JP2897570B2 - Intake control device for internal combustion engine - Google Patents

Intake control device for internal combustion engine

Info

Publication number
JP2897570B2
JP2897570B2 JP4361467A JP36146792A JP2897570B2 JP 2897570 B2 JP2897570 B2 JP 2897570B2 JP 4361467 A JP4361467 A JP 4361467A JP 36146792 A JP36146792 A JP 36146792A JP 2897570 B2 JP2897570 B2 JP 2897570B2
Authority
JP
Japan
Prior art keywords
intake
internal combustion
combustion engine
valve
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4361467A
Other languages
Japanese (ja)
Other versions
JPH06200763A (en
Inventor
昭夫 吉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4361467A priority Critical patent/JP2897570B2/en
Publication of JPH06200763A publication Critical patent/JPH06200763A/en
Application granted granted Critical
Publication of JP2897570B2 publication Critical patent/JP2897570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • F02B29/083Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の吸気制御装置
に係わり、特に吸気絞り弁と吸気制御弁とを備えミラー
サイクル運転を行う内燃機関の吸気制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake control system for an internal combustion engine, and more particularly to an intake control system for an internal combustion engine having an intake throttle valve and an intake control valve and performing a Miller cycle operation.

【0002】[0002]

【従来の技術】内燃機関の燃焼室に吸気弁を介して吸気
を供給するための吸気流路の途中に開閉制御される吸気
制御弁を設け、この吸気制御弁を吸気弁の開弁以前に開
弁させ吸気弁の開弁期間中に閉弁させることにより内燃
機関をミラーサイクル運転する吸気制御装置は公知であ
る。
2. Description of the Related Art An intake control valve, which is controlled to open and close, is provided in an intake passage for supplying intake air to a combustion chamber of an internal combustion engine via an intake valve. 2. Description of the Related Art An intake control device that performs a Miller cycle operation of an internal combustion engine by opening a valve and closing the valve during the opening period of the intake valve is known.

【0003】即ちミラーサイクル運転中は、気筒に供給
する吸気量を吸気絞り弁によって調節するのではなく、
開閉制御される吸気制御弁の開弁時期および期間を制御
して調節することによってポンピング損失を低減するこ
とが可能となる。しかしながら高負荷高回転時にミラー
サイクル運転を行った場合には、吸気行程の途中で吸気
制御弁が閉弁されてしまうために吸気量が不足して十分
な出力が得られないという問題点が存在する。
[0003] That is, during the Miller cycle operation, the amount of intake air supplied to the cylinder is not adjusted by the intake throttle valve.
The pumping loss can be reduced by controlling and adjusting the opening timing and period of the intake control valve that is controlled to open and close. However, when the Miller cycle operation is performed during high load and high rotation, there is a problem that the intake control valve is closed during the intake stroke, resulting in a shortage of intake air and insufficient output. I do.

【0004】上記問題点を解決するめに低負荷低回転時
はミラーサイクル運転を行うが、高負荷高回転時にはオ
ットーサイクル運転とすることにより出力を確保する吸
気制御装置が提案されている(特開昭61−10691
8公報参照)。
In order to solve the above problem, there has been proposed an intake control device in which a mirror cycle operation is performed during low-load low-speed rotation, while an Otto-cycle operation is performed during high-load high-speed rotation to secure output (Japanese Patent Application Laid-Open No. H10-260,009). Sho 61-10691
8 gazette).

【0005】[0005]

【発明が解決しようとする課題】しかし上記提案にかか
る吸気制御装置において、低負荷低回転状態から高負荷
高回転状態に急激に移行した場合には吸気量が急増して
トルクショックが発生することは避けることができな
い。本発明は上記問題点に鑑み成されたものであって、
ミラーサイクル運転状態とオットーサイクル運転状態と
の間で運転モードの変更が行われた場合にもトルクショ
ックの発生することのない吸気制御装置を提供すること
を目的とする。
However, in the intake control device according to the above proposal, when the state of the engine suddenly shifts from a low-load low-rotation state to a high-load high-rotation state, the intake air amount sharply increases and a torque shock occurs. Can not be avoided. The present invention has been made in view of the above problems,
It is an object of the present invention to provide an intake control device that does not generate torque shock even when the operation mode is changed between the Miller cycle operation state and the Otto cycle operation state.

【0006】[0006]

【課題を解決するための手段】本発明にかかる内燃機関
の吸気制御装置は、内燃機関の吸気流路に設置され内燃
機関に供給される吸気量をその開度を制御することによ
り調整する吸気絞り弁と、吸気絞り弁より下流側の吸気
流路に設置され内燃機関に供給される吸気量を燃焼室と
吸気通路とを連通させている吸気供給期間を制御するこ
とにより調整する吸気時期制御手段と、吸気絞り弁を絞
り損失の発生しない開度にまで開弁するとともに吸気量
を内燃機関運転状態に応じて吸気時期制御手段の吸気供
給期間を制御することにより調整する第1の制御手段
と、吸気量を内燃機関運転状態に応じて吸気絞り弁の開
度を制御することにより調整する第2の制御手段と、第
1の制御手段による制御状態と第2の制御手段による制
御状態との切替時に単位時間当たりの吸気供給期間の変
化量が所定値以上である場合には吸気時期制御手段の吸
気供給期間を前記第1の制御手段によって制御される吸
気供給期間よりも長くかつ前記第2の制御手段によって
制御される吸気供給期間よりも短い吸気供給期間に制御
する過渡時制御手段を具備する。
SUMMARY OF THE INVENTION An intake control system for an internal combustion engine according to the present invention is provided in an intake passage of the internal combustion engine to adjust the amount of intake air supplied to the internal combustion engine by controlling its opening degree. A throttle valve and intake timing control for adjusting the amount of intake air supplied to the internal combustion engine by controlling an intake air supply period which is provided in the intake passage downstream of the intake throttle valve and communicates the combustion chamber with the intake passage. First control means for opening the intake throttle valve to an opening degree at which no throttle loss occurs and adjusting the intake air amount by controlling the intake supply period of the intake timing control means in accordance with the operating state of the internal combustion engine; A second control unit that adjusts the intake air amount by controlling an opening of an intake throttle valve in accordance with an operation state of the internal combustion engine; a control state by the first control unit; and a control state by the second control unit. When switching When the amount of change in the intake supply period per unit time is equal to or greater than a predetermined value, the intake supply period of the intake timing control unit is longer than the intake supply period controlled by the first control unit and the second control is performed. A transient control means for controlling the intake air supply period shorter than the intake air supply period controlled by the means.

【0007】[0007]

【作用】本発明にかかる内燃機関の吸気制御装置にあっ
ては、第1の制御手段による制御状態においてはミラー
サイクル運転され、第2の制御手段による制御状態にお
いてはオットーサイクル運転される。そして第1の制御
手段による制御状態と、第2の制御手段による制御状態
との切替時に単位時間当りの吸気供給期間の変化量が所
定値以上である場合には、吸気制御手段の吸気供給期間
をミラーサイクル運転時の吸気供給期間より長くオット
ーサイクル運転時の吸気供給期間より短く制御し、円滑
な運転状態の変化を実現する。
In the intake control apparatus for an internal combustion engine according to the present invention, the Miller cycle operation is performed in the control state by the first control means, and the Otto cycle operation is performed in the control state by the second control means. When the change amount of the intake supply period per unit time at the time of switching between the control state by the first control means and the control state by the second control means is equal to or more than a predetermined value, the intake supply period of the intake control means Is controlled to be longer than the intake supply period during the Miller cycle operation and shorter than the intake supply period during the Otto cycle operation, thereby realizing a smooth change in the operating state.

【0008】[0008]

【実施例】図1および図2は本発明にかかる内燃機関の
吸気制御装置の実施例の構成図であって、シリンダブロ
ック1、ピストン2およびシリンダヘッド3とで形成さ
れる燃焼室4には、一対の吸気弁5を介して吸気ポート
6から混合気が供給される。
1 and 2 show the construction of an embodiment of an intake control device for an internal combustion engine according to the present invention. A combustion chamber 4 formed by a cylinder block 1, a piston 2 and a cylinder head 3 is provided. An air-fuel mixture is supplied from an intake port 6 via a pair of intake valves 5.

【0009】燃焼室で発生する燃焼ガスは一対の排気弁
7を介して排気流路に排出される。吸気ポート6は吸気
枝管8によってサージタンク9に接続され、サージタン
ク9は吸気管10を介してエアクリーナ11に接続され
ている。なおサージタンク9は他の気筒に接続される吸
気枝管の分岐部ともなっている。吸気管10にはエアフ
ローメータ12が、その下流側にはステップモータ13
によって駆動される吸気絞り弁14とが設置される。ま
た吸気枝管8には電磁アクチュエータ15によって開閉
される吸気制御弁16が配置されている。
The combustion gas generated in the combustion chamber is discharged to an exhaust passage through a pair of exhaust valves 7. The intake port 6 is connected to a surge tank 9 by an intake branch pipe 8, and the surge tank 9 is connected to an air cleaner 11 via an intake pipe 10. The surge tank 9 also serves as a branch of an intake branch pipe connected to another cylinder. An air flow meter 12 is provided in the intake pipe 10 and a step motor 13 is provided downstream thereof.
And an intake throttle valve 14 driven by the pump. An intake control valve 16 that is opened and closed by an electromagnetic actuator 15 is disposed in the intake branch pipe 8.

【0010】さらに吸気制御弁16の下流側の吸気枝管
8には吸気ポート6に向かって燃料を噴射する燃料噴射
弁17が取り付けられている。吸気制御装置の制御部2
0は例えばマイクロコンピュータシステムとして構成さ
れ、アクセルペダル21の踏み込み量を検出するアクセ
ル開度センサ22、内燃機関回転数を検出する回転数セ
ンサ23およびエアフローメータ12が接続されてお
り、内燃機関状態量を読み込む。
Further, a fuel injection valve 17 for injecting fuel toward the intake port 6 is attached to the intake branch pipe 8 downstream of the intake control valve 16. Control unit 2 of intake control device
Reference numeral 0 denotes a microcomputer system, for example, which is connected to an accelerator opening sensor 22 for detecting a depression amount of an accelerator pedal 21, a rotation speed sensor 23 for detecting an internal combustion engine speed, and an air flow meter 12, and is connected to an internal combustion engine state quantity. Read.

【0011】制御部からは、吸気絞り弁13を駆動する
ステップモータ13および吸気制御弁16を駆動する電
磁アクチュエータ15を駆動する指令信号が出力され
る。図3は制御部で実行されるメイン制御ルーチンのフ
ローチャートであって、ステップ31において運転モー
ドを表すフラグMODEが“1”であるか否かが判定さ
れる。
A command signal for driving a step motor 13 for driving the intake throttle valve 13 and an electromagnetic actuator 15 for driving the intake control valve 16 is output from the control unit. FIG. 3 is a flowchart of a main control routine executed by the control unit. In step 31, it is determined whether a flag MODE indicating an operation mode is “1”.

【0012】ステップ31で肯定判定されれば、即ちミ
ラーサイクル運転をおこなう状態にあればステップ32
に進み、ミラーサイクル制御ルーチンを実行する。逆に
ステップ31で否定判定されれば、即ちオットーサイク
ル運転を行う状態にあればステップ33に進み、オット
ーサイクル制御ルーチンを実行する。図4はフラグMO
DEの設定ルーチンであって、所定の一定時間間隔毎に
割り込み処理される。
If an affirmative determination is made in step 31, that is, if the mirror cycle operation is being performed, step 32 is executed.
To execute a mirror cycle control routine. Conversely, if a negative determination is made in step 31, that is, if the Otto cycle operation is being performed, the routine proceeds to step 33, where an Otto cycle control routine is executed. FIG. 4 shows the flag MO
This is a DE setting routine in which interrupt processing is performed at predetermined time intervals.

【0013】ステップ41でアクセル開度センサ22で
検出されるアクセル踏み込み量Acを読み込み、ステッ
プ42でアクセル踏み込み量ΔAc を今回読み込んだア
クセル踏み込み量Ac と前回読み込んだアクセル踏み込
み量Acbとの差の絶対値として演算する。ステップ43
でアクセル踏み込み量ΔAc が予め定めたしきい値ΔA
co以上であるか否かが判定され、否定判定されれば特に
処理を行わずにこのルーチンを終了する。
In step 41, the accelerator depression amount Ac detected by the accelerator opening sensor 22 is read, and in step 42, the accelerator depression amount ΔAc is calculated as the absolute difference between the currently read accelerator depression amount Ac and the previously read accelerator depression amount Acb. Calculate as a value. Step 43
And the accelerator depression amount ΔAc is set to a predetermined threshold value ΔA.
It is determined whether or not it is equal to or greater than co. If a negative determination is made, this routine is terminated without performing any processing.

【0014】ステップ43で肯定判定されれば、ステッ
プ44に進み今回読み込んだアクセル踏み込み量Ac が
前回読み込んだアクセル踏み込み量Acbより大であるか
否かが判定される。ステップ44で肯定判定された場合
はステップ45に進み、第1切換ルーチンを実行してス
テップ47に進む。
If an affirmative determination is made in step 43, the routine proceeds to step 44, where it is determined whether the accelerator depression amount Ac read this time is greater than the accelerator depression amount Acb read last time. If an affirmative determination is made in step 44, the process proceeds to step 45, where a first switching routine is executed, and the process proceeds to step 47.

【0015】逆にステップ44で否定判定された場合は
ステップ46に進み、第2切換ルーチンを実行してステ
ップ47に進む。ステップ47で前回読み込んだアクセ
ル踏み込み量Acbを今回読み込んだアクセル踏み込み量
Ac で置き換えてこのルーチンを終了する。図5は第1
切換ルーチンのフローチャートであって、ミラーサイク
ル運転からオットーサイクル運転への切り換え時の制御
を実行する。
Conversely, if a negative determination is made in step 44, the routine proceeds to step 46, where a second switching routine is executed, and the routine proceeds to step 47. In step 47, the previously read accelerator depression amount Acb is replaced with the currently read accelerator depression amount Ac, and this routine ends. FIG. 5 shows the first
9 is a flowchart of a switching routine, in which control at the time of switching from the Miller cycle operation to the Otto cycle operation is executed.

【0016】ステップ451で、アクセルペダル踏み込
み量増加前のアクセル踏み込み量Acbに対応するミラー
サイクル運転時の吸気制御弁の閉弁時期θc を求る。な
おミラーサイクル運転時の吸気制御弁の閉弁時期はアク
セル踏み込み量の関数として表すことが可能である。ス
テップ452で、吸気弁の閉弁時期θICV とθc との差
Δθを算出する。
In step 451, the closing timing θc of the intake control valve during the Miller cycle operation corresponding to the accelerator depression amount Acb before the accelerator pedal depression amount is increased is determined. Note that the closing timing of the intake control valve during the Miller cycle operation can be expressed as a function of the accelerator depression amount. In step 452, a difference Δθ between the intake valve closing timing θICV and θc is calculated.

【0017】次にステップ453でΔθが所定値θlimi
t より大であるか否かが判定され、否定判定されれば直
接ステップ457に進む。ステップ453で肯定判定さ
れればステップ454に進み吸気制御弁の閉弁期間θc
を所定値αだけ増加して、ステップ455で閉弁期間θ
c を出力する。所定値αを一定値とすれば、変化率を一
定に維持して運転モードを変更することが可能となる。
Next, in step 453, Δθ is a predetermined value θlimi
It is determined whether it is greater than t, and if a negative determination is made, the process directly proceeds to step 457. If an affirmative determination is made in step 453, the routine proceeds to step 454, in which the intake control valve closing period θc
Is increased by a predetermined value α, and at step 455, the valve closing period θ
Output c. If the predetermined value α is a constant value, it is possible to change the operation mode while maintaining the rate of change constant.

【0018】また、 α = Δθ/N ただしNは予め定めたサイクル数 に選べば、所定サイクルN後に運転モードの切り換えを
完了することが可能となる。
Α = Δθ / N Here, if N is selected to be a predetermined number of cycles, it is possible to complete the switching of the operation mode after the predetermined cycle N.

【0019】さらに、 α = 60・Δθ/(Ne ・T) ただしNe は内燃機関回転数(rpm) T は予め定めた時間(秒) に選べば、所定時間T後に運転モードの切り換えを完了
することが可能となる。
Further, α = 60 · Δθ / (Ne · T) where Ne is the internal combustion engine speed (rpm) T is a predetermined time (second), and if the predetermined time (second) is selected, the operation mode switching is completed after the predetermined time T. It becomes possible.

【0020】ステップ456で吸気制御弁の閉弁期間θ
c が吸気弁の閉弁時期θICV より大であるか否かを判定
し、否定判定されればステップ454に戻る。即ちアク
セルペダルの踏み込み変化量が所定値θlimit より大き
い場合は、直ちにオットーサイクル運転時の閉弁時期と
せず、所定値αづつ閉弁時期を遅らして、トルクショッ
クの発生を防止する。
In step 456, the closing period θ of the intake control valve
It is determined whether or not c is greater than the intake valve closing timing θICV. If a negative determination is made, the process returns to step 454. That is, when the amount of change in the depression of the accelerator pedal is larger than the predetermined value θlimit, the valve closing timing is delayed by the predetermined value α by a predetermined value α instead of immediately setting the valve closing timing during the Otto cycle operation, thereby preventing the occurrence of torque shock.

【0021】ステップ456で肯定判定されればステッ
プ457に進み、運転モードを表すフラグMODEを
“0”として、以後オットーサイクル運転を行う。図6
は第2切換ルーチンのフローチャートであって、オット
ーサイクル運転からミラーサイクル運転への切り換え時
の制御を実行する。ステップ461で、アクセルペダル
踏み込み量減少後のアクセル踏み込み量Ac に対応する
ミラーサイクル運転時の吸気制御弁の閉弁時期θm を求
る。
If an affirmative determination is made in step 456, the process proceeds to step 457, in which the flag MODE representing the operation mode is set to "0", and the Otto cycle operation is performed thereafter. FIG.
Is a flowchart of a second switching routine, which executes control at the time of switching from Otto cycle operation to Miller cycle operation. At step 461, the closing timing θm of the intake control valve during the Miller cycle operation corresponding to the accelerator depression amount Ac after the accelerator pedal depression amount is reduced is determined.

【0022】ステップ462で、吸気弁の閉弁時期θIC
V と現在の吸気制御弁の閉弁時期θc との差Δθを算出
する。次にステップ463でΔθが所定値θlimit より
大であるか否かが判定され、否定判定されれば直接ステ
ップ467に進む。ステップ463で肯定判定されれば
ステップ464に進み吸気制御弁の閉弁期間θc をαだ
け減少して、ステップ465で閉弁期間θc を出力す
る。
At step 462, the closing timing θIC of the intake valve
The difference Δθ between V and the current intake valve closing timing θc is calculated. Next, at step 463, it is determined whether or not Δθ is greater than a predetermined value θlimit. If a negative determination is made, the process directly proceeds to step 467. If an affirmative determination is made in step 463, the routine proceeds to step 464, in which the closing period θc of the intake control valve is decreased by α, and in step 465, the closing period θc is output.

【0023】ステップ466で吸気制御弁の閉弁期間θ
c がミラーサイクル運転時の吸気弁の閉弁時期θm より
小であるか否かを判定し、否定判定されればステップ4
64に戻る。即ちアクセルペダルの踏み込み変化量が所
定値θlimit より大きい場合は、直ちにミラーサイクル
運転時の閉弁時期とせず、所定値αづつ閉弁時期を速め
て、トルクショックの発生を防止する。
At step 466, the closing period θ of the intake control valve
It is determined whether or not c is smaller than the closing timing θm of the intake valve during the Miller cycle operation.
Return to 64. That is, when the amount of change in the depression of the accelerator pedal is greater than the predetermined value θlimit, the valve closing timing is advanced by the predetermined value α instead of immediately setting the valve closing timing during the Miller cycle operation, thereby preventing the occurrence of torque shock.

【0024】ステップ466で肯定判定されればステッ
プ467に進み、運転モードを表すフラグMODEを
“1”として、以後ミラーサイクル運転を行う。図7は
制御ルーチンのステップ32で実行されるミラーサイク
ル制御ルーチンのフローチャートであって、ステップ3
21でアクセルペダル踏み込み量Ac を読み込み、ステ
ップ322で吸気制御弁開度φを、ステップ323で吸
気制御弁の閉弁時期θc をそれぞれアクセルペダル踏み
込み量Ac の関数として決定する。
If an affirmative determination is made in step 466, the process proceeds to step 467, in which the flag MODE indicating the operation mode is set to "1", and the mirror cycle operation is performed thereafter. FIG. 7 is a flowchart of a mirror cycle control routine executed in step 32 of the control routine, and is similar to step 3 in FIG.
In step 21, the accelerator pedal depression amount Ac is read. In step 322, the intake control valve opening φ is determined. In step 323, the intake control valve closing timing θc is determined as a function of the accelerator pedal depression amount Ac.

【0025】図8は吸気制御弁開度φおよび吸気制御弁
の閉弁時期θc を決定するためのグラフの1例であっ
て、横軸にアクセルペダル踏み込み量Ac を、縦軸に吸
気制御弁開度φおよび吸気制御弁の閉弁時期θc をと
る。即ちアクセルペダル踏み込み量Ac が所定値Acoよ
り大であれば吸気制御弁開度φは全開となり、吸気制御
弁の閉弁時期θc はアクセルペダル踏み込み量Acに比
例して大となり、ミラーサイクル運転を継続しつつ吸気
量を増加することが可能となる。
FIG. 8 is an example of a graph for determining the opening degree φ of the intake control valve and the closing timing θc of the intake control valve. The horizontal axis represents the accelerator pedal depression amount Ac, and the vertical axis represents the intake control valve. The opening degree φ and the closing timing θc of the intake control valve are determined. That is, if the accelerator pedal depression amount Ac is larger than a predetermined value Aco, the intake control valve opening φ is fully opened, the closing timing θc of the intake control valve becomes large in proportion to the accelerator pedal depression amount Ac, and the mirror cycle operation is started. It is possible to increase the intake air amount while continuing.

【0026】ステップ324で吸気制御弁開度φを、ス
テップ325で吸気制御弁の閉弁時期θc を出力してこ
のルーチンを終了する。図9は制御ルーチンのステップ
33で実行されるオットーサイクル制御ルーチンのフロ
ーチャートであって、ステップ331でアクセルペダル
踏み込み量Acを読み込み、ステップ332で吸気制御
弁開度φをアクセルペダル踏み込み量Ac に比例する値
に設定し、ステップ323で吸気制御弁の閉弁時期θc
を吸気弁の閉弁時期θICV より大である固定値θcoに設
定する。
In step 324, the intake control valve opening φ is output, and in step 325, the intake control valve closing timing θc is output, and this routine is terminated. FIG. 9 is a flowchart of the Otto cycle control routine executed in step 33 of the control routine. In step 331, the accelerator pedal depression amount Ac is read, and in step 332, the intake control valve opening φ is proportional to the accelerator pedal depression amount Ac. And at step 323, the closing timing θc of the intake control valve
Is set to a fixed value θco which is greater than the intake valve closing timing θICV.

【0027】そして、ステップ334で吸気制御弁開度
φを、ステップ335で吸気制御弁の閉弁時期θc を出
力してこのルーチンを終了する。図10は本発明の作用
の説明図であって、横軸に内燃機関の回転角を、縦軸に
吸気弁および吸気制御弁の弁リフトをとる。即ち吸気弁
は上死点近傍で開弁し、ピストン下降中に最大開度とな
り、下死点近傍で閉弁する。
Then, at step 334, the intake control valve opening φ is output, and at step 335, the closing timing θc of the intake control valve is output, and this routine is terminated. FIG. 10 is an explanatory view of the operation of the present invention, in which the horizontal axis represents the rotation angle of the internal combustion engine, and the vertical axis represents the valve lift of the intake valve and the intake control valve. That is, the intake valve opens near the top dead center, reaches its maximum opening during the lowering of the piston, and closes near the bottom dead center.

【0028】そしてミラーサイクル運転中は、吸気制御
弁は吸気弁が開弁する以前の時期W1で開弁し、吸気弁
が開弁中である時期W2に閉弁する。即ち気筒には吸気
弁の弁リフト曲線aと吸気制御弁の弁リフト曲線bとで
囲まれた面積Mに相当する吸気が供給される。しかも吸
気流路には絞りは存在しないため絞り損失は発生しな
い。
During the Miller cycle operation, the intake control valve opens at a timing W1 before the intake valve opens, and closes at a timing W2 when the intake valve is opening. That is, the intake air corresponding to the area M surrounded by the valve lift curve a of the intake valve and the valve lift curve b of the intake control valve is supplied to the cylinder. In addition, since no throttle is present in the intake passage, no throttle loss occurs.

【0029】またミラーサイクル運転中の吸気量は吸気
制御弁の閉弁時期W2をアクセルペダルの踏み込み量A
c に応じて制御することにより調整することが可能であ
る。一方オットーサイクル運転中は吸気制御弁を吸気弁
が開弁している期間より長く開弁させるために、吸気制
御弁の閉弁時期は吸気弁の閉弁時期、即ち下死点より遅
い時期W0とする。
The amount of intake air during the Miller cycle operation is determined by determining the closing timing W2 of the intake control valve and the amount of depression A of the accelerator pedal.
It can be adjusted by controlling according to c. On the other hand, during the Otto cycle operation, in order to open the intake control valve longer than the period during which the intake valve is opened, the closing timing of the intake control valve is set to the closing timing of the intake valve, that is, the timing W0 later than the bottom dead center. And

【0030】いま、アイドリング状態にあった自動車の
アクセルペダルが急激に踏み込まれた場合を想定する
と、ミラーサイクル運転されていた内燃機関をアクセル
ペダルの踏み込み量Ac に応じたトルクを出力するため
にオットーサイクルで運転することとなる。従って吸気
制御弁の閉弁時期をW2からW0に変更する必要が生じ
るが、本発明にかかる吸気制御装置によれば一気に変更
するのではなく、 W2 → W3 → W4 → W0 と順次変更することによって、運転モードの変更に起因
するトルクショックの発生が防止される。
Now, assuming that the accelerator pedal of the vehicle in the idling state is suddenly depressed, the internal combustion engine which has been operated in the Miller cycle is driven by an Otto in order to output a torque corresponding to the depression amount Ac of the accelerator pedal. It will be operated in a cycle. Therefore, it is necessary to change the valve closing timing of the intake control valve from W2 to W0. However, according to the intake control device of the present invention, it is not necessary to change the timing at once, but to sequentially change W2 → W3 → W4 → W0. Thus, the occurrence of torque shock due to the change in the operation mode is prevented.

【0031】なおアクセルペダルの踏み込みを急に開放
した場合には、吸気制御弁の閉弁時期は上記とは逆に、 W0 → W4 → W3 → W2 と変更される。なお上記実施例においては、吸気制御弁
を吸気絞り弁と吸気弁との間の吸気枝管に設置している
が、吸気弁自体の開閉弁時期を変更するいわゆる可変バ
ルブシステムとして吸気制御弁を省略した吸気制御装置
においても本発明を適用できることは明らかである。
When the depression of the accelerator pedal is suddenly released, the closing timing of the intake control valve is changed from W0 to W4 to W3 to W2, contrary to the above. In the above embodiment, the intake control valve is installed in the intake branch pipe between the intake throttle valve and the intake valve, but the intake control valve is a so-called variable valve system that changes the opening / closing timing of the intake valve itself. It is clear that the present invention can be applied to an omitted intake control device.

【0032】[0032]

【発明の効果】本発明にかかる内燃機関の吸気制御装置
によれば、第1の制御手段と第2の制御手段との切替時
に単位時間当りの吸気供給期間の変化量が所定値以上で
ある場合には、過渡的に吸気供給手段の吸気供給期間を
ミラーサイクル運転時の吸気供給期間より短くかつオッ
トーサイクル運転時の吸気供給期間より長く設定するこ
とにより、内燃機関の運転モードの切り換えを滑らかに
行うことが可能となりトルクショックの発生を防止でき
る。
According to the intake control system for an internal combustion engine according to the present invention, the change amount of the intake supply period per unit time at the time of switching between the first control means and the second control means is equal to or more than a predetermined value. In this case, the operation mode of the internal combustion engine can be smoothly switched by setting the intake supply period of the intake supply means to be transiently shorter than the intake supply period in the Miller cycle operation and longer than the intake supply period in the Otto cycle operation. And the occurrence of torque shock can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の構成図(1)である。FIG. 1 is a configuration diagram (1) of an embodiment.

【図2】実施例の構成図(2)である。FIG. 2 is a configuration diagram (2) of an embodiment.

【図3】メイン制御ルーチンのフローチャートである。FIG. 3 is a flowchart of a main control routine.

【図4】フラグ設定ルーチンのフローチャートである。FIG. 4 is a flowchart of a flag setting routine.

【図5】第1切換ルーチンのフローチャートである。FIG. 5 is a flowchart of a first switching routine.

【図6】第2切換ルーチンのフローチャートである。FIG. 6 is a flowchart of a second switching routine.

【図7】ミラーサイクル制御ルーチンのフローチャート
である。
FIG. 7 is a flowchart of a mirror cycle control routine.

【図8】吸気絞り弁開度、吸気制御弁閉弁時期決定用グ
ラフである。
FIG. 8 is a graph for determining an intake throttle valve opening degree and an intake control valve closing timing.

【図9】オットーサイクル制御ルーチンのフローチャー
トである。
FIG. 9 is a flowchart of an Otto cycle control routine.

【図10】作用の説明図である。FIG. 10 is an explanatory diagram of an operation.

【符号の説明】[Explanation of symbols]

5…吸気弁 6…吸気ポート 8…吸気枝管 9…サージタンク 13…ステップモータ 14…吸気絞り弁 16…吸気制御弁 17…燃料噴射弁 5 intake valve 6 intake port 8 intake branch 9 surge tank 13 step motor 14 intake throttle valve 16 intake control valve 17 fuel injection valve

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内燃機関の吸気流路に設置され内燃機関
に供給される吸気量をその開度を制御することにより調
整する吸気絞り弁と、 該吸気絞り弁より下流側の吸気流路に設置され内燃機関
に供給される吸気量を燃焼室と吸気流路とを連通させて
いる吸気供給期間を制御することにより調整する吸気時
期制御手段と、 前記吸気絞り弁を絞り損失の発生しない開度にまで開弁
するとともに、吸気量を内燃機関運転状態に応じて前記
吸気時期制御手段の吸気供給期間を制御することにより
調整する第1の制御手段と、 吸気量を内燃機関運転状態に応じて前記吸気絞り弁の開
度を制御することにより調整する第2の制御手段と、を
備える内燃機関の吸気制御装置において、 前記第1の制御手段による制御状態と前記第2の制御手
段による制御状態との切替時に単位時間当たりの吸気供
給期間の変化量が所定値以上である場合には、前記吸気
時期制御手段の吸気供給期間を前記第1の制御手段によ
って制御される吸気供給期間よりも長くかつ前記第2の
制御手段によって制御される吸気供給期間よりも短い吸
気供給期間に制御する過渡時制御手段を具備する内燃機
関の吸気制御装置。
An intake throttle valve installed in an intake passage of an internal combustion engine for adjusting an amount of intake air supplied to the internal combustion engine by controlling an opening degree thereof, and an intake throttle valve downstream of the intake throttle valve. Intake timing control means for adjusting the amount of intake air supplied to the internal combustion engine by controlling an intake air supply period for communicating the combustion chamber with the intake passage; and opening the intake throttle valve so as not to cause a throttle loss. A first control means for controlling the intake air amount by controlling the intake air supply period of the intake timing control means in accordance with the operation state of the internal combustion engine, and opening the intake air amount in accordance with the operation state of the internal combustion engine. A second control means for adjusting the opening degree of the intake throttle valve by controlling the opening degree of the intake throttle valve. The control state of the first control means and the control of the second control means Status If the amount of change of the intake supply period per unit time at the time of switching is equal to or greater than a predetermined value, the intake supply period of the intake timing control unit is longer than the intake supply period controlled by the first control unit, and An intake control device for an internal combustion engine, comprising: a transient control means for controlling the intake supply period shorter than the intake supply period controlled by the second control means.
JP4361467A 1992-12-29 1992-12-29 Intake control device for internal combustion engine Expired - Fee Related JP2897570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4361467A JP2897570B2 (en) 1992-12-29 1992-12-29 Intake control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4361467A JP2897570B2 (en) 1992-12-29 1992-12-29 Intake control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH06200763A JPH06200763A (en) 1994-07-19
JP2897570B2 true JP2897570B2 (en) 1999-05-31

Family

ID=18473712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4361467A Expired - Fee Related JP2897570B2 (en) 1992-12-29 1992-12-29 Intake control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2897570B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706957B2 (en) * 2005-03-31 2011-06-22 トヨタ自動車株式会社 Engine control device
CN106523140A (en) * 2015-09-15 2017-03-22 熵零股份有限公司 Throttling engine
US10023174B2 (en) * 2016-09-09 2018-07-17 Ford Global Technologies, Llc Methods and systems for hybrid vehicle power delivery
CN115234385A (en) * 2022-06-29 2022-10-25 中国第一汽车股份有限公司 Thermodynamic cycle control method, thermodynamic cycle system and engine

Also Published As

Publication number Publication date
JPH06200763A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
KR100284795B1 (en) Idle speed control device of the engine
KR940002064B1 (en) Controlling apparatus for internal combustion engine
US5950594A (en) Apparatus for controlling fuel injection in stratified charge combustion engine
JPH1193731A (en) Fuel injection control device for cylinder injection internal combustion engine
JP2897570B2 (en) Intake control device for internal combustion engine
JP3601386B2 (en) Engine intake air control system
JP2006125352A (en) Controller for internal combustion engine with supercharger
JP2738190B2 (en) Intake control device for internal combustion engine
JPH09189248A (en) Engine controller
JPS63297746A (en) Air-fuel ratio controller for engine equipped with supercharger
JP2691932B2 (en) Variable cycle engine controller
JPH08189368A (en) Deceleration control device for engine
JPH04101031A (en) Fuel feeder of internal combustion engine
JPH05332145A (en) Intake controller of internal combustion engine
JP2001248487A (en) Control device for internal combustion engine
JP3812111B2 (en) Control device for internal combustion engine
JPS6120268Y2 (en)
JPH0810679Y2 (en) Internal combustion engine intake system
JPH10141072A (en) Control device for engine with mechanical supercharger
JP2606285Y2 (en) Swirl control device for diesel engine
JPH05187238A (en) Air intake control device for internal combustion engine
JPH11107815A (en) Combustion controller for lean combustion internal combustion engine
JP2001193514A (en) Controller for engine
JPS60164642A (en) Fuel injection amount control device in diesel-engine
JPH11343906A (en) Internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees