JP2001152929A - Air-fuel ratio control device for variable valve system engine - Google Patents

Air-fuel ratio control device for variable valve system engine

Info

Publication number
JP2001152929A
JP2001152929A JP34249799A JP34249799A JP2001152929A JP 2001152929 A JP2001152929 A JP 2001152929A JP 34249799 A JP34249799 A JP 34249799A JP 34249799 A JP34249799 A JP 34249799A JP 2001152929 A JP2001152929 A JP 2001152929A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
intake
intake air
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34249799A
Other languages
Japanese (ja)
Inventor
Hiroshi Yano
浩史 矢野
Motohiro Matsumura
基宏 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP34249799A priority Critical patent/JP2001152929A/en
Publication of JP2001152929A publication Critical patent/JP2001152929A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve control precision of air-fuel ratio control of variable valve system engine. SOLUTION: An opening closing timing is controlled (S1-S3) so that target torque of a suction and exhaust valve is generated based on accelerator opening and an engine rotation speed. A volumetric intake air amount is calculated based on an engine rotation speed and the opening and closing timing of the intake and exhaust valve (S4 and S5). The volumetric intake air amount is corrected by an intake air temperature T and an intake air pressure P (S6 and S7). Based on a mass intake air amount, a fuel injection amount Tpi is calculated (S8), various correction factors COEF and a battery voltage correction value Ts are read (S9), an air-fuel ratio feedback correction factor α, and an air-fuel ratio learning value αL are read (S10), and based on the various correction amounts, a final fuel injection amount TIi is calculated (S11).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁駆動式など開
閉時期を任意に可変制御できる吸気弁を備えた可変動弁
エンジンの空燃比を制御する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for controlling the air-fuel ratio of a variable valve engine having an intake valve capable of arbitrarily variably controlling an opening / closing timing such as an electromagnetic drive type.

【0002】[0002]

【従来の技術】従来一般のエンジンでは、スロットル弁
の開度によって吸入空気量を制御するが、近年、電磁駆
動式の吸・排気弁を備え、主として吸気弁の開閉時期の
制御によって吸入空気量を制御するようにしたものが提
案されている(特開平8−200025号公報参照) 。
2. Description of the Related Art In a conventional general engine, the intake air amount is controlled by the opening degree of a throttle valve. In recent years, an intake / exhaust valve of an electromagnetic drive type is provided, and the intake air amount is mainly controlled by controlling the opening / closing timing of the intake valve. Is proposed (see Japanese Patent Application Laid-Open No. 8-2000025).

【0003】[0003]

【発明が解決しようとする課題】この種の吸気弁の開閉
時期で吸入空気量を制御するものでは、通常のエアフロ
メータによって吸入空気量を検出すると、少なくとも所
定の運転条件では吸気脈動の影響や過渡時の応答遅れな
どにより良好な吸入空気量の検出が行えず、ひいては良
好な燃料噴射量、空燃比の制御が行えないことがあっ
た。
In this type of controlling the intake air amount by the opening / closing timing of an intake valve, when the intake air amount is detected by a normal air flow meter, the influence of intake pulsation or the influence of intake pulsation at least under a predetermined operating condition is obtained. In some cases, a good detection of the intake air amount cannot be performed due to a response delay at the time of transition, and thus a good control of the fuel injection amount and the air-fuel ratio cannot be performed.

【0004】本発明は、このような従来の課題に着目し
てなされたもので、吸入空気量の変化に対して応答性良
く燃料噴射量を設定しつつ、空燃比を高精度に制御でき
るようにした可変動弁エンジンの空燃比制御装置を提供
することを目的とする。
The present invention has been made in view of such a conventional problem, and enables the air-fuel ratio to be controlled with high accuracy while setting the fuel injection amount with a high response to a change in the intake air amount. It is an object of the present invention to provide an air-fuel ratio control device for a variable valve engine.

【0005】[0005]

【課題を解決するための手段】このため、請求項1に係
る発明は、図1に示すように、任意の開閉時期に可変制
御できる吸気弁を備えた可変動弁エンジンにおいて、吸
気弁の開閉時期を検出する吸気弁開閉時期検出手段と、
エンジン回転速度を検出するエンジン回転速度検出手段
と、吸気弁の開閉時期とエンジン回転速度とに基づいて
吸入空気量を算出する吸入空気量算出手段と、前記吸入
空気量に基づいてエンジンに供給される燃料噴射量を算
出する燃料噴射量算出手段と、エンジンに供給される混
合気の空燃比を検出する空燃比検出手段と、検出された
空燃比に基づいて空燃比を目標空燃比に近づけるように
前記燃料噴射量をフィードバック補正する空燃比フィー
ドバック補正手段と、前記フィードバック補正された燃
料噴射量をエンジンに供給する燃料噴射手段と、を含ん
で構成したことを特徴とする可変動弁エンジンの空燃比
制御装置。
Therefore, according to the present invention, as shown in FIG. 1, the opening and closing of an intake valve in a variable valve engine having an intake valve which can be variably controlled at an arbitrary opening / closing timing. Intake valve opening / closing timing detecting means for detecting timing;
An engine rotational speed detecting means for detecting an engine rotational speed, an intake air amount calculating means for calculating an intake air amount based on an opening / closing timing of an intake valve and the engine rotational speed, and supplied to the engine based on the intake air amount. A fuel injection amount calculating means for calculating a fuel injection amount to be detected, an air-fuel ratio detecting means for detecting an air-fuel ratio of an air-fuel mixture supplied to the engine, and an air-fuel ratio approaching a target air-fuel ratio based on the detected air-fuel ratio. Air-fuel ratio feedback correction means for feedback-correcting the fuel injection amount, and fuel injection means for supplying the feedback-corrected fuel injection amount to the engine. Fuel ratio control device.

【0006】請求項1に係る発明によると、主として吸
気弁の開閉時期によって吸入空気量を制御する可変動弁
エンジンでは、吸気弁の開閉時期とエンジン回転速度と
によりシリンダに吸入される吸入空気量が決定される。
According to the first aspect of the invention, in a variable valve engine in which the intake air amount is controlled mainly by the opening / closing timing of the intake valve, the intake air amount sucked into the cylinder based on the opening / closing timing of the intake valve and the engine speed. Is determined.

【0007】そこで、吸気弁開閉時期検出手段によって
検出した吸気弁の開閉時期とエンジン回転速度検出手段
によって検出したエンジン回転速度とに基づいて、吸入
空気量算出手段により吸入空気量を算出する。
Therefore, based on the opening / closing timing of the intake valve detected by the intake valve opening / closing timing detecting means and the engine rotational speed detected by the engine rotational speed detecting means, the intake air amount calculating means calculates the intake air amount.

【0008】これにより、吸気脈動の影響や過渡時の応
答遅れの影響を無くした良好な吸入空気量の検出が行
え、燃料噴射量設定手段により該吸入空気量に見合った
燃料噴射量が設定される。
[0008] Thus, it is possible to detect a good intake air amount without the influence of the intake air pulsation and the influence of the response delay at the time of transition, and the fuel injection amount setting means sets the fuel injection amount corresponding to the intake air amount. You.

【0009】さらに、空燃比検出手段により検出された
空燃比に基づいて前記設定された燃料噴射量を補正する
ことにより、空燃比のバラツキを調整して目標空燃比に
フィードバック制御される。ここで、吸入空気量の吸気
脈動の影響や過渡時の応答遅れに伴う変化に応じて設定
された燃料噴射量に対して空燃比フィードバック補正が
なされるので、応答性を確保しつつ高精度な空燃比制御
を行うことができる。
Further, by correcting the set fuel injection amount based on the air-fuel ratio detected by the air-fuel ratio detecting means, the variation of the air-fuel ratio is adjusted and the target air-fuel ratio is feedback-controlled. Here, the air-fuel ratio feedback correction is performed on the fuel injection amount set in accordance with the influence of intake air pulsation of the intake air amount and a change due to a response delay at the time of transition, so that high accuracy while ensuring responsiveness is achieved. Air-fuel ratio control can be performed.

【0010】また、請求項2に係る発明は、複数に分割
されたエンジン運転領域毎に、前記空燃比フィードバッ
ク補正手段によるフィードバック補正量の基準値からの
偏差を縮小するように更新修正される学習値を用いて前
記燃料噴射量を修正する空燃比学習手段を含んで構成さ
れることを特徴とする。
The invention according to a second aspect of the present invention is a learning method in which the deviation of the feedback correction amount from the reference value by the air-fuel ratio feedback correction means is reduced for each of a plurality of divided engine operating regions. It is characterized by including an air-fuel ratio learning means for correcting the fuel injection amount using a value.

【0011】請求項2に係る発明によると、エンジン運
転領域毎の空燃比のバラツキを、前記学習値を用いて燃
料噴射量を修正することにより速やかに吸収でき、過渡
応答性が向上する。
According to the second aspect of the present invention, the variation in the air-fuel ratio in each engine operating region can be quickly absorbed by correcting the fuel injection amount using the learning value, and the transient response is improved.

【0012】また、請求項3に係る発明は、吸気温度を
検出する吸気温度検出手段と、吸気圧力を検出する吸気
圧力検出手段と、前記吸入空気量算出手段で算出される
吸入空気量を吸気温度と吸気圧力とで補正する吸入空気
量補正手段と、を含んで構成したことを特徴とする請求
項1又は請求項2に記載の可変動弁エンジンの空燃比制
御装置。
According to a third aspect of the present invention, there is provided an intake air temperature detecting means for detecting an intake air temperature, an intake pressure detecting means for detecting an intake pressure, and an intake air amount calculated by the intake air amount calculating means. The air-fuel ratio control device for a variable valve engine according to claim 1 or 2, further comprising an intake air amount correcting means for correcting the temperature with the intake pressure.

【0013】請求項3に係る発明によると、前記吸入空
気量検出手段によって検出される吸入空気量は体積吸入
空気量であるが、空燃比を目標空燃比に制御するために
は、燃料噴射量を質量吸入空気量に対して比例的に設定
する必要がある。そこで、前記吸入空気量検出手段によ
って検出される体積吸入空気量を、吸気温度検出手段に
よって検出した吸気温度と吸気圧力検出手段によって検
出した吸気圧力とに基づいて補正して質量吸入空気量を
算出する。なお、空燃比フィードバック補正手段によっ
ても燃料噴射量は、質量吸入空気量に対応した値に補正
されるが、予め吸気温度と吸気圧力とに基づいて質量吸
入空気量を補正設定しておき、該質量吸入空気量に対応
した燃料噴射量に対して空燃比フィードバック補正を行
うことにより、フィードバック制御による遅れのない応
答性の良い空燃比制御を行える。
According to the third aspect of the present invention, the intake air amount detected by the intake air amount detecting means is a volume intake air amount. However, in order to control the air-fuel ratio to the target air-fuel ratio, the fuel injection amount is determined. Must be set in proportion to the mass intake air amount. Therefore, the mass intake air amount is calculated by correcting the volume intake air amount detected by the intake air amount detection unit based on the intake air temperature detected by the intake air temperature detection unit and the intake pressure detected by the intake pressure detection unit. I do. The fuel injection amount is also corrected by the air-fuel ratio feedback correction means to a value corresponding to the mass intake air amount, but the mass intake air amount is corrected and set in advance based on the intake air temperature and the intake pressure. By performing the air-fuel ratio feedback correction on the fuel injection amount corresponding to the mass intake air amount, air-fuel ratio control with good responsiveness without delay due to feedback control can be performed.

【0014】また、請求項4に係る発明は、前記空燃比
検出手段は、複数の気筒群毎に複数個設けられることを
特徴とする。
The invention according to claim 4 is characterized in that a plurality of the air-fuel ratio detecting means are provided for each of a plurality of cylinder groups.

【0015】請求項4に係る発明によると、吸気弁の開
閉時期による吸入空気量制御では、気筒間の空燃比バラ
ツキが出やすい。そこで、空燃比検出手段を複数の気筒
群毎に複数個(1気筒に1個を含む) 設けることによ
り、気筒間の空燃比バラツキを抑制した高精度な空燃比
制御を行うことができる。
According to the fourth aspect of the invention, in the intake air amount control based on the opening / closing timing of the intake valve, variation in the air-fuel ratio between cylinders tends to occur. Therefore, by providing a plurality of air-fuel ratio detecting means for each of the plurality of cylinder groups (including one for each cylinder), it is possible to perform highly accurate air-fuel ratio control in which variations in air-fuel ratio between cylinders are suppressed.

【0016】[0016]

【発明の実施の形態】以下に本発明の実施の形態につい
て説明する。図2は本発明の一実施形態を示す可変動弁
エンジンのシステム図である。
Embodiments of the present invention will be described below. FIG. 2 is a system diagram of a variable valve engine showing one embodiment of the present invention.

【0017】エンジン1の各気筒のピストン2により画
成される燃焼室3には、点火栓4を囲むように、電磁駆
動式の吸気弁5及び排気弁6を備えている。7は吸気通
路、8は排気通路である。
The combustion chamber 3 defined by the piston 2 of each cylinder of the engine 1 is provided with an electromagnetically driven intake valve 5 and an exhaust valve 6 so as to surround the ignition plug 4. 7 is an intake passage, and 8 is an exhaust passage.

【0018】吸気弁5及び排気弁6の電磁駆動装置の基
本構造を図3に示す。弁体20の弁軸21にプレート状
の可動子22が取付けられており、この可動子22はス
プリング23,24により中立位置に付勢されている。
そして、この可動子22の下側に開弁用電磁コイル25
が配置され、上側に閉弁用電磁コイル26が配置されて
いる。
FIG. 3 shows the basic structure of the electromagnetic drive device for the intake valve 5 and the exhaust valve 6. A plate-like mover 22 is attached to a valve shaft 21 of the valve body 20, and the mover 22 is biased to a neutral position by springs 23 and 24.
The valve opening electromagnetic coil 25 is provided below the mover 22.
Is disposed, and the valve closing electromagnetic coil 26 is disposed on the upper side.

【0019】従って、開弁させる際は、上側の閉弁用電
磁コイル26への通電を停止した後、下側の開弁用電磁
コイル25に通電して、可動子22を下側へ吸着するこ
とにより、弁体20をリフトさせて開弁させる。逆に、
閉弁させる際は、下側の開弁用電磁コイル25への通電
を停止した後、上側の閉弁用電磁コイル26に通電し
て、可動子22を上側へ吸着することにより、弁体20
をシート部に着座させて閉弁させる。
Therefore, when the valve is opened, after the power supply to the upper valve closing electromagnetic coil 26 is stopped, the current is supplied to the lower valve opening electromagnetic coil 25 to attract the movable element 22 to the lower side. As a result, the valve body 20 is lifted to open the valve. vice versa,
When the valve is closed, the energization of the lower valve opening electromagnetic coil 25 is stopped, and then the upper valve closing electromagnetic coil 26 is energized to attract the movable element 22 to the upper side.
Is seated on the seat and the valve is closed.

【0020】また、吸気弁5の弁軸21の上端に検出ロ
ッド31を係合させてハウジングの上端にリフトセンサ
32が配置される。該リフトセンサ32は、検出ロッド
31の移動量を、弁体20のリフト量として検出する。
リフトセンサとしてはこの他、赤外線,超音波等による
無接点方式の距離測定センサ等も使用できる。また、本
発明で要求されるのは、吸・排気弁のリフト量自体の検
出は不要であり、開閉時期を検出すればよいから、圧電
ピックアップのように開閉時に可動子22の着座振動音
を検出するものを使用することもできる。
A lift sensor 32 is arranged at the upper end of the housing with a detection rod 31 engaged with the upper end of the valve shaft 21 of the intake valve 5. The lift sensor 32 detects the amount of movement of the detection rod 31 as the amount of lift of the valve body 20.
In addition, a contactless distance measuring sensor using infrared rays, ultrasonic waves, or the like can be used as the lift sensor. Further, the present invention requires that the lift amount of the intake / exhaust valve itself is not required to be detected, and the opening / closing timing need only be detected. What is detected can also be used.

【0021】図2に戻って、吸気通路7には、各気筒毎
の吸気ポート部分に、電磁式の燃料噴射弁9が設けられ
ている。また、排気通路8には、図4に示すように、複
数の気筒群毎に複数個(例えば4気筒エンジンにおいて
2気筒に1個ずつの計2個)の空燃比センサ(空燃比を
リニアに検出する広域型センサ、理論空燃比に対してオ
ン, オフ的に出力するO2 センサなど) 15A,15B
を配設する。
Returning to FIG. 2, the intake passage 7 is provided with an electromagnetic fuel injection valve 9 at an intake port for each cylinder. As shown in FIG. 4, a plurality of air-fuel ratio sensors (for example, one for every two cylinders in a four-cylinder engine, two in total) are provided in the exhaust passage 8 as shown in FIG. 15A, 15B) A wide range sensor for detecting, an O 2 sensor that outputs on / off for the stoichiometric air-fuel ratio
Is arranged.

【0022】ここにおいて、吸気弁5、排気弁6、燃料
噴射弁(燃料噴射手段) 9及び点火栓4の作動は、コン
トロールユニット10により制御され、このコントロー
ルユニット10には、エンジン回転に同期してクランク
角信号を出力しこれによりエンジン回転速度を検出可能
なクランク角センサ(エンジン回転速度検出手段) 11、
アクセル開度(アクセルペダルの踏込み量)を検出する
アクセルペダルセンサ12、吸気温度を検出する吸気温
度センサ(吸気温度検出手段) 13、吸気圧力を検出す
る吸気圧力センサ(吸気圧力検出手段) 14、前記空燃
比センサ(空燃比検出手段) 15A,15Bの他、前記
吸気弁5,排気弁6の開閉時期を検出するリフトセンサ
(吸気弁開閉時期検出手段) 32等から、信号が入力され
ている。
Here, the operations of the intake valve 5, the exhaust valve 6, the fuel injection valve (fuel injection means) 9 and the spark plug 4 are controlled by a control unit 10, which synchronizes with the engine rotation. A crank angle sensor (engine rotation speed detecting means) capable of detecting the engine rotation speed by outputting a crank angle signal,
Accelerator pedal sensor 12 for detecting the accelerator opening (accelerator pedal depression amount), intake air temperature sensor for detecting the intake air temperature (intake air temperature detecting means) 13, intake pressure sensor for detecting the intake pressure (intake air pressure detecting means) 14, Signals are input from the air-fuel ratio sensors (air-fuel ratio detecting means) 15A and 15B, as well as lift sensors (intake valve opening / closing timing detecting means) 32 for detecting the opening / closing timing of the intake valves 5 and the exhaust valves 6. .

【0023】そして、アクセル開度,エンジン回転速度
等のエンジンの運転条件に基づいて目標トルクを発生す
るように吸気弁5と排気弁6の目標開閉時期が設定さ
れ、該目標開閉時期が得られるように吸気弁5,排気弁
6の開閉時期が制御される。
The target opening / closing timing of the intake valve 5 and the exhaust valve 6 is set so as to generate the target torque based on the engine operating conditions such as the accelerator opening and the engine rotation speed, and the target opening / closing timing is obtained. The opening / closing timing of the intake valve 5 and the exhaust valve 6 is controlled as described above.

【0024】一方、前記各種センサ類により検出された
値に基づいて、吸入空気量が検出され、該吸入空気量に
基づいて前記燃料噴射弁9からの燃料噴射量を設定しつ
つ、空燃比センサ15A,15Bによって検出された空
燃比に基づいて燃料噴射量をフィードバック補正して目
標空燃比となるように制御する。さらに、該空燃比フィ
ードバック制御を行いながら、エンジン回転速度,負荷
(基本燃料噴射量Tp) 等で区分された運転領域毎にフ
ィードバック補正量の基準値(例えば1) に対する偏差
を縮小するように学習値を更新設定し、該学習値で燃料
噴射量を修正する。
On the other hand, the intake air amount is detected based on the values detected by the various sensors, and the air-fuel ratio sensor is set while setting the fuel injection amount from the fuel injection valve 9 based on the intake air amount. The fuel injection amount is feedback-corrected based on the air-fuel ratio detected by 15A and 15B, and is controlled so as to reach the target air-fuel ratio. Further, while performing the air-fuel ratio feedback control, learning is performed so as to reduce the deviation of the feedback correction amount from the reference value (for example, 1) for each operation region divided by the engine speed, the load (basic fuel injection amount Tp), and the like. The value is updated and the fuel injection amount is corrected with the learning value.

【0025】以下に、前記空燃比制御ルーチンを、図5
のフローチャートに従って詳細に説明する。ステップ1
では、アクセルペダルセンサ12によって検出されたア
クセル開度及びクランク角センサ11によって検出され
たエンジン回転速度を読み込む。
The air-fuel ratio control routine will now be described with reference to FIG.
This will be described in detail according to the flowchart of FIG. Step 1
Then, an accelerator opening detected by the accelerator pedal sensor 12 and an engine speed detected by the crank angle sensor 11 are read.

【0026】ステップ2では、前記アクセル開度,エン
ジン回転速度に応じた各運転状態毎の目標トルクを発生
する吸気弁5と排気弁5の目標開閉時期をマップ(図6
参照) から検索する。
In step 2, a target opening / closing timing of the intake valve 5 and the exhaust valve 5 for generating a target torque for each operating state according to the accelerator opening and the engine speed is mapped (FIG. 6).
Search).

【0027】ステップ3では、吸気弁5と排気弁5の開
閉を前記目標開閉時期に応じて制御する。ステップ4で
は、前記リフトセンサ32によって検出される吸気弁5
の実際の開閉時期を読み込む。
In step 3, the opening and closing of the intake valve 5 and the exhaust valve 5 are controlled according to the target opening / closing timing. In step 4, the intake valve 5 detected by the lift sensor 32
Read the actual opening / closing time of.

【0028】ステップ5では、前記吸気弁5の開閉時期
とエンジン回転速度とに基づいてシリンダに吸入される
体積吸入空気量Qvを算出する。具体的には、エンジン
回転速度一定の条件では図7に示すように、吸気弁の閉
時期が所定の時期であるときに吸入空気量が最大とな
り、それより閉時期が早い場合、遅い場合は吸入空気量
が最大値より減少する。一方、エンジン回転速度が高く
なるほど、吸気弁からの吸気の遅れが大きくなるため、
前記吸入空気量が最大となる吸気弁の閉時期は遅れ側に
シフトする。即ち、吸気弁5を下死点より前に閉じる早
閉じ制御の場合には、図8に示すように、吸気弁の閉時
期を遅らせるほど、目標トルクしたがって吸入空気量は
増大するが、エンジン回転速度が高くなるほど、同一の
吸入空気量を得るのに吸気弁閉時期を遅らせる必要があ
る。
In step 5, a volume intake air amount Qv to be taken into the cylinder is calculated based on the opening / closing timing of the intake valve 5 and the engine speed. Specifically, as shown in FIG. 7, when the engine rotation speed is constant, the intake air amount becomes maximum when the intake valve closes at a predetermined timing, and when the close timing is earlier or later, The intake air volume decreases below the maximum value. On the other hand, as the engine speed increases, the delay of intake from the intake valve increases,
The closing timing of the intake valve at which the intake air amount becomes maximum shifts to the delay side. That is, in the case of the early closing control in which the intake valve 5 is closed before the bottom dead center, as shown in FIG. 8, as the closing timing of the intake valve is delayed, the target torque and therefore the intake air amount increases, but the engine rotation speed increases. As the speed increases, it is necessary to delay the intake valve closing timing to obtain the same intake air amount.

【0029】そこで、体積吸入空気量Qvを次式により
算出する。このステップ5の機能が、吸入空気量算出手
段を構成する。 Qiv=QiMAX ×IVCt ここで、Qivは#i気筒の体積吸入空気量、QiMAX
は#i気筒の最大体積吸入空気量、IVCtは、吸気弁
の閉時期とエンジン回転速度(例えば400rpm毎) とに基
づいて設定される係数を乗じることにより、体積吸入空
気量Qivを高精度に算出することができる。
Then, the volume intake air amount Qv is calculated by the following equation. The function of step 5 constitutes the intake air amount calculating means. Qiv = QiMAX × IVCt Here, Qiv is the volume intake air amount of cylinder #i, QiMAX
Is the maximum volume intake air amount of the #i cylinder, and IVCt is the volume intake air amount Qiv with high precision by multiplying by a coefficient set based on the intake valve closing timing and the engine speed (for example, at every 400 rpm). Can be calculated.

【0030】ステップ6では、吸気温度センサ13によ
り検出された吸気温度T及び吸気圧力センサ14により
検出された吸気圧力Pを読み込む。ステップ7では、前
記体積吸入空気量Qivを前記吸気温度T及び吸気圧力
Pによって補正して質量吸入空気量Qimを算出する。
このステップ7の機能が、吸入空気量補正手段を構成す
る。
In step 6, the intake air temperature T detected by the intake air temperature sensor 13 and the intake air pressure P detected by the intake air pressure sensor 14 are read. In step 7, the mass intake air amount Qiv is corrected by the intake air temperature T and the intake pressure P to calculate the mass intake air amount Qim.
The function of step 7 constitutes the intake air amount correcting means.

【0031】 Qim=R・T/P・Qiv(但し、Rはガス定数) ステップ8では、前記気筒iの質量吸入空気量Qimに
比例的に基本燃料噴射量TP i=k・Qimを算出す
る。このステップ8の機能が燃料噴射量算出手段を構成
する。
Qim = RT · P / Qiv (where R is a gas constant) In step 8, the basic fuel injection amount TPi = k · Qim is calculated in proportion to the mass intake air amount Qim of the cylinder i. . The function of step 8 constitutes a fuel injection amount calculating means.

【0032】ステップ9では、エンジン冷却水温度等で
設定された各種補正係数COEF及び燃料噴射弁9を駆
動するバッテリの電圧で設定される補正値Tsを読み込
む。ステップ10では、別ルーチンで求められる空燃比フ
ィードバック補正係数α及び空燃比学習値αL を読み込
む。
In step 9, various correction coefficients COEF set based on the engine coolant temperature and the like and a correction value Ts set based on the voltage of the battery for driving the fuel injection valve 9 are read. In step 10, the air-fuel ratio feedback correction coefficient α and the air-fuel ratio learning value αL obtained by another routine are read.

【0033】該空燃比フィードバック補正係数αは、対
応する気筒群の空燃比センサ15A又は15Bの検出値
を目標空燃比相当値と比較しつつ、例えばI(積分) 制
御,PI(比例積分) 制御,PID(比例積分微分) 制
御等により設定される。この機能が、空燃比フィードバ
ック補正手段を構成する。
The air-fuel ratio feedback correction coefficient α is, for example, I (integral) control, PI (proportional integration) control while comparing the detected value of the air-fuel ratio sensor 15A or 15B of the corresponding cylinder group with the target air-fuel ratio equivalent value. , PID (proportional-integral-derivative) control or the like. This function constitutes air-fuel ratio feedback correction means.

【0034】また、空燃比学習値αL が前記空燃比フィ
ードバック補正係数αと基準値αo(例えば1) との偏
差を縮小するように以下のようにして更新設定される。 αL =αL(old)+k・(αo−α) ここで、αL(old)は、エンジン回転速度Neと負荷(基
本燃料噴射量Tp) とで区分された運転領域毎に空燃比
学習値αL を記憶したマップから、検索される現在の運
転領域に対応した空燃比学習値、kは係数(0<k<
1) である。このようにして更新設定された空燃比学習
値αL により前記マップの対応する運転領域に記憶され
た空燃比学習値αL(old)が書き換えられる。この機能が
空燃比学習手段を構成する。
Further, the air-fuel ratio learning value αL is updated and set as follows so as to reduce the deviation between the air-fuel ratio feedback correction coefficient α and a reference value αo (for example, 1). αL = αL (old) + k · (αo−α) where αL (old) is the air-fuel ratio learning value αL for each operating region divided by the engine speed Ne and the load (basic fuel injection amount Tp). From the stored map, the air-fuel ratio learning value corresponding to the current operating region searched, k is a coefficient (0 <k <
1). The air-fuel ratio learning value αL (old) stored in the corresponding operation area of the map is rewritten by the air-fuel ratio learning value αL updated and set in this manner. This function constitutes the air-fuel ratio learning means.

【0035】次いで、前記ステップ11では、前記各種の
補正量に基づいて最終的な燃料噴射量TI iを次式のよ
うに算出する。 TI i=TP i・COEF・α・αL +Ts このようにすれば、吸気弁の開閉時期とエンジン回転速
度とに基づいて算出した体積吸入空気量を、吸気温度と
吸気圧力とで補正して質量吸入空気量を算出することに
より、吸気脈動の影響や過渡時の応答遅れの影響を無く
した良好な吸入空気量の検出が行え、かつ、該吸入空気
量に基づいて設定した燃料噴射量を空燃比検出値に基づ
いてフィードバック補正する構成としたため、空燃比の
バラツキを調整して目標空燃比に制御することができ
る。
Next, in step 11, the final fuel injection amount TIi is calculated based on the various correction amounts as in the following equation. In this way, the volume intake air amount calculated based on the opening / closing timing of the intake valve and the engine rotation speed is corrected by the intake air temperature and the intake pressure to obtain a mass TI i = TP i · COEF · α · αL + Ts By calculating the intake air amount, it is possible to detect a favorable intake air amount without the influence of intake air pulsation and the effect of a response delay during a transition, and to reduce the fuel injection amount set based on the intake air amount. Since the feedback correction is performed based on the detected fuel ratio, it is possible to control the target air-fuel ratio by adjusting the variation in the air-fuel ratio.

【0036】更に、空燃比のフィードバック補正量に基
づいて設定した学習値を用いて燃料噴射量を修正するこ
とにより、運転領域毎の空燃比のバラツキを抑制した高
精度な空燃比制御を行うことができる。
Further, by correcting the fuel injection amount using a learning value set based on the air-fuel ratio feedback correction amount, high-precision air-fuel ratio control in which variations in the air-fuel ratio in each operation region are suppressed is performed. Can be.

【0037】なお、前記の実施の形態では、気筒毎に吸
入空気量を検出して気筒毎に燃料噴射量を設定する構成
としたため、気筒毎に高精度な燃料噴射量制御を行える
が、気筒毎の吸入空気量Qimの平均値QmAV[例えば
4気筒エンジンの場合、QmAV=1/4(Q1m+Q2
m+Q3m+Q4m) ]又は気筒群毎の吸入空気量Qi
mの平均値QmAV1 [=1/2(Q1m+Q2m) ] ,
QmAV2 [=1/2(Q3m+Q4m) ]を算出し、該
平均値QmAV, QmAV1,QmAV2 に対応して各気筒毎又
は各気筒群毎の共通の燃料噴射量TI を設定してもよ
く、気筒毎の吸入空気量のバラツキによるトルク変動を
抑制することができる。
In the above-described embodiment, since the intake air amount is detected for each cylinder and the fuel injection amount is set for each cylinder, the fuel injection amount control can be performed with high accuracy for each cylinder. Average value QmAV of each intake air amount Qim [for example, in the case of a four-cylinder engine, QmAV = 1/4 (Q1m + Q2
m + Q3m + Q4m)] or the intake air amount Qi for each cylinder group
average value of m QmAV1 [= 1/2 (Q1m + Q2m)],
QmAV2 [= 1/2 (Q3m + Q4m)] may be calculated, and a common fuel injection amount TI for each cylinder or each cylinder group may be set corresponding to the average value QmAV, QmAV1, QmAV2. Torque fluctuations due to variations in the amount of intake air of the engine can be suppressed.

【0038】また、吸気弁の閉時期とエンジン回転速度
とをパラメータとした体積吸入空気量の3次元マップを
作成し、該マップからの検索により体積吸入空気量を算
出する構成としてもよい。
A three-dimensional map of the volume intake air amount may be created by using the closing timing of the intake valve and the engine speed as parameters, and the volume intake air amount may be calculated by searching the map.

【0039】さらに、目標トルクを微調整するため、吸
気弁の開閉時期を調整したり、スロットル弁を備えたも
のでは、スロットル弁開度を調整する構成を備えていて
もよい。
Further, in order to finely adjust the target torque, the opening / closing timing of the intake valve may be adjusted, or the throttle valve opening may be adjusted if the throttle valve is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の構成を示す機能ブロック図FIG. 1 is a functional block diagram showing a configuration of the present invention.

【図2】 本発明の一実施形態を示す可変動弁エンジン
のシステム図
FIG. 2 is a system diagram of a variable valve engine showing one embodiment of the present invention.

【図3】 吸排気弁の電磁駆動装置の基本構造図FIG. 3 is a basic structural diagram of an electromagnetic drive device of the intake and exhaust valves.

【図4】 空燃比センサの配置を示す図。FIG. 4 is a diagram showing an arrangement of an air-fuel ratio sensor.

【図5】 空燃比制御ルーチンのフローチャートFIG. 5 is a flowchart of an air-fuel ratio control routine.

【図6】 吸・排気弁の目標開閉時期を示す図。FIG. 6 is a diagram showing target opening / closing timings of intake and exhaust valves.

【図7】吸気弁の閉時期と吸入空気量との関係を示す線
図。
FIG. 7 is a diagram showing a relationship between a closing timing of an intake valve and an intake air amount.

【図8】吸気弁の閉時期を及びエンジン回転速度をパラ
メータとした目標トルク特性を示す図。
FIG. 8 is a diagram showing target torque characteristics using the closing timing of the intake valve and the engine speed as parameters.

【符号の説明】[Explanation of symbols]

1 エンジン 2 ピストン 3 燃焼室 4 点火栓 5 電磁駆動式の吸気弁 7 吸気通路 8 排気通路 9 燃料噴射弁 10 コントロールユニット 11 クランク角センサ 12 アクセルペダルセンサ 13 吸気温度センサ 14 吸気圧力センサ 15A,15B 空燃比センサ 31 検出ロッド 32 リフトセンサ Reference Signs List 1 engine 2 piston 3 combustion chamber 4 spark plug 5 electromagnetically driven intake valve 7 intake passage 8 exhaust passage 9 fuel injection valve 10 control unit 11 crank angle sensor 12 accelerator pedal sensor 13 intake temperature sensor 14 intake pressure sensors 15A, 15B empty Fuel ratio sensor 31 Detection rod 32 Lift sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 13/02 F02D 13/02 J 41/04 320 41/04 320 41/18 41/18 F 43/00 301 43/00 301E 301Z 45/00 312 45/00 312P Fターム(参考) 3G084 BA09 BA13 BA16 DA04 EB14 EB15 EB18 FA02 FA03 FA07 FA10 FA11 FA20 FA30 FA33 FA38 3G092 AA01 AA05 AA11 BA05 BA08 BB02 DA01 DA02 DA07 DC01 DE01S DG09 EB02 EB03 EC01 EC05 EC09 FA06 HA01Z HA04Z HA05Z HA13Z HD06X HD06Z HE01Z HE03Z HE08Z HF02Z HF08Z 3G301 HA01 HA19 JA11 LA01 LB02 LC01 MA01 MA11 NA03 NA04 NA05 NA06 NC02 ND01 ND33 NE14 PA01Z PA07Z PA10Z PD08A PD08Z PE01Z PE03Z PE08Z PF03Z PG01Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 13/02 F02D 13/02 J 41/04 320 41/04 320 41/18 41/18 F 43/00 301 43/00 301E 301Z 45/00 312 45/00 312P F-term (Reference) 3G084 BA09 BA13 BA16 DA04 EB14 EB15 EB18 FA02 FA03 FA07 FA10 FA11 FA20 FA30 FA33 FA38 3G092 AA01 AA05 AA11 BA05 BA08 BB02 DA01 DA02 DA07 DC01 DE01 EB03 EC01 EC05 EC09 FA06 HA01Z HA04Z HA05Z HA13Z HD06X HD06Z HE01Z HE03Z HE08Z HF02Z HF08Z 3G301 HA01 HA19 JA11 LA01 LB02 LC01 MA01 MA11 NA03 NA04 NA05 NA06 NC02 ND01 ND33 NE14 PA01Z PA07Z PA10Z PE08Z PD08Z08 PD08Z08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】任意の開閉時期に可変制御できる吸気弁を
備えた可変動弁エンジンにおいて、 吸気弁の開閉時期を検出する吸気弁開閉時期検出手段
と、 エンジン回転速度を検出するエンジン回転速度検出手段
と、 吸気弁の開閉時期とエンジン回転速度とに基づいて吸入
空気量を算出する吸入空気量算出手段と、 前記吸入空気量に基づいてエンジンに供給される燃料噴
射量を算出する燃料噴射量算出手段と、 エンジンに供給される混合気の空燃比を検出する空燃比
検出手段と、 検出された空燃比に基づいて空燃比を目標空燃比に近づ
けるように前記燃料噴射量をフィードバック補正する空
燃比フィードバック補正手段と、 前記フィードバック補正された燃料噴射量をエンジンに
供給する燃料噴射手段と、 を含んで構成したことを特徴とする可変動弁エンジンの
空燃比制御装置。
1. A variable valve engine having an intake valve which can be variably controlled at an arbitrary opening / closing timing. An intake valve opening / closing timing detecting means for detecting an opening / closing timing of the intake valve, and an engine rotational speed detecting for detecting an engine rotational speed. Means, an intake air amount calculating means for calculating an intake air amount based on an opening / closing timing of an intake valve and an engine rotation speed, and a fuel injection amount for calculating a fuel injection amount supplied to an engine based on the intake air amount. Calculation means; air-fuel ratio detection means for detecting the air-fuel ratio of the air-fuel mixture supplied to the engine; and air for feedback-correcting the fuel injection amount based on the detected air-fuel ratio so that the air-fuel ratio approaches the target air-fuel ratio. And a fuel injection means for supplying the feedback-corrected fuel injection amount to the engine. Air-fuel ratio control system for variable valve engine.
【請求項2】複数に分割されたエンジン運転領域毎に、
前記空燃比フィードバック補正手段によるフィードバッ
ク補正量の基準値からの偏差を縮小するように更新修正
される学習値を用いて前記燃料噴射量を修正する空燃比
学習手段を含んで構成されることを特徴とする請求項1
に記載の可変動弁エンジンの空燃比制御装置。
2. For each of a plurality of divided engine operating regions,
An air-fuel ratio learning unit configured to correct the fuel injection amount using a learning value updated and corrected so as to reduce a deviation of a feedback correction amount from a reference value by the air-fuel ratio feedback correction unit. Claim 1
3. The air-fuel ratio control device for a variable valve engine according to claim 1.
【請求項3】吸気温度を検出する吸気温度検出手段と、 吸気圧力を検出する吸気圧力検出手段と、 前記吸入空気量算出手段で算出される吸入空気量を吸気
温度と吸気圧力とで補正する吸入空気量補正手段と、 を含んで構成したことを特徴とする請求項1又は請求項
2に記載の可変動弁エンジンの空燃比制御装置。
3. An intake air temperature detecting means for detecting an intake air temperature, an intake pressure detecting means for detecting an intake pressure, and an intake air amount calculated by the intake air amount calculating means is corrected by the intake air temperature and the intake pressure. The air-fuel ratio control device for a variable valve engine according to claim 1, wherein the air-fuel ratio control device includes an intake air amount correction unit.
【請求項4】前記空燃比検出手段は、複数の気筒群毎に
複数個設けられることを特徴とする請求項1〜請求項3
のいずれか1つに記載の可変動弁エンジンの空燃比制御
装置。
4. A plurality of said air-fuel ratio detecting means are provided for each of a plurality of cylinder groups.
An air-fuel ratio control device for a variable valve engine according to any one of the above.
JP34249799A 1999-12-01 1999-12-01 Air-fuel ratio control device for variable valve system engine Pending JP2001152929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34249799A JP2001152929A (en) 1999-12-01 1999-12-01 Air-fuel ratio control device for variable valve system engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34249799A JP2001152929A (en) 1999-12-01 1999-12-01 Air-fuel ratio control device for variable valve system engine

Publications (1)

Publication Number Publication Date
JP2001152929A true JP2001152929A (en) 2001-06-05

Family

ID=18354213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34249799A Pending JP2001152929A (en) 1999-12-01 1999-12-01 Air-fuel ratio control device for variable valve system engine

Country Status (1)

Country Link
JP (1) JP2001152929A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124135A1 (en) * 2004-06-15 2005-12-29 Honda Motor Co., Ltd. Internal combustion engine control device
JP2009203955A (en) * 2008-02-29 2009-09-10 Toyota Motor Corp Air-fuel ratio control device
US8126635B2 (en) 2007-06-15 2012-02-28 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus and air-fuel ratio control method
CN104454203A (en) * 2014-10-23 2015-03-25 福建船政交通职业学院 Method for measuring flow through fluorescent temperature sensors and air-fuel ratio control system
JP2015203318A (en) * 2014-04-11 2015-11-16 三菱重工業株式会社 internal combustion engine system
CN106596114A (en) * 2016-12-13 2017-04-26 安徽江淮汽车集团股份有限公司 Start calibration system and method for hybrid vehicle
JP2018193986A (en) * 2017-05-19 2018-12-06 マツダ株式会社 Control device for compression ignition type engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124135A1 (en) * 2004-06-15 2005-12-29 Honda Motor Co., Ltd. Internal combustion engine control device
US7440836B2 (en) 2004-06-15 2008-10-21 Honda Motor Co., Ltd. Control system for internal combustion engine
US8126635B2 (en) 2007-06-15 2012-02-28 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio control apparatus and air-fuel ratio control method
JP2009203955A (en) * 2008-02-29 2009-09-10 Toyota Motor Corp Air-fuel ratio control device
JP2015203318A (en) * 2014-04-11 2015-11-16 三菱重工業株式会社 internal combustion engine system
CN104454203A (en) * 2014-10-23 2015-03-25 福建船政交通职业学院 Method for measuring flow through fluorescent temperature sensors and air-fuel ratio control system
CN104454203B (en) * 2014-10-23 2017-05-17 福建船政交通职业学院 Method for measuring flow through fluorescent temperature sensors and air-fuel ratio control system
CN106596114A (en) * 2016-12-13 2017-04-26 安徽江淮汽车集团股份有限公司 Start calibration system and method for hybrid vehicle
CN106596114B (en) * 2016-12-13 2018-11-06 安徽江淮汽车集团股份有限公司 The starting calibration system and method for mixed dynamic vehicle
JP2018193986A (en) * 2017-05-19 2018-12-06 マツダ株式会社 Control device for compression ignition type engine

Similar Documents

Publication Publication Date Title
US6328007B1 (en) Internal cylinder intake-air quantity calculating apparatus and method for variable valve open/closure timing controlled engine
US7111593B2 (en) Engine control to compensate for fueling dynamics
KR930006056B1 (en) Method for feedback controlling air and fuel ratio of the mixture supplied to internal combustion engine
US7457700B2 (en) Method and device for operating an internal combustion engine
JP2001173470A (en) Control device for variable valve system engine
JPH1047114A (en) Control device for internal combustion engine
JP2001050090A (en) Intake air volume calculation system for variable valve timing engine
JP2000080937A (en) Intake air quantity estimating device for variable valve system engine
WO1999047800A1 (en) Internal combustion engine, control apparatus for an internal combustion engine, and its control method
JP2001152929A (en) Air-fuel ratio control device for variable valve system engine
JP2001159345A (en) Intake air quantity control device for engine
JP2001159386A (en) Ignition timing control device for variable valve system engine
JP3807173B2 (en) Intake air amount detection device and fuel injection control device for variable valve engine
JP2000161113A (en) Intake air flow rate detecting device for engine
US7441522B2 (en) Valve characteristic control device for internal combustion engine and method of the same
JP2001271665A (en) Control device for variable valve system engine
JP2001263104A (en) Variable valve control device
US7444985B2 (en) Apparatus and method for controlling ignition timing of internal combustion engine
JP2000080936A (en) Cylinder suction air quantity detector for variable valve system engine
JPS6341622A (en) Superchargning quantity controlling method for internal combustion engine
JP2001159343A (en) Control device for variable valve system engine
JP3430729B2 (en) Control unit for diesel engine
JPH0455234Y2 (en)
JP2000104573A (en) In-cylinder remaining gas quantity detecting device for variable valve system engine
JPS6221735Y2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Effective date: 20041104

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051101