustion chamber pressure TOTALAVE of all cylinders, the combustion chamber pressure of each cylinder approaches the total average combustion chamber pressure TOTALAVE. Combustion chamber pressure can be made almost the same in all cylinders. This makes it possible to make the output torque of all cylinders substantially the same, thereby stabilizing the drivability during idling operation. Further, after determining the rotational difference (deviation) NVAR of the engine rotational speed of each cylinder from the target rotational speed, NPI is determined for each cylinder, and the NPI that depends on the engine rotational speed is added to the control value of the actuator 5A. This makes it possible to make the engine rotational speeds of all cylinders substantially the same, which also makes it possible to stabilize the drivability during idling operation.

また、各気筒において、一燃焼行程(レファレンス信号
)毎にアクチュエータ5Aの制御値を求めるようにした
ので、各気筒においても、出力トルク及び機関回転速度
を略同様にでき、これによってもアイドル運転時の運転
性を安定化できる。
In addition, since the control value of the actuator 5A is determined for each combustion stroke (reference signal) in each cylinder, the output torque and engine rotation speed can be made almost the same in each cylinder, which also makes it possible to maintain the same output torque and engine speed during idling. drivability can be stabilized.

さらに、アイドルアップ運転条件のときに、燃焼室圧力
(吸気圧力)に基づいて設定されたCYPIを記憶させ
、記憶されたCYPIに基づいて通常アイドル運転時に
CYLPIを算出して制御値を求めるようにしたので、
各気筒において第2開閉弁5等に経時変化が発生しても
第2開閉弁5の制御応答性を向上させつつ吸気空気流量
を高精度に制御できる。また、アイドルアップ運転時に
RAMに記憶させたCYLPIは、全気筒の総平均燃焼
室圧力TOTALAVEからのずれ分CYLVARに基
づいて全気筒の出力トルクが略同様になるように設定さ
れているので、通常アイドル運転時に気筒間の出力トル
クのアンハランスを制御応答性良くなくすことができア
イドル安定性を向上できる。
Furthermore, during idle-up operating conditions, the CYPI set based on the combustion chamber pressure (intake pressure) is memorized, and based on the memorized CYPI, CYLPI is calculated during normal idle operation to obtain the control value. So,
Even if changes occur over time in the second on-off valve 5 or the like in each cylinder, the intake air flow rate can be controlled with high precision while improving the control responsiveness of the second on-off valve 5. In addition, the CYLPI stored in the RAM during idle-up operation is set so that the output torque of all cylinders is approximately the same based on the deviation CYLVAR from the total average combustion chamber pressure of all cylinders TOTALAVE. During idling operation, imbalance in output torque between cylinders can be eliminated with good control response, and idling stability can be improved.

尚、実施例においては、燃焼室圧力から機関の出力トル
クを予測するようにしたが、吸気圧力、吸入空気流量、
機関の空燃比(例えば排気中の酸素濃度がら空燃比を検
出する酸素センサの検出信号)或いは実際の出力トルク
に基づいて第2開閉弁を制御してもよい。また、絞弁を
バイパスするバイパス通路に第2開閉弁を介装するよう
にしたが、例えば外部に設けられた蓄圧式のタンクと絞
弁下流の吸気通路とを連通させこの連通路に第2開閉弁
を介装させるようにしてもよい。
In the example, the output torque of the engine was predicted from the combustion chamber pressure, but the intake pressure, intake air flow rate,
The second on-off valve may be controlled based on the air-fuel ratio of the engine (for example, a detection signal from an oxygen sensor that detects the air-fuel ratio based on the oxygen concentration in the exhaust gas) or the actual output torque. In addition, a second on-off valve is interposed in the bypass passage that bypasses the throttle valve. An on-off valve may be provided.

く発明の効果〉 本発明は、以上説明したように、気筒毎に設けられた第
1開閉弁下流の吸気通路に連通ずる連通路に第2開閉弁
5を介装するようにしたので、簡易な構成でボンビング
ロスを大幅に低減して出力トルクを向上できると共に吸
入空気流量を気筒毎に制御できる。また、アイドルアッ
プ運転時に設定された第2開閉弁の制御結果を記憶させ
、記憶された制御結果に基づいて通常アイドル運転時に
第2開閉弁を制御するようにしたので、経時変化等があ
っても第2開閉弁の制御応答性を向上させつつ制御でき
るため、吸入空気流量を高精度に制御できアイドル安定
性を向上できる。
Effects of the Invention> As explained above, the present invention has a structure in which the second on-off valve 5 is interposed in the communication passage communicating with the intake passage downstream of the first on-off valve provided for each cylinder. With this configuration, bombing loss can be significantly reduced and output torque can be improved, and the intake air flow rate can be controlled for each cylinder. In addition, the control results of the second on-off valve set during idle-up operation are stored, and the second on-off valve is controlled during normal idle operation based on the stored control results, so there is no change over time. Since the second on-off valve can also be controlled while improving its control response, the intake air flow rate can be controlled with high precision and idling stability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のクレーム対応図、第2図は本発明の第
1実施例を示す構成図、第3図は同上の要部拡大図、第
4図〜第7図は同上のフローチャート、第8図〜第11
図は同上の作用説明図である。 1・・・吸気通路  2・・・絞弁  3・・・吸気弁
4・・・バイパス通路  5・・・第2開閉弁  5A
・・・アクチュエータ  6・・・制御装置
FIG. 1 is a diagram corresponding to the claims of the present invention, FIG. 2 is a configuration diagram showing a first embodiment of the present invention, FIG. 3 is an enlarged view of the main parts of the same, and FIGS. 4 to 7 are flowcharts of the same, Figures 8 to 11
The figure is an explanatory diagram of the same operation. 1... Intake passage 2... Throttle valve 3... Intake valve 4... Bypass passage 5... Second on-off valve 5A
...Actuator 6...Control device

Claims (1)

【特許請求の範囲】[Claims]  ピストン下降時に吸気弁を開いて燃焼室に空気を吸入
するようにした内燃機関において、気筒毎に設けられ各
気筒の吸気弁に連通する吸気通路を開閉する第1開閉弁
と、各第1開閉弁下流の吸気通路に少なくとも連通する
連通路と、これら連通路を夫々開閉する第2開閉弁と、
を備え、前記第2開閉弁を通過する吸入空気流量を前記
吸気弁の開閉に応じて変化させるものであって、機関の
アイドル回転速度が通常アイドル運転時よりも高く設定
されているアイドルアップ運転条件のときに気筒間の出
力トルクのアンバランスを修正すべく前記第2開閉弁を
制御するアイドルアップ時制御手段と、該アイドルアッ
プ時制御手段の制御結果を記憶手段に書き込む書込み手
段と、通常アイドル運転時に前記記憶手段から制御結果
を検索する検索手段と、検索された制御結果に基づいて
前記各第2開閉弁を制御する通常アイドル時制御手段と
、を備えたことを特徴とする内燃機関の吸入空気制御装
置。
In an internal combustion engine in which an intake valve is opened when a piston descends to draw air into a combustion chamber, a first opening/closing valve is provided for each cylinder and opens/closes an intake passage communicating with the intake valve of each cylinder, and a first opening/closing valve for each cylinder is provided for each cylinder. a communication passage that communicates at least with the intake passage downstream of the valve; a second on-off valve that opens and closes the communication passage, respectively;
an idle-up operation in which the intake air flow rate passing through the second on-off valve is changed according to the opening and closing of the intake valve, and the idle rotation speed of the engine is set higher than during normal idle operation. an idle-up control means for controlling the second on-off valve to correct an imbalance of output torque between the cylinders when the condition is met; a writing means for writing a control result of the idle-up control means into a storage means; An internal combustion engine characterized by comprising: a retrieval means for retrieving control results from the storage means during idling operation; and a normal idling control means for controlling each of the second on-off valves based on the retrieved control results. intake air control device.
JP1181990A 1990-01-23 1990-01-23 Intake air controller of internal combustion engine Pending JPH03217631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1181990A JPH03217631A (en) 1990-01-23 1990-01-23 Intake air controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181990A JPH03217631A (en) 1990-01-23 1990-01-23 Intake air controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH03217631A true JPH03217631A (en) 1991-09-25

Family

ID=11788397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181990A Pending JPH03217631A (en) 1990-01-23 1990-01-23 Intake air controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH03217631A (en)

Similar Documents

Publication Publication Date Title
US8006676B2 (en) Control device for engine
US5113826A (en) Intake air control system for internal combustion engine
JPH0347454A (en) Control device for internal combustion engine
KR20010091962A (en) Adaption method for controlling the injection
US6145489A (en) Torque controller for internal combustion engine
US6240895B1 (en) Method for operating an internal combustion engine mainly intended for a motor vehicle
US4448177A (en) Exhaust gas recirculation control system having variable valve lift correcting speed for exhaust gas recirculation valve
US6302081B1 (en) Method for operating an internal combustion engine
JP2003527527A (en) Operating method of multi-cylinder internal combustion engine
US6502545B1 (en) Method and apparatus for adjusting an internal combustion engine with variable valve timing
US6805091B2 (en) Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation
US5121724A (en) Multi-cylinder internal combustion engine with individual port throttles upstream of intake valves
US6446596B1 (en) Method of operating an internal combustion engine
US6474293B1 (en) Method for operating an internal combustion engine
JPH0551776B2 (en)
JPH03217631A (en) Intake air controller of internal combustion engine
JP2001152929A (en) Air-fuel ratio control device for variable valve system engine
US20060124092A1 (en) Valve characteristic control device for internal combustion engine and method of the same
JP2663297B2 (en) Engine exhaust gas recirculation control device
US20210115864A1 (en) Supercharging pressure setting apparatus
JP2002500723A (en) Method for driving internal combustion engine of vehicle
JPH03264757A (en) Intake air control device of internal combustion engine
KR20020018964A (en) Method for Adapting the Lost Moment in an Engine
JPH04101031A (en) Fuel feeder of internal combustion engine
JPH03160120A (en) Intake air controller of internal combustion engine