JPH03279624A - Intake air controller of internal combustion engine - Google Patents
Intake air controller of internal combustion engineInfo
- Publication number
- JPH03279624A JPH03279624A JP2097776A JP9777690A JPH03279624A JP H03279624 A JPH03279624 A JP H03279624A JP 2097776 A JP2097776 A JP 2097776A JP 9777690 A JP9777690 A JP 9777690A JP H03279624 A JPH03279624 A JP H03279624A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- intake
- opening
- intake air
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 56
- 238000004891 communication Methods 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 abstract description 9
- 238000005086 pumping Methods 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B31/00—Modifying induction systems for imparting a rotation to the charge in the cylinder
- F02B31/08—Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、シリンダに吸入される空気量を制御する内燃
機関の吸入空気制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an intake air control device for an internal combustion engine that controls the amount of air taken into a cylinder.
〈従来の技術〉
内燃機関の吸入空気制御装置の従来例として、S、A、
E、ペーパー880388の第2図に示すようなものが
ある。<Prior art> Conventional examples of intake air control devices for internal combustion engines include S, A,
E, as shown in Figure 2 of paper 880388.
すなわち、吸気弁上流の吸気通路にロータリバルブを介
装し、このロークリバルブを吸気弁の開閉に同期して開
弁させるようにしている。そして、吸気弁とロータリバ
ルブとの開弁オーバラップ時に、空気を燃焼室にピスト
ンの下降によって吸入するようにしている。ここで、ロ
ータリバルブによって、吸気弁の開弁初期にロータリバ
ルブ下流の空気圧力を略大気圧にすることによりボンピ
ングロスを低減するようにしている。That is, a rotary valve is interposed in the intake passage upstream of the intake valve, and the rotary valve is opened in synchronization with the opening and closing of the intake valve. When the intake valve and the rotary valve open overlap, air is sucked into the combustion chamber by the downward movement of the piston. Here, by using the rotary valve, the air pressure downstream of the rotary valve is brought to approximately atmospheric pressure at the initial stage of opening of the intake valve, thereby reducing the pumping loss.
また、ロークリバルブと吸気弁との間の吸気通路容積が
比較的大きいときには、ボンピングロスの低減効果が小
さくなるがロータリバルブ上流の吸気通路に絞弁を設け
るようにしている(S、 A。Furthermore, when the volume of the intake passage between the rotary valve and the intake valve is relatively large, a throttle valve is provided in the intake passage upstream of the rotary valve, although the effect of reducing the pumping loss is reduced (S, A).
E、ペーパー88038Bの第9図参@)。そして、絞
弁により空気を絞り吸気通路内の圧力を予め大気圧より
も低下させておくことにより、ピストンが下死点に位置
するときの燃焼室圧力をアイドル運転時に例えば−55
0fflfflH,に設定できるようにしている。E, see Figure 9 of paper 88038B @). By throttling the air with a throttle valve and lowering the pressure in the intake passage below atmospheric pressure in advance, the pressure in the combustion chamber when the piston is at bottom dead center is reduced to -55% during idling, for example.
It is possible to set it to 0ffffflH.
さらに、吸気弁上流にロータリバルブを備えるものとし
て、特開昭55−148932号公報等が挙げられる。Furthermore, Japanese Patent Application Laid-Open No. 148932/1984 is a method that includes a rotary valve upstream of the intake valve.
〈発明が解決しようとする課題〉
しかしなが゛ら、このような従来の吸入空気制御装置に
おいては、吸気弁と直列にロータリバルブを設けるよう
にしているので、ロークリバルブの回転位相を変化させ
るためにギアを複数個組合わせて行う複雑な構造になる
ため、摩擦損失が大きく総合的に見るとボンピングロス
の低減効果が低下するという不具合がある。また、複雑
な構造のため気筒毎に吸入空気流量を制御するのが困難
であるという不具合がある。<Problems to be Solved by the Invention> However, in such conventional intake air control devices, since a rotary valve is provided in series with the intake valve, it is difficult to change the rotational phase of the rotary valve. Since it has a complicated structure in which multiple gears are combined, there is a problem that the friction loss is large and the overall effect of reducing the pumping loss is reduced. Further, due to the complicated structure, it is difficult to control the intake air flow rate for each cylinder.
これを解決するために、本願出願人は、特願平1−29
6072号にて、気筒毎に独立して設けられた絞り弁の
バイパス通路に開閉弁を介装し、これら開閉弁を吸気弁
の開閉に応じて電磁アクチュエータにより開閉駆動して
低負荷域の吸入空気流量をボンピングロスを低減しつつ
制御するものを、提案している。しかし、このものでは
、吸気慣性を有効に利用できないので、燃焼室にて形成
されるスワールが弱く燃焼性能が低下するという不具合
がある。In order to solve this problem, the applicant of the present application filed the patent application No. 1-29
In No. 6072, on-off valves are interposed in the bypass passages of the throttle valves provided independently for each cylinder, and these on-off valves are driven to open and close by electromagnetic actuators in response to the opening and closing of the intake valves to achieve intake in the low load range. We have proposed a system that controls air flow while reducing pumping loss. However, in this case, the intake inertia cannot be used effectively, so the swirl formed in the combustion chamber is weak and the combustion performance is degraded.
本発明は、このような実状に鑑みてなされたもので、ア
イドル運転時等の低負荷運転時の出力トルク(機関回転
速度)を最適に維持しつつ簡易な構成で気筒毎に吸入空
気流量を制御でき、しかも低負荷運転時の燃焼性能を向
上できる内燃機関の吸入空気制御装置を提供することを
目的とする。The present invention has been developed in view of the above-mentioned circumstances, and it is possible to control the intake air flow rate for each cylinder with a simple configuration while maintaining the output torque (engine speed) at an optimum level during low-load operation such as idling. An object of the present invention is to provide an intake air control device for an internal combustion engine that can control the air and improve combustion performance during low-load operation.
〈課題を解決するための手段〉
このため、本発明は第1図に示すように、ピストン下降
時に吸気弁Aを開いて燃焼室Bに空気を吸入するように
したものにおいて、気筒毎に設けられ各気筒の吸気弁A
に連通ずる吸気通路Cを開閉路する第1開閉弁りと、各
第1開閉弁り下流の吸気通路Cに少なくとも連通する連
通路Eと、これら連通路を夫々開閉する第2開閉弁Fと
、各第2開閉弁を駆動する駆動手段Gと、前記吸気弁A
が開く時点で前記第1開閉弁り下流の吸気圧力が略大気
圧力になるように、吸気弁Aが閉弁の期間に前記第2開
閉弁Fを通過する吸入空気流量を、前記吸気弁Aが開い
た直後に前託第2開閉弁Fを通過する吸入空気流量より
も多くすべく前記第2開閉弁Fを制御する第1制御手段
Hと、前記吸気弁の開弁タイミングより所定期間後の吸
気弁の開弁期間中に前記第2開閉弁を通過する吸入空気
流量を増大させるべく前記第2開閉弁を制御する第2制
御手段Iと、を備えるようにした。<Means for Solving the Problems> For this reason, the present invention, as shown in FIG. Intake valve A of each cylinder
A first on-off valve that opens and closes the intake passage C that communicates with the intake passage C, a communication passage E that communicates with at least the intake passage C downstream of each first on-off valve, and a second on-off valve F that opens and closes each of these communication passages. , a driving means G for driving each of the second on-off valves, and the intake valve A.
The flow rate of intake air passing through the second on-off valve F is adjusted so that the intake pressure downstream of the first on-off valve F becomes approximately atmospheric pressure when the intake valve A opens. a first control means H that controls the second on-off valve F to increase the flow rate of intake air to be greater than the flow rate of intake air passing through the second on-off valve F immediately after the opening of the second on-off valve F, and a predetermined period after the opening timing of the intake valve and second control means I for controlling the second on-off valve to increase the flow rate of intake air passing through the second on-off valve during the opening period of the intake valve.
〈作用〉
このようにして、第1開閉弁下流の吸気通路に連通ずる
連通路に第2開閉弁を介装して、吸気弁が閉じてから開
くまでの期間に第2開閉弁を通過する吸入空気流量を、
吸気弁が開いた直後の吸入空気流量よりも多くなるよう
に第2開閉弁を制御するようにした。<Operation> In this way, the second on-off valve is interposed in the communication path that communicates with the intake passage downstream of the first on-off valve, and the air passes through the second on-off valve during the period from when the intake valve closes until it opens. intake air flow rate,
The second on-off valve is controlled so that the intake air flow rate is greater than the intake air flow rate immediately after the intake valve opens.
これにより、吸気行程における燃焼室での吸気圧力変化
を最適に制御してボンピングロスの低減効果を大幅に向
上させ、もって特に低負荷運転時において機関の出力ト
ルクを最大限に発揮できると共に気筒毎に吸入空気流量
を制御できるようにした。As a result, the intake pressure change in the combustion chamber during the intake stroke is optimally controlled, greatly improving the effect of reducing pumping loss, and thereby making it possible to maximize the engine's output torque, especially during low-load operation, and making it possible for each cylinder to The intake air flow rate can now be controlled.
さらに、吸気弁の開弁タイミングより所定期間経過後の
吸気弁の開弁期間中に第2開閉弁を通過する吸入空気流
量を増大させることにより、吸入空気の流れを撹拌して
スワールを強化させ燃焼性能を向上できるようにした。Furthermore, by increasing the flow rate of intake air passing through the second on-off valve during the opening period of the intake valve after a predetermined period has elapsed from the opening timing of the intake valve, the flow of intake air is stirred and the swirl is strengthened. Improved combustion performance.
〈実施例〉
以下に、本発明の実施例を図面に基づいて説明する。尚
、第1及び第2実施例においては、4気筒内燃機関を例
にとり説明する。<Example> Below, an example of the present invention will be described based on the drawings. The first and second embodiments will be explained using a four-cylinder internal combustion engine as an example.
第2図〜第15図は本発明の第1実施例を示す。2 to 15 show a first embodiment of the present invention.
第2図及び第3図において、気筒毎に独立した吸気通路
1にはアクセルペダルの踏込動作に連動する第1開閉弁
としてのバタフライ式の絞弁2が吸気弁3と直列に配設
されて夫々介装され、各絞弁2をバイパスする連通路と
してのノくイノイス通路4が夫々形成されている。前記
ノ\イバス通路4には第2開閉弁5が夫々介装され、第
2開閉弁5は駆動手段としての電磁式アクチュエータ5
Aにより開閉駆動される。前記アクチュエータ5Aには
第1及び第2制御手段としての制御装置6から制御信号
が入力されている。ここで、前記絞弁2から吸気弁3に
至る吸気通路1の容積は、燃焼室の最大容積(ピストン
が下死点にあるときの燃焼室容積)の約172に設定さ
れている。In FIGS. 2 and 3, a butterfly-type throttle valve 2 as a first opening/closing valve that is linked to the depression of an accelerator pedal is arranged in series with an intake valve 3 in an intake passage 1 that is independent for each cylinder. A nozzle passage 4 is interposed between each throttle valve 2 and serves as a communication passage bypassing each throttle valve 2. A second on-off valve 5 is interposed in each of the above-mentioned bus passages 4, and the second on-off valve 5 is driven by an electromagnetic actuator 5 as a driving means.
It is driven to open and close by A. A control signal is input to the actuator 5A from a control device 6 serving as first and second control means. Here, the volume of the intake passage 1 from the throttle valve 2 to the intake valve 3 is set to about 172, which is the maximum volume of the combustion chamber (combustion chamber volume when the piston is at the bottom dead center).
前記制御装置6には、クランク角センサ7からのレファ
レンス信号(クランク角度で180°毎)及びポジショ
ン信号(クランク角度で例えば16毎)と、各気筒の点
火栓8の座金部に埋込まれた筒内圧センサ(図示せず)
からの筒内圧検出信号と、が入力されている。The control device 6 receives a reference signal (every 180 degrees in crank angle) and a position signal (for example, every 16 degrees in crank angle) from a crank angle sensor 7, and a signal embedded in the washer of the spark plug 8 of each cylinder. Cylinder pressure sensor (not shown)
The in-cylinder pressure detection signal from is input.
前記制御装置6は、第4〜第7図のフローチャートに従
って作動し、制御信号をアクチュエータ5Aに出力して
第2開閉弁を開閉制御するようになっている。The control device 6 operates according to the flowcharts shown in FIGS. 4 to 7, and outputs a control signal to the actuator 5A to control opening and closing of the second on-off valve.
尚、9は燃料噴射弁である。Note that 9 is a fuel injection valve.
次に作用を第4図〜第7図のフローチャートに従って説
明する。ここで、第4図及び第7図のフローチャートに
示すルーチンは第8図に示すようにクランク角センサ7
からレファレンス信号が入力される毎に割り込みルーチ
ンによって実行される(第8図中レフアレンスジジブと
称す)。また、第5図のフローチャートに示すルーチン
は第8図に示すように後述の設定クランク角度(#1気
筒の上死点付近)になったときに割り込みルーチンによ
って実行される(第8図中クランクジョブと称す)。第
6図のフローチャートに示すルーチンは、前記割り込み
ルーチンが実行されていないときに、常に実行される。Next, the operation will be explained according to the flowcharts shown in FIGS. 4 to 7. Here, the routine shown in the flowcharts of FIGS. 4 and 7 is as shown in FIG.
This is executed by an interrupt routine every time a reference signal is input from (referred to as a reference signal in FIG. 8). Further, the routine shown in the flowchart of Fig. 5 is executed by an interrupt routine when the set crank angle (near the top dead center of the #1 cylinder), which will be described later, is reached as shown in Fig. 8. job). The routine shown in the flowchart of FIG. 6 is always executed when the interrupt routine is not executed.
まず、第4図のフローチャートについて説明する。First, the flowchart shown in FIG. 4 will be explained.
Slでは、第5図のフローチャートに示すルーチンを実
行させるための設定クランク角度をセ・ン卜する。この
設定クランク角度は、第9図に示すように、#1気筒の
圧縮行程において混合気が燃焼開始(点火開始)直前の
上死点付近の値に設定されている。At Sl, the set crank angle for executing the routine shown in the flowchart of FIG. 5 is entered. As shown in FIG. 9, this set crank angle is set to a value near the top dead center immediately before the start of combustion of the air-fuel mixture (start of ignition) in the compression stroke of the #1 cylinder.
S2では、レファレンス信号から#1気筒か否かを判定
し、YESのときにはS3に進みNoのときにはS6に
進む。In S2, it is determined from the reference signal whether or not it is the #1 cylinder. If YES, the process proceeds to S3; if NO, the process proceeds to S6.
S3では変数カウンタ値に1を加算してS4に進む。In S3, 1 is added to the variable counter value and the process proceeds to S4.
S4では、加算された変数カウンタ値が3になったか否
かを判定し、YESのときにはS5に進みNoのときに
はS6に進む。In S4, it is determined whether or not the added variable counter value has reached 3. If YES, the process proceeds to S5, and if NO, the process proceeds to S6.
S5では、変数カウンタ値をOに初期化する。In S5, the variable counter value is initialized to O.
したがって、変数カウンタ値は、O,l’、 2.
30.1.2と繰り返され、#1気筒が圧縮行程にある
ときのレファレンス信号入力時に値が切換えられる。Therefore, the variable counter value is O, l', 2.
30.1.2 is repeated, and the value is switched when the reference signal is input when the #1 cylinder is in the compression stroke.
S6では、後述のルーチンで読込まれた燃焼室圧力を、
メモリ(RAM)に、気筒毎に前記変数カウンタ値に対
応するアドレスに記憶させる。したがって、気筒毎に、
4つの燃焼室圧力のデータが第10図破線示の如くメモ
リに記憶される。そして、燃焼室圧力は古いデータから
順次新たなデータに書き換えられる。In S6, the combustion chamber pressure read in the routine described later is
It is stored in a memory (RAM) at an address corresponding to the variable counter value for each cylinder. Therefore, for each cylinder,
Four combustion chamber pressure data are stored in the memory as shown by the broken lines in FIG. Then, the combustion chamber pressure is sequentially rewritten from old data to new data.
S7では、各気筒毎に、メモリに記憶されている4つの
データを単純平均して平均燃焼室圧力(第10図中細線
示)を演算する。In S7, the average combustion chamber pressure (indicated by the thin line in FIG. 10) is calculated by simply averaging the four pieces of data stored in the memory for each cylinder.
次に、第5図及び第6図のフローチャートを説明すると
、第5図の311においては、前記設定クランク各毎に
A/D変換器(図示せず)を起動させて筒内圧センサに
より検出された燃焼開始直前の燃焼室圧力を読込む。こ
こでは、燃焼開始直前の燃焼室圧力から機関の出力トル
クを予測するのである。また、第6図の321において
は、クランク角センサ7からのレファレンス信号の入力
周期に基づいて機関回転速度を読込む。Next, to explain the flowcharts of FIGS. 5 and 6, in step 311 of FIG. 5, an A/D converter (not shown) is activated for each set crank, and the cylinder pressure is detected by the cylinder pressure sensor. Read the combustion chamber pressure just before the start of combustion. Here, the output torque of the engine is predicted from the combustion chamber pressure just before the start of combustion. Further, at 321 in FIG. 6, the engine rotation speed is read based on the input cycle of the reference signal from the crank angle sensor 7.
次に、第7図のフローチャートを説明する。Next, the flowchart shown in FIG. 7 will be explained.
331では、前記S21にて読込まれた機関回転速0 度と目標回転速度との回転差NVARを演算する。At 331, the engine rotation speed read at S21 is 0. The rotation difference NVAR between the rotation speed and the target rotation speed is calculated.
S32では、演算された回転差NVARを前回の回転積
分値12に加算して回転積分値を新たに算出する。また
、新たに求められた回転積分値に定数KIOを乗算した
積分分と、前記回転差NVARに定数Kllを乗算した
比例分と、を加算してNPIを算出する。In S32, the calculated rotational difference NVAR is added to the previous rotational integral value 12 to calculate a new rotational integral value. Further, NPI is calculated by adding the integral obtained by multiplying the newly obtained rotation integral value by a constant KIO and the proportional component obtained by multiplying the rotation difference NVAR by a constant Kll.
S33では、前記S7にて演算された各気筒の平均燃焼
室圧力を加算した後それを気筒数で除算して総平均燃焼
室圧力TOTALAVEを算出する。In S33, the average combustion chamber pressure of each cylinder calculated in S7 is added and then divided by the number of cylinders to calculate the total average combustion chamber pressure TOTALAVE.
S34では、気筒毎に、前記総平均燃焼室圧力TOTA
LAVEからその気筒の平均燃焼室圧力を減算してずれ
分CYLVARを算出する。また、気筒毎に算出された
ずれ分CYLVARと前回のCYL積分値とを加算して
、気筒毎に、CYL積分値を新たに算出する。さらに、
算出されたCYL積分値に定数に20を乗じた積分分と
、前記ずれ分CYLVARに定数に21を乗じた比例分
と、を加算して、CYLPIを気筒毎に全気筒の出力ト
ルクが略同様になるように算出する。In S34, the total average combustion chamber pressure TOTA is determined for each cylinder.
The deviation CYLVAR is calculated by subtracting the average combustion chamber pressure of that cylinder from LAVE. Furthermore, a new CYL integral value is calculated for each cylinder by adding the deviation CYLVAR calculated for each cylinder and the previous CYL integral value. moreover,
By adding the integral obtained by multiplying the constant by 20 to the calculated CYL integral value, and the proportional component obtained by multiplying the constant by 21 to the deviation CYLVAR, CYLPI is calculated so that the output torque of all cylinders is approximately the same for each cylinder. Calculate so that
1
S35では、算出されたCYLPIと、前記NPIにに
30を乗じた値と、を加算して、アクチュエータ5Aの
制御値を気筒毎に算出する。1. In S35, the calculated CYLPI and the value obtained by multiplying the NPI by 30 are added to calculate the control value of the actuator 5A for each cylinder.
そして、算出された制御値に対応する制御信号を対応す
る気筒のアクチュエータ5Aに出力し、第2開閉弁5の
開度を気筒毎に制御する。Then, a control signal corresponding to the calculated control value is output to the actuator 5A of the corresponding cylinder, and the opening degree of the second on-off valve 5 is controlled for each cylinder.
かかる制御時における第2開閉弁5の開度変化及び絞り
弁2下流の吸気圧力変化を第11図のタイムチャートに
従って説明する。尚、この説明では絞り弁2の全閉時す
なわちアイドル運転時を例にとり説明し、第11図中成
は吸気行程を示し圧は圧縮行程を示し、爆は爆発行程を
示し、排は排気行程を示す。Changes in the opening degree of the second on-off valve 5 and changes in the intake pressure downstream of the throttle valve 2 during such control will be explained with reference to the time chart of FIG. 11. In this explanation, the case is taken when the throttle valve 2 is fully closed, that is, during idling operation. shows.
すなわち、吸気弁3が開き始める吸気行程開始時におい
て、絞弁2下流の吸気圧力が大気圧になるように、圧縮
行程から爆発行程にて第2開閉弁5を全開させる。これ
により、絞弁2下流の吸気圧力は、第11図中Cに示す
ように、吸気行程におけるピストン下死点時の吸気圧力
(吸気行程終了時の吸気圧であってアイドル運転時には
例えば52
50〜570.、 H9から大気圧力付近まで上昇する
。That is, at the start of the intake stroke when the intake valve 3 begins to open, the second on-off valve 5 is fully opened from the compression stroke to the explosion stroke so that the intake pressure downstream of the throttle valve 2 becomes atmospheric pressure. As a result, the intake pressure downstream of the throttle valve 2 is, as shown in C in FIG. ~570., rises from H9 to near atmospheric pressure.
ここで、吸気行程開始時の吸気圧力が大気圧になるよう
に第2開閉弁5を常時一定開度に保持させて開弁すると
、吸気圧力は第11図中Aに示すようになり燃焼室に吸
入される吸入空気流量が希望値よりも多くなる。また、
ピストン下死点時の吸気圧力が前記550〜570II
IIH9になるように第2開閉弁5の開度を常時小さく
設定すると、吸気行程開始時の吸気圧力が第11図中B
に示すように大気圧にならない。Here, if the second opening/closing valve 5 is always maintained at a constant opening and opened so that the intake pressure at the start of the intake stroke becomes atmospheric pressure, the intake pressure becomes as shown in A in Fig. 11, and the combustion chamber The intake air flow rate sucked into the unit becomes higher than the desired value. Also,
The intake pressure at the bottom dead center of the piston is 550 to 570 II.
If the opening degree of the second on-off valve 5 is always set small so that IIH9, the intake pressure at the start of the intake stroke becomes B in Fig. 11.
As shown in the figure, the pressure does not reach atmospheric pressure.
そこで、本実施例では、吸気弁3が開く時点で第2開閉
弁5の開度を全開から所定開度まで閉弁駆動する。これ
により、第11図中Cに示すように吸気弁3が開く時点
での吸気圧力を大気圧付近に設定すると共に吸気行程終
了時の吸気圧力を所定値に設定し、吸入空気流量を所定
値に設定できるようにしたのである。具体的には、吸気
弁3の開閉期間中に第2開閉弁5を全開し吸気弁3が開
く直前に第2開閉弁5を所定開度まで閉弁する。Therefore, in this embodiment, when the intake valve 3 opens, the opening degree of the second on-off valve 5 is driven to close from fully open to a predetermined opening degree. As a result, as shown in C in Fig. 11, the intake pressure at the time when the intake valve 3 opens is set to near atmospheric pressure, the intake pressure at the end of the intake stroke is set to a predetermined value, and the intake air flow rate is set to a predetermined value. This allows it to be set to . Specifically, the second on-off valve 5 is fully opened during the opening/closing period of the intake valve 3, and immediately before the intake valve 3 opens, the second on-off valve 5 is closed to a predetermined opening degree.
このようにして、第2開閉弁5の開度を制御す3
ると、第2開閉弁5の開度は機関回転速度に比例した単
純な制御で行える。これは吸気行程開始時の吸気圧力が
大気圧とすると、絞り弁2下流の吸気通路1の容積と、
ピストンの下降に伴って増加する燃焼室の容積と、の比
から吸気空気流量を知ることができ、これによって不足
分を第2開閉弁5の開度制御により補えば良いからであ
る。By controlling the opening degree of the second on-off valve 5 in this manner, the opening degree of the second on-off valve 5 can be simply controlled in proportion to the engine rotational speed. This is the volume of the intake passage 1 downstream of the throttle valve 2, assuming that the intake pressure at the start of the intake stroke is atmospheric pressure.
This is because the intake air flow rate can be determined from the ratio of the volume of the combustion chamber that increases as the piston descends, and the deficiency can be compensated for by controlling the opening degree of the second on-off valve 5.
ここで、第11図において第2開閉弁5の閉弁タイミン
グを吸気行程開始前(排気行程に入ったところ)に設定
しているのは、制御系の応答遅れを考慮しているためで
あり、実際には第2開閉弁5は吸気弁3が開く直前に所
定開度に切換られる。Here, the reason why the closing timing of the second on-off valve 5 is set before the start of the intake stroke (at the beginning of the exhaust stroke) in FIG. 11 is to take into account the response delay of the control system. In reality, the second opening/closing valve 5 is switched to a predetermined opening degree immediately before the intake valve 3 opens.
かかる第2開閉弁の制御を第12図のタイムチャートに
従って具体的に説明すると、吸気3の開弁タイミング直
前に第2開閉弁5を全開から所定開度まで第13図に示
すように閉弁駆動する。このとき、絞り弁2下流の吸気
通路1の吸気圧力が大気圧力近傍になっているので、吸
気通路1内の吸気吸気流れは比較的緩慢な状態にある。The control of the second on-off valve will be explained in detail according to the time chart in FIG. 12. Immediately before the opening timing of the intake 3, the second on-off valve 5 is closed from fully open to a predetermined opening as shown in FIG. drive At this time, since the intake pressure in the intake passage 1 downstream of the throttle valve 2 is close to atmospheric pressure, the flow of intake air in the intake passage 1 is relatively slow.
そして、吸気弁3の開弁タイミングから所定期間として
の所4
定時間ΔTだけ遅れて吸気弁3の開弁期間中に第2開閉
弁5を所定開度から全開に第14図に示すように切り換
える。これにより、第2開閉弁5を通過する吸気空気流
量が増大する。所定時間ΔTの代わりに所定クランク角
度経過後に第2開閉弁5の開度を切換えてもよい。Then, after a delay of a predetermined period ΔT from the opening timing of the intake valve 3, the second on-off valve 5 is fully opened from the predetermined opening degree during the opening period of the intake valve 3, as shown in FIG. Switch. As a result, the flow rate of intake air passing through the second on-off valve 5 increases. The opening degree of the second on-off valve 5 may be changed after a predetermined crank angle has elapsed instead of the predetermined time ΔT.
尚、アクチュエータ5Aをオン・オフデユーティ信号に
より制御してバイパス通路4の吸入空気流量を前述の如
く制御してもよい。Incidentally, the intake air flow rate of the bypass passage 4 may be controlled as described above by controlling the actuator 5A using an on/off duty signal.
次に、前記制御装置6のハードウェア構成の一例を第1
5図に基づいて説明する。Next, an example of the hardware configuration of the control device 6 will be explained as follows.
This will be explained based on FIG.
すなわち、所定クランク角度における筒内圧力を各気筒
毎に平均化処理回路11A〜11Dにより平均化処理し
た後、それらを加算器12にて加算する。That is, after the cylinder pressure at a predetermined crank angle is averaged for each cylinder by the averaging processing circuits 11A to 11D, the adder 12 adds them together.
そして、加算された全気筒の筒内圧力を除算器13にて
気筒数で除して全気筒の平均圧力を算出する。Then, the added cylinder pressure of all the cylinders is divided by the number of cylinders by the divider 13 to calculate the average pressure of all the cylinders.
算出された全気筒の平均圧力から各気筒毎の平均圧力を
差分器14A〜14Bにて夫々減じて各気筒毎の圧力差
を算出した後、各気筒毎の圧力差の比例分と積分分とを
PI処理回路15A〜15Dにて夫々5
算出する。After calculating the pressure difference for each cylinder by subtracting the average pressure for each cylinder from the calculated average pressure for all cylinders using differentiators 14A to 14B, the proportional and integral parts of the pressure difference for each cylinder are calculated. 5 are calculated by the PI processing circuits 15A to 15D, respectively.
また、クランク角センサ7等により検出された実際の機
関回転速度と目標回転速度との差を差分器16により算
出した後、この回転速度差の比例分と積分分とをPI処
理回路17にて算出する。そして、前記圧力差の比例分
及び積分分と回転速度差の比例分及び積分分とを加算器
18A〜18Dにて加算して各気筒毎の補正値を求め、
これによりアクチュエータ5Aを制御する。Further, after the difference between the actual engine rotation speed detected by the crank angle sensor 7 and the target rotation speed is calculated by the differentiator 16, the proportional part and the integral part of this rotation speed difference are calculated by the PI processing circuit 17. calculate. Then, adders 18A to 18D add the proportional and integral parts of the pressure difference and the proportional and integral parts of the rotational speed difference to obtain a correction value for each cylinder,
This controls the actuator 5A.
以上説明したように、絞り弁2をバイパスするバイパス
通路4に第2開閉弁5を気筒毎に配設する共に、各絞弁
2下流の吸気通路1の容積を燃焼室の最大容積の271
に設定し、かつ吸気弁3が開く時点の絞り弁2下流の吸
気圧力を大気圧近傍になるように第2開閉弁5を全開さ
せると共に吸気行程においては第2開閉弁5を所定開度
まで閉弁駆動させるようにしたので、以下の効果がある
。As explained above, the second on-off valve 5 is provided for each cylinder in the bypass passage 4 that bypasses the throttle valve 2, and the volume of the intake passage 1 downstream of each throttle valve 2 is set to 271, which is the maximum volume of the combustion chamber.
and fully open the second on-off valve 5 so that the intake pressure downstream of the throttle valve 2 at the time the intake valve 3 opens is close to atmospheric pressure, and during the intake stroke, the second on-off valve 5 is opened to a predetermined opening degree. Since the valve is driven to close, the following effects can be obtained.
すなわち、吸気弁3が開き始めたときには燃焼室圧力(
吸気通路1の吸気圧力と略同様)大気圧近傍に維持され
るので、ピストンの下降に伴って6
燃焼室圧力は大気圧からアイドル運転時におけるピスト
ン下死点位置での燃焼室圧力(例えば−550〜−57
0,、H、)まで略直線的に低下する。したがって従来
の絞り弁制御のみによる吸気圧力変化よりもポンピング
ロスを大幅に低減できるため、機関出力を最大限に発揮
できる。また、バイパス通路4の第2開閉弁5を電磁式
アクチュエータ5Aにより制御するようにしたので従来
のものより構造を簡易化できる。That is, when the intake valve 3 begins to open, the combustion chamber pressure (
As the piston descends, the combustion chamber pressure changes from atmospheric pressure to the combustion chamber pressure at the bottom dead center position of the piston during idling (for example - 550~-57
0,,H,). Therefore, pumping loss can be significantly reduced compared to changes in intake pressure due to conventional throttle valve control alone, and the engine output can be maximized. Furthermore, since the second on-off valve 5 of the bypass passage 4 is controlled by the electromagnetic actuator 5A, the structure can be simplified compared to the conventional one.
ここで、絞り弁2から吸気弁3に至る吸気通路1の容積
を、燃焼室の最大容積の172以下に設定する理由を説
明する。前記燃焼室の最大容積をAと設定し、絞り弁2
から吸気弁3に至る吸気通路1の容積をBと仮定し圧縮
比を1710と仮定し、またアイドル運転時のピストン
下死点位置における燃焼室圧力(吸気圧力)を−456
,、H,(高回転型のエンジンではバルブオーバーラツ
プ期間が大きいのでこの程度の値になる)と仮定して説
明する。Here, the reason why the volume of the intake passage 1 from the throttle valve 2 to the intake valve 3 is set to 172 or less, which is the maximum volume of the combustion chamber, will be explained. The maximum volume of the combustion chamber is set as A, and the throttle valve 2
Assume that the volume of the intake passage 1 from 1 to the intake valve 3 is B, the compression ratio is 1710, and the combustion chamber pressure (intake pressure) at the piston bottom dead center position during idling is -456
,,H, (in a high-speed engine, the valve overlap period is long, so the value will be approximately this value).
すなわち、ピストン上死点上死点における吸気7
通路1と燃焼室との総容積は(A/10+B)となり、
またピストン下死点上死点における吸気通路1と燃焼室
との総容積は(A+B)となる。かかる状態で大気圧(
1気圧)から−450,Thff1H,(0,4気圧)
に燃焼室圧力及び吸気圧力が変化するときには(A/1
0+B)/ (A+B) −0,4となり、これを解く
とA=2Bとなる。That is, the total volume of the intake passage 1 and the combustion chamber at the top dead center of the piston is (A/10+B),
Further, the total volume of the intake passage 1 and the combustion chamber at the bottom dead center and top dead center of the piston is (A+B). Under such conditions, atmospheric pressure (
1 atm) to -450, Thff1H, (0.4 atm)
When the combustion chamber pressure and intake pressure change (A/1
0+B)/(A+B) -0,4, and solving this gives A=2B.
したがって、前記吸気通路1の容積が燃焼室の最大容積
の約172以下のときに、アイドル運転時等の低負荷運
転時に最適なピストン下死点位置における燃焼室圧力を
確保できるのである。Therefore, when the volume of the intake passage 1 is less than or equal to the maximum volume of the combustion chamber, which is about 172, it is possible to ensure the optimal combustion chamber pressure at the bottom dead center position of the piston during low load operation such as during idling operation.
また、全気筒の総平均燃焼室圧力TOTALAVEから
各気筒毎にズレ分(偏差)CYLVARを求めるように
したので、各気筒の燃焼室圧力が前記総平均燃焼室圧力
TOTALAVEに近づ(ようになるため、燃焼圧力を
全気筒にて略同様にできる。これによって全気筒の出力
トルクを略同様にできるので、アイドル運転時の運転性
を安定化できる。また、各気筒の機関回転速度の目標回
転速度からの回転差(偏差)NVARを求めた後8
各気筒毎にNPIを求めて、前記アクチュエータ5Aの
制御値に機関回転速度に依存するNPIを付加するよう
にしたので、これによってもアクチュエータ運転時の運
転性を安定化できる。In addition, since the deviation (deviation) CYLVAR is calculated for each cylinder from the total average combustion chamber pressure TOTALAVE of all cylinders, the combustion chamber pressure of each cylinder approaches the total average combustion chamber pressure TOTALAVE. As a result, the combustion pressure can be made almost the same in all cylinders.This allows the output torque of all cylinders to be made almost the same, making it possible to stabilize drivability during idling.In addition, the target engine rotation speed of each cylinder can be adjusted to After determining the rotational difference (deviation) NVAR from the speed, we determined the NPI for each cylinder and added the NPI that depends on the engine rotational speed to the control value of the actuator 5A. It is possible to stabilize the drivability at times.
また、各気筒において、−燃焼行程(レファレンス信号
)毎にアクチュエータ5Aの制御値を求めるようにした
ので、各気筒においても、出力トルク及び機関回転速度
を略同様にでき、これによってもアイドル運転時の運転
性を安定化できる。In addition, since the control value of the actuator 5A is determined for each combustion stroke (reference signal) in each cylinder, the output torque and engine speed can be made almost the same in each cylinder, and this also allows drivability can be stabilized.
さらに、吸気弁3の開弁期間中に第2開閉弁5を所定開
度から全開に切り換えるようにしたので、第2開閉弁5
を通過する吸入空気量が栄、激に増大するため、吸気が
バイパス通路4から高負圧になっている吸気通路1に吹
出す。このため、バイパス通路4下流の吸気流れが撹拌
されてスワールを強化でき、もって燃焼性能を大幅に向
上できる。Furthermore, since the second on-off valve 5 is switched from a predetermined opening degree to full open during the opening period of the intake valve 3, the second on-off valve 5
Since the amount of intake air passing through increases dramatically, the intake air is blown out from the bypass passage 4 into the intake passage 1, which has a high negative pressure. Therefore, the intake air flow downstream of the bypass passage 4 is stirred and swirl can be strengthened, thereby significantly improving combustion performance.
ここで、第2開閉弁5の開度を全開と所定開度とに設定
したが、これらの開度は良好な燃焼性能を確保するのに
有意義な変化を吸気流れに与えるような開度差に設定さ
れている。また、それら開9
度を適切に設定することで、ボンピンググロスの低減化
を図りつつスワール効果を増加させることができる。さ
らに、スワール効果にのみ着目すならば、第2開閉弁5
を全閉と全開とで切換えてもよい。Here, the opening degree of the second on-off valve 5 is set to be fully open and a predetermined opening degree, but these opening degrees are set such that the difference in opening degree gives a meaningful change to the intake flow to ensure good combustion performance. is set to . In addition, by appropriately setting these 9 degrees of opening, it is possible to increase the swirl effect while reducing bombing gloss. Furthermore, if we focus only on the swirl effect, the second on-off valve 5
may be switched between fully closed and fully open.
次に、本発明の第2実施例を第16図のタイムチャート
に従って説明する。Next, a second embodiment of the present invention will be described according to the time chart of FIG. 16.
本実施例は、吸気弁3の1吸気行程中に、第2開閉弁3
を複数回開閉駆動するようにしたものである。In this embodiment, during one intake stroke of the intake valve 3, the second on-off valve 3
It is designed to open and close multiple times.
かかる構成によれば、バイパス通路4から吸気通路1内
に吹出す吸気流に脈動が与えられるため、第1実施例よ
りさらにスワール効果を高めることができる。According to this configuration, since pulsation is imparted to the intake air flow blown out from the bypass passage 4 into the intake passage 1, the swirl effect can be further enhanced than in the first embodiment.
尚、実施例においては、燃焼室圧力から機関の出力トル
クを予測するようにしたが、吸気圧力、吸気空気流量、
機関の空燃比(例えば排気中の酸素濃度がら空燃比を検
出する酸素センサの検出信号)或いは実際の出力トルク
に基づいて第2開閉弁を制御してもよい。また、絞り弁
をバイパスす0
るバイパス通路に第2開閉弁を介装するようにしたが、
例えば外部に設けられた蓄圧式のタンクと絞り弁下流の
吸気通路とを連通させこの連通路に第2開閉弁を介装さ
せるようにしてもよい。In the example, the output torque of the engine was predicted from the combustion chamber pressure, but the intake pressure, intake air flow rate,
The second on-off valve may be controlled based on the air-fuel ratio of the engine (for example, a detection signal from an oxygen sensor that detects the air-fuel ratio based on the oxygen concentration in the exhaust gas) or the actual output torque. In addition, a second on-off valve was installed in the bypass passage that bypassed the throttle valve.
For example, an externally provided pressure accumulating tank may be communicated with an intake passage downstream of the throttle valve, and a second on-off valve may be interposed in this communication passage.
〈発明の効果〉
本発明は、以上説明したように、各気筒毎に設けられた
第1開閉弁下流の吸気通路に連通ずる連通路に第2開閉
弁を介装すると共に、吸気弁が閉じてから開くまでの期
間に第2開閉弁を通過する吸入空気流量を、吸気弁が開
いた直後の吸入空気流量よりも多くして、吸気弁が開い
た時点での第1開閉弁下流の吸気圧力を大気圧力近傍に
なるように第2開閉弁を設定するようにしたので、簡易
な構成でボンピングロスを大幅に低減して低負荷運転時
における出力トルクを向上できると共に気筒毎に吸入空
気量を制御できる。<Effects of the Invention> As explained above, the present invention includes a second on-off valve interposed in the communication passage communicating with the intake passage downstream of the first on-off valve provided for each cylinder, and a The flow rate of intake air that passes through the second on-off valve during the period from when the intake valve opens until it opens is made larger than the flow rate of intake air immediately after the intake valve opens, so that the intake air downstream of the first on-off valve at the time the intake valve opens is Since the second on-off valve is set so that the pressure is close to atmospheric pressure, it is possible to significantly reduce pumping loss with a simple configuration and improve output torque during low-load operation, while also increasing the amount of intake air for each cylinder. can be controlled.
また、吸気弁の開弁タイミングより所定期間経過後の吸
気弁の開弁期間中に、第2開閉弁を通過する吸入空気流
量を増大させるようにしたので、吸気流れが撹拌されて
スワールが強化され、燃焼1
性能を向上できる。In addition, the flow rate of intake air passing through the second on-off valve is increased during the opening period of the intake valve after a predetermined period has elapsed from the opening timing of the intake valve, so the intake flow is stirred and the swirl is strengthened. combustion performance can be improved.
第1図は本発明のクレーム対応図、第2図は本発明の第
1実施例を示す構成図、第3図は同上の要部拡大図、第
4図〜第7図は同上のフローチャート、第8回〜第14
図は同上の作用を説明するための図、第15図は同上の
ハードウェア構成図、第16図は本発明の第2実施例を
示すタイムチャートである。
1・・・吸気通路 2・・・絞り弁 4・・・バイ
パス通路 5・・・第2開閉弁 5A・・・電磁式
圧力6・・・制御装置FIG. 1 is a diagram corresponding to the claims of the present invention, FIG. 2 is a configuration diagram showing a first embodiment of the present invention, FIG. 3 is an enlarged view of the main parts of the same, and FIGS. 4 to 7 are flowcharts of the same, 8th to 14th
FIG. 15 is a diagram for explaining the operation of the same as above, FIG. 15 is a hardware configuration diagram of the same as above, and FIG. 16 is a time chart showing a second embodiment of the present invention. 1... Intake passage 2... Throttle valve 4... Bypass passage 5... Second on-off valve 5A... Electromagnetic pressure 6... Control device
Claims (1)
るようにした内燃機関において、気筒毎に設けられ各気
筒の吸気弁に連通する吸気通路を開閉路する第1開閉弁
と、各第1開閉弁下流の吸気通路に少なくとも連通する
連通路と、これら連通路を夫々開閉する第2開閉弁と、
各第2開閉弁を駆動する駆動手段と、前記吸気弁が開く
時点で前記第1開閉弁下流の吸気圧力が略大気圧力にな
るように、前記吸気弁の閉弁期間に前記第2側閉弁を通
過する吸入空気流量を、前記吸気弁が開いた直後に前記
第2開閉弁を通過する吸入空気量よりも多くすべく前記
第2開閉弁を制御する第1制御手段と、前記吸気弁の開
弁タイミングより所定期間経過後の吸気弁の開弁期間中
に前記第2開閉弁を通過する吸入空気流量を増大させる
べく前記第2開閉弁を制御する第2制御手段と、を備え
たことを特徴とする内燃機関の吸入空気制御装置。In an internal combustion engine in which an intake valve is opened when a piston descends to draw air into a combustion chamber, a first on-off valve is provided for each cylinder and opens and closes an intake passage communicating with the intake valve of each cylinder; A communication passage that communicates with at least the intake passage downstream of the on-off valve, and a second on-off valve that opens and closes each of these communication passages, respectively;
a driving means for driving each of the second on-off valves; and a drive means for closing the second side during the closing period of the intake valve so that the intake pressure downstream of the first on-off valve becomes approximately atmospheric pressure when the intake valve opens. a first control means for controlling the second on-off valve so that the flow rate of intake air passing through the valve is greater than the amount of intake air passing through the second on-off valve immediately after the intake valve opens; and and second control means for controlling the second on-off valve to increase the flow rate of intake air passing through the second on-off valve during the opening period of the intake valve after a predetermined period has elapsed from the opening timing of the second on-off valve. An intake air control device for an internal combustion engine, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2097776A JPH03279624A (en) | 1990-03-15 | 1990-04-16 | Intake air controller of internal combustion engine |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-62818 | 1990-03-15 | ||
JP6281890 | 1990-03-15 | ||
JP2097776A JPH03279624A (en) | 1990-03-15 | 1990-04-16 | Intake air controller of internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03279624A true JPH03279624A (en) | 1991-12-10 |
Family
ID=26403872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2097776A Pending JPH03279624A (en) | 1990-03-15 | 1990-04-16 | Intake air controller of internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03279624A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5870585U (en) * | 1981-11-07 | 1983-05-13 | 株式会社クボタ | Spacer ring for mounting on the inside of the pipe joint |
JPS634277U (en) * | 1986-06-26 | 1988-01-12 |
-
1990
- 1990-04-16 JP JP2097776A patent/JPH03279624A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5870585U (en) * | 1981-11-07 | 1983-05-13 | 株式会社クボタ | Spacer ring for mounting on the inside of the pipe joint |
JPS634277U (en) * | 1986-06-26 | 1988-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6055948A (en) | Internal combustion engine control system | |
US7607416B2 (en) | Engine control device | |
US6971367B2 (en) | Fuel control system and method of engine | |
US8050846B2 (en) | Apparatus and method for controlling engine | |
JP4464924B2 (en) | Engine control apparatus and control method | |
US20020017256A1 (en) | Internal combustion engine control system | |
US5113826A (en) | Intake air control system for internal combustion engine | |
EP1249593B1 (en) | Control system and method for a multi-cylinder internal combustion engine | |
CN1364216B (en) | Method for operating a multi-cylinder internal combustion engine | |
JP2002500725A (en) | Driving method of internal combustion engine | |
US6446596B1 (en) | Method of operating an internal combustion engine | |
JPH09250435A (en) | Engine control method and control device therefor | |
JP2002004903A (en) | Engine with supercharger | |
JP3807473B2 (en) | Internal combustion engine | |
JPH03279624A (en) | Intake air controller of internal combustion engine | |
US6394065B1 (en) | Method for operating an internal combustion engine | |
JP2897570B2 (en) | Intake control device for internal combustion engine | |
JP3872617B2 (en) | Intake air amount control device for supercharged engine | |
JPH03264757A (en) | Intake air control device of internal combustion engine | |
JP2673427B2 (en) | Engine with turbocharger | |
JPH03237237A (en) | Output controller of internal combustion engine | |
JPH03242438A (en) | Intake air controller of internal combustion engine | |
JP2002038911A (en) | Diesel engine | |
JP2845984B2 (en) | Engine pumping loss reduction device | |
JPH03237215A (en) | Intake air controller for internal combustion engine |