JPH0326464A - Descalling method - Google Patents

Descalling method

Info

Publication number
JPH0326464A
JPH0326464A JP15640889A JP15640889A JPH0326464A JP H0326464 A JPH0326464 A JP H0326464A JP 15640889 A JP15640889 A JP 15640889A JP 15640889 A JP15640889 A JP 15640889A JP H0326464 A JPH0326464 A JP H0326464A
Authority
JP
Japan
Prior art keywords
pressure water
descaling
scale
abrasive
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15640889A
Other languages
Japanese (ja)
Inventor
Masakatsu Ueda
昌克 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15640889A priority Critical patent/JPH0326464A/en
Publication of JPH0326464A publication Critical patent/JPH0326464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To increase a processing efficiency and to reduce a processing cost by blowing to a scale layer a high pressure water of >=200 atmosphere or an abrasive mixing high pressure water. CONSTITUTION:A scale layer 2 of the surface layer of the material 1 to be descaled is rapidly heated at the temperature rising speed of >=1000 deg.C/min to the temperature zone of 300 deg.C/min. and 500 deg.C/max. The scale layer 2 is then removed by blowing the high pressure water of >=200 atmosphere or abrasive mixing high pressure water to this scale layer 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、普通鋼、ステンレス鋼、N1基合金といった
鋼または合金の脱スケール方法に関する.〔従来の技術
〕 鋼または合金が熱間圧延、熱処理を受けると、その表面
にスケールが生成される.このスケールは熱間圧延後、
熱処理後に材料がそのまま製品とされる場合は製品品質
を低下させ、圧延を受ける場合は圧延の傷害となる.従
って、熱間圧延、熱処理でスケールが生じた材料は脱ス
ケールを受けるのが通例になっている. ここにおける脱スケール法としては酸洗が一般的であり
、一部ではグラインダ、ブラシ等によるメカニカル脱ス
ケール法、高圧水の吹き付け、高圧水に研磨材を混入さ
せて吹き付けるいわゆる湿式ブラスト法等が単独または
酸洗と併用した形で用いられている. また、脱スケール法ではないが、これに類する方法とし
て、圧延ロールの研削には、高圧水の吹き付けや高圧水
に研磨材を混入させて吹き付ける方法が用いられ、腐食
生底物や配管内付着物の除去には、酸洗や高圧水の吹き
付けが用いられている. 〔発明が解決しようとする課題〕 これらの従来法のうち、酸洗は能率が低く、処理時間が
長くなる上、必然的に設備が大型化し、設備コストが膨
大となる.その上、高合金のスケールは酸に溶解しにく
いので、このようなスケールに対しては、処理時間をい
くら長くしても、十分な脱スケール効果が得られない。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for descaling steel or alloys such as ordinary steel, stainless steel, and N1-based alloys. [Prior Art] When steel or alloy is subjected to hot rolling or heat treatment, scale is generated on its surface. After hot rolling, this scale is
If the material is used as a product after heat treatment, the quality of the product will deteriorate, and if it is subjected to rolling, it will cause rolling damage. Therefore, it is customary for materials that have scaled during hot rolling or heat treatment to undergo descaling. The common descaling method used here is pickling, but in some cases, mechanical descaling using a grinder, brush, etc., spraying with high-pressure water, and the so-called wet blasting method in which abrasives are mixed with high-pressure water and sprayed are used alone. Or it is used in combination with pickling. In addition, although it is not a descaling method, a similar method is used to grind rolls, such as spraying high-pressure water or spraying high-pressure water mixed with an abrasive. Pickling and high-pressure water spraying are used to remove kimonos. [Problems to be solved by the invention] Among these conventional methods, pickling has low efficiency, takes a long time, and inevitably requires larger equipment, resulting in enormous equipment costs. Furthermore, since high-alloy scales are difficult to dissolve in acids, a sufficient descaling effect cannot be obtained for such scales no matter how long the treatment time is.

また,グラインダ、ブラシ等によるメカ二〜カル脱スケ
ール法は、脱スゲールCこ手間がかかり、脱スケール後
の表面状態も良好とはjえない。
Further, the mechanical descaling method using a grinder, a brush, etc. takes time to remove the scale, and the surface condition after descaling is not good.

これらGこ対し、高圧水の吹きイ・1けは作業が簡単で
ある。しかし、高圧水だUの場合は十分な脱スケール効
果が得られず、高圧水に研磨材を混入させた湿式ブラス
ト法の場合は、脱スケール効果は高いものの、脱スケー
ルにより地肌がt員傷し、研磨材の噛込みも生しる。研
磨材の噛み込みが生しると、,この部分を起点として局
部腐食を生しる危険性がある。
In contrast to these G types, high-pressure water blowing is easier. However, in the case of high-pressure water, a sufficient descaling effect cannot be obtained, and in the case of wet blasting, in which an abrasive is mixed with high-pressure water, although the descaling effect is high, the descaling can cause damage to the scalp. However, it also causes the abrasive material to get stuck. If the abrasive gets caught, there is a risk of local corrosion starting from this area.

最近は熱間圧砥、熱処理等でのライン速度が上W, L
、また最近多用されている高合金に生しるスゲールは臂
通烟に生じるスケールと比べて剥離し難いことから、脱
スケール効果については湿式プラス1・法と同程廣が少
なくとも必要であり、脱スゲール後の表面状態について
はスケールのみが除去され、地肌は損傷させないことが
求められる。
Recently, the line speed for hot pressure grinding, heat treatment, etc. has increased W, L
In addition, since the scale that forms on high alloys, which have been widely used recently, is difficult to peel off compared to the scale that forms on armpit smoke, the descaling effect requires at least the same width as the wet plus 1 method. Regarding the surface condition after descaling, it is required that only the scale is removed and the skin is not damaged.

本発明は斯かる要求に応え、作業能率は高圧水の吹き付
けと同等で、脱スケール効果は高圧水に研磨材を混入し
た湿式ブラスト法と同等もしくはこ和を凌ぎ、脱スゲー
ル後の表面状態については、湿式プラス1・法を凌ぐ脱
スケール効果を&i侃したときでも湿式プラス1・法よ
り優れた表面状態が確保される脱スケール方法を提供す
ることを目的とする。
The present invention meets these demands, and has a working efficiency equivalent to that of high-pressure water spraying, a descaling effect equal to or superior to wet blasting in which an abrasive is mixed with high-pressure water, and a surface condition after descaling. The object of the present invention is to provide a descaling method that ensures a surface condition superior to that of the wet Plus 1 method even when the descaling effect exceeds that of the Wet Plus 1 method.

(課題を解決するための手段〕 ところで従来の脱スケール法のうち、高圧水の吹き付け
は、キャビテーシッン・コロージョンを利用して脱スケ
ールを行うものである。
(Means for Solving the Problem) By the way, among conventional descaling methods, high-pressure water spraying uses cavitation corrosion to descale.

すなわち、ノズルより高圧水を噴出させると、噴出流の
巾央部で流速が大きく、周辺部で清,速か小さくなる。
That is, when high-pressure water is ejected from a nozzle, the flow velocity is high at the center of the ejected flow, and becomes clearer or slower at the periphery.

その結果、強い剪断力が生しるとともに、周辺部が中央
部に追従できなくなってキャビテーションを生しる。高
圧水の吹き付けによる脱スケール法は、このキャビテー
ションの回復力を利用するもので、スケールの付着した
材料表面に高圧水が吹き付けられると、キャビテーショ
ンをなくそうとスケールが持ち上げられ、持ち1−.げ
られたスゲールが剪断力で連びさられることにより脱ス
ケールを行なう。
As a result, a strong shearing force is generated, and the peripheral portion is unable to follow the central portion, resulting in cavitation. The descaling method by spraying high-pressure water takes advantage of the resilience of this cavitation. When high-pressure water is sprayed onto the surface of a material on which scale has adhered, the scale is lifted to eliminate cavitation. The removed scale is connected by shearing force to descale it.

この脱スケール法は実施が容易なJ−、メカニカル脱ス
ゲール法や湿式プラス1・法のようにスケールを地肌ご
と削り取るものではないから、脱スケール後の地肌状態
が良好になる。しかし、脱スケール効果は十分とは言え
ない。
This descaling method does not scrape away the scale along with the skin like the easy-to-implement J-, mechanical descaling method or wet plus 1 method, so the skin condition after descaling is good. However, the descaling effect cannot be said to be sufficient.

本発明者らは、前記目的を達威するためには、高圧水吹
き付けの地肌に対する有利性を消失させることなく、脱
スケール効果を高めるのが得策と考え、その具体的手段
について種々実験、研究を繰り返した。その結果、材料
表明の脱スケール層に急速加熱による熱衝撃を加えるの
が効果的なことを知見した。
In order to achieve the above object, the present inventors believe that it is a good idea to enhance the descaling effect without losing the advantage of high-pressure water spraying on the skin, and have conducted various experiments and research on specific means for this purpose. repeated. As a result, we found that it is effective to apply thermal shock by rapid heating to the descaling layer of the material.

すなわち、材料表層の被脱スケール層を高圧水の吹き付
け前に誘導加熱やハーナ加熱等で急速加熱するど、第1
図に示すように、材料lの表面に付着するスケール2に
ひび割れが生し、スケール2の地肌に対する密着力も弱
まる。そして、これに続いて高圧水の吹き付けを行なう
と、スケール2が9、冷されることGこより、スケール
2のひび割れが一層広がり、地肌に対する密着力もさら
に弱まる。その結果、高圧水の吹き付けによっても十分
なスケール剥離除去効果が得られる。このように熱衝撃
と高圧水吹き付けとの組合せは、加熱時のスケール破砕
作用だけでなく、急冷によるスケール破砕作用が伴い、
高圧水吹き付けだけでもスケールを十分に取り除くこと
ができる。
In other words, the first step is to quickly heat the surface layer of the material to be descaled using induction heating, Harna heating, etc. before spraying high-pressure water.
As shown in the figure, cracks appear in the scale 2 adhering to the surface of the material 1, and the adhesion of the scale 2 to the skin also weakens. Subsequently, when high-pressure water is sprayed, the scale 2 is cooled down, causing the cracks in the scale 2 to further spread and its adhesion to the skin to be further weakened. As a result, a sufficient scale removal effect can be obtained even by spraying high-pressure water. In this way, the combination of thermal shock and high-pressure water spraying not only causes scale crushing effects during heating, but also involves scale crushing effects due to rapid cooling.
High-pressure water spray alone is enough to remove scale.

そして、熱Ij撃によるスケール破砕作用は機械的なも
のではないので、脱スケール後の地肌の状態を悪化させ
ることがなく、脱スケール性のみを湿式プラス1・法と
同程度あるいはそれ以」一にまで向上さセる。
In addition, since the scale crushing effect caused by thermal IJ bombardment is not mechanical, it does not worsen the condition of the skin after descaling, and the descaling performance is the same as or better than the wet +1 method. It has been improved to .

また、このとき高圧水に研磨材が混入されていると、研
磨材がスケールを機械的に破壊し、かつスケール面を研
磨材が叩くことによってスケールの地肌に対ずる密着力
が弱まり、これらの作用が高圧水によるスケールの剥離
除去作用を助長する結果、高圧水に研磨材のみを混合す
る従来の湿式ブラスト法よりも更に優れた脱スケール効
果が得られる。更に、脱スケール後の地肌の状態につい
ても、スケール破砕が脱スケール効果の向上に寄与して
いるので、脱スケールに対する研磨材の負担が軽減され
、その分、地肌の状態が改善されることになる. 本発明は、斯かる知見に基づきなされたもので、被脱ス
ケール材料表層のスケール層を300℃以上、500℃
以下の屋度域に1000℃/分以上の昇温速度で急速加
熱し、続いて200気圧以上の高圧水または研磨材混入
高圧水を前記スケール層に吹き付けることを特徴とする
脱スケール方法を要旨とする。
Additionally, if an abrasive is mixed into the high-pressure water at this time, the abrasive will mechanically destroy the scale, and the abrasive will hit the scale surface, weakening the adhesion of the scale to the skin. As a result, the descaling effect is more excellent than the conventional wet blasting method in which only an abrasive is mixed with high-pressure water. Furthermore, regarding the condition of the surface after descaling, since scale crushing contributes to improving the descaling effect, the burden on the abrasive for descaling is reduced, and the condition of the surface is improved accordingly. Become. The present invention was made based on this knowledge, and the scale layer on the surface of the material to be descaled is heated to 300°C or higher and 500°C.
Summary of a descaling method characterized by rapidly heating at a temperature increase rate of 1000°C/min or more in the following indoor temperature range, and then spraying high pressure water of 200 atm or more or high pressure water mixed with an abrasive onto the scale layer. shall be.

〔作  用〕[For production]

本発明の脱スケール方法においては、まず、材料表層の
スケール層を3 0 0 ’C以上、5 0 0 ’C
以下の温度域に1000’C/分以上の昇温速度で急速
加熱する. 加熱開始温度は、加熱温度幅を確保するために通常は常
温とする. 加熱手段は材料表層のスケール層を集中的に加熱できる
ものが望ましく、具体的には例えば誘導加熱、バーナ加
熱等を挙げることができる.スケール層の昇温速度を1
000℃分/以上としたのは、スケール層に十分な熱衝
撃を加えるためであり、昇温速度が1000℃/分未満
では脱スケール効果が十分に改善されない. スケール層の加熱終了温度を300℃以上、500℃以
下としたのは、300″C未満ではスケールに対する熱
衝撃が不足するために脱スケール性が十分に改善されず
、500″C超では熱衝撃による脱スケール性の改善効
果が飽和し、且つ材料特性を変化させる可能性があるか
らである。
In the descaling method of the present invention, first, the scale layer on the surface of the material is heated to 300'C or more, 500'C
Rapidly heat to the following temperature range at a heating rate of 1000'C/min or more. The heating start temperature is usually room temperature to ensure a heating temperature range. The heating means is preferably one that can intensively heat the scale layer on the surface of the material, and specific examples include induction heating, burner heating, etc. The heating rate of the scale layer is 1
The reason why the heating rate is set at 000°C/min or more is to apply sufficient thermal shock to the scale layer, and if the heating rate is less than 1000°C/min, the descaling effect will not be sufficiently improved. The reason why the heating end temperature of the scale layer was set to 300°C or higher and 500°C or lower is that below 300"C, there is insufficient thermal shock to the scale, so the descaling property is not sufficiently improved, and above 500"C, the thermal shock This is because there is a possibility that the improvement effect of descaling property due to oxidation is saturated and the material properties may change.

スケール層を急速加熱した後は、引き続きスケール層に
対して高圧水または研磨材を混入した高圧水の吹き付け
を行なう。
After rapidly heating the scale layer, the scale layer is subsequently sprayed with high pressure water or high pressure water mixed with an abrasive.

高圧水の吹き付けは、スケール層を冷却させないために
、急速加熱終了後できるだけ早い時期に開始するのがよ
い. 高圧水を吹き付ける際の水圧を200気圧以上としたの
はき200気圧未満では十分な脱スケール効果が得られ
ないためである.上限については、水圧を極端に高くす
ると、噴射水そのものが処理列象材を損傷させ、かつ装
置規模も膨大となるので、実用上は500気圧程度に抑
えるのが望ましい。
It is best to start spraying high-pressure water as soon as possible after rapid heating to avoid cooling the scale layer. This is because the water pressure when spraying high-pressure water is set to 200 atm or more, but if it is less than 200 atm, a sufficient descaling effect cannot be obtained. Regarding the upper limit, if the water pressure is made extremely high, the jetted water itself will damage the treated array material, and the scale of the apparatus will also become enormous, so it is practically desirable to keep it to about 500 atm.

また吹き付ける水の温度は常温が好ましい。これは作業
が容易であること、スケールを急速に冷却できることに
よる. 研磨材を使用する場合、その種類は、汎用のものが使用
できるので、特に制限を設けないが、脱スケール効果は
゜ビンカース硬度(Hv)で500以上、粒度100μ
m−1mの研磨材を使用するときに特に良好となる. 研磨材の硬度がHvで500未満ではスケールに与える
衝撃が弱く、脱スケール性が低下する。
Further, the temperature of the water to be sprayed is preferably room temperature. This is because the work is easy and the scale can be cooled quickly. When using an abrasive, there are no particular restrictions on the type of abrasive as a general-purpose one can be used, but the descaling effect should be 500 or more in Binkers hardness (Hv) and a particle size of 100μ.
This is especially good when using m-1m abrasive material. If the hardness of the abrasive is less than 500 Hv, the impact given to the scale will be weak and the descaling performance will deteriorate.

硬度がHvで500以上の研磨材としては、けい砂、銅
からみ、鋳鉄グリッド、ガーネット、酸化アルミ等があ
る. また研磨材の粒度は細か過ぎると、研vj能力に欠け、
粗過ぎると、高圧水のノズル径を大きくしなければなら
ない関係から圧力低下を生し、やはり研磨能力が低下す
るので、100μm〜1 +++a+の範囲が好ましい
. 〔実施例〕 炭素jil(SS41),ステンレス鋼(SUS410
、SUS304),二相ステンレス鋼(SUS329J
l),Ni基合金(Incoloy 8 2 5Has
telloy C 2 7 6 )の各材料を900−
1000℃で熱間加工し、スケールをそのまま残して各
材料よりIOOamwX10mmtX300au++/
!の供試材を切り出した. 次いで、各供試材の表層を誘導加熱、バーナー加熱の2
種類の加熱法により、常温から500〜2 0 0 0
 ’Cの昇温速度で200〜500℃の温度に加熱し、
直ちに表層に高圧水を吹き付けて表層の脱スケールを行
った.高圧水の吹き付け圧力は150〜iooo気圧の
範囲内で調整した.吹き付けに使用したノズルは内径2
mで、供試材に対して直角にセットし、供試材からの距
離を100一として、1 0 0m/m l nの速度
で移動させた.また、一部の供試材については、研磨材
を混入した高圧水の吹き4=t &jを行った。研磨材
は粒撞30Qμmのガーネノl・で、流量は1 0 0
 g/分と(7た。
Abrasives with a hardness of 500 Hv or higher include silica sand, copper mesh, cast iron grid, garnet, aluminum oxide, etc. Also, if the grain size of the abrasive is too fine, it will lack polishing ability,
If it is too rough, the nozzle diameter of the high-pressure water must be increased, resulting in a pressure drop and the polishing ability is also reduced, so a range of 100 μm to 1 +++a+ is preferable. [Example] Carbon steel (SS41), stainless steel (SUS410
, SUS304), duplex stainless steel (SUS329J
l), Ni-based alloy (Incoloy 8 2 5 Has
each material of telloy C 2 7 6)
After hot working at 1000℃ and leaving the scale as it is, each material is made into IOOamwX10mmtX300au++/
! A sample material was cut out. Next, the surface layer of each test material was heated by induction and burner.
Depending on the heating method, the temperature ranges from room temperature to 500 to 2000
Heating to a temperature of 200 to 500 °C at a heating rate of 'C,
Immediately, high-pressure water was sprayed onto the surface layer to descale it. The spraying pressure of high-pressure water was adjusted within the range of 150 to iooo atmospheric pressure. The nozzle used for spraying has an inner diameter of 2
m, it was set perpendicular to the sample material, the distance from the sample material was 100 m, and it was moved at a speed of 100 m/ml n. Further, some of the test materials were subjected to blowing 4=t &j with high-pressure water mixed with an abrasive. The abrasive material is Garneol with a grain density of 30Qμm, and the flow rate is 100
g/min and (7.

脱スケール後の供試材の表面状態を×(ほとんと脱スゲ
ールされていない)、△(まばらに脱スb−−ルされて
いる)、O(脱スケール性良好)、、◎(脱スケール性
が非常に良好)の4段階で評価した結果を第1表に示す
。スケール加熱条件は、スケール肪中の地肌との男面近
くGこ埋め逮んだ熱電対による測定データに基づいて定
量化した。
The surface condition of the sample material after descaling is: × (hardly descaled), △ (sparsely descaled), O (good descaling property), ◎ (descaled). Table 1 shows the results of evaluation on a four-level scale (very good). The scale heating conditions were quantified based on measurement data using a thermocouple buried near the male face of the scale fat.

咀1−1 5はSUS304からなる供試材に対する試
験結果である。
Figures 1-1-5 are test results for a sample material made of SUS304.

N(11.7では加熱温度が300’C未満であるため
に脱スケール性は悪い.また、k4,10では昇温速度
がi o o o ’c未満であり、Nl113では高
圧水の吹き{4け圧力が200気圧未満であるため(こ
、いずれも脱スケール性は悪い。これらに対し、他はい
ずれも本発明例で、高圧水のみの場合でも良好な脱スケ
ール性を示し、高圧水に研磨材を混入した場合には非常
に良好な脱スケール性を示している。
N (11.7 has poor descaling properties because the heating temperature is less than 300'C. Also, for k4 and 10, the temperature increase rate is less than i o o o 'c, and for Nl113, high pressure water blowing { Because the pressure is less than 200 atm (all of them have poor descaling properties.On the other hand, all the other examples of the present invention show good descaling properties even when using high pressure water only, and high pressure water When an abrasive is mixed in, it shows very good descaling properties.

また、弘l6〜24はSUS304以外の供試t4に本
発明を適用した例であり、高圧水のみの場合に良好な脱
スケールを示し、高圧水に研磨材を混入した場合にはI
F常に良好な脱スケール性を示している。
In addition, Hiroshi 6 to 24 are examples in which the present invention was applied to sample t4 other than SUS304, and good descaling was achieved when only high pressure water was used, and when an abrasive was mixed in high pressure water, I
F always shows good descaling properties.

第2表は、各種の脱スケール法を高圧水吹き付けを基唯
として、作業能率、地肌の状態を含めた脱スケール後の
表面状態について比較したものである. 本発明の脱スケール方法は、高圧水吹き付け、酸洗、グ
ラインダーと比べて作業能率が高く、しかも表面状態が
良好である.また、研磨材混入の高圧水吹き付けと比べ
ても、同一能率の場合は勿論のこと、能率が高い場合で
も表面状態が著しく優れる. (発明の効果) 以上の説明から明らかなように、本発明の脱スケール方
法は基本的には高圧水を吹き付けるものであるから、作
業が簡単で実施容易である.また、脱スケール性につい
ては研磨材を混入する従来の湿式ブラスト法と同等もし
くはこれよりも優れた性能を示す.さらに、熱mMは、
それ自体が地肌を損傷させないだけでなく、研磨材の負
担を軽減させるので、研磨材を併用した場合でも地肌の
損傷を効果的に抑制する.したがって本発明法は、例え
ばステンレス鋼、Ni基合金等の工業的脱スケール法と
して優れた適正を示し、その処理能率向上、処理コスト
低減を図る.更に、本発明法は腐食生威物、配管内付着
物の除去、表面疵の除去等に適用でき、また任意の形状
の物にも適用できるものである.
Table 2 compares various descaling methods based on high-pressure water spraying in terms of work efficiency and surface condition after descaling, including the condition of the surface. The descaling method of the present invention has higher work efficiency than high-pressure water spraying, pickling, and grinding, and also provides a good surface condition. Furthermore, compared to high-pressure water spraying mixed with abrasives, the surface condition is significantly superior not only when the efficiency is the same, but even when the efficiency is high. (Effects of the Invention) As is clear from the above explanation, since the descaling method of the present invention basically involves spraying high-pressure water, the work is simple and easy to implement. In addition, in terms of descaling performance, it shows performance equivalent to or better than conventional wet blasting methods that incorporate abrasives. Furthermore, the heat mm is
Not only does it not damage the scalp by itself, but it also reduces the burden on the abrasive, so it effectively suppresses damage to the scalp even when used in combination with an abrasive. Therefore, the method of the present invention is highly suitable as an industrial descaling method for stainless steel, Ni-based alloys, etc., and aims to improve processing efficiency and reduce processing costs. Furthermore, the method of the present invention can be applied to the removal of corrosive substances, deposits in pipes, surface flaws, etc., and can also be applied to objects of arbitrary shapes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の脱スケール方法におけるスケール剥離
メカニズムを示す模式図である。
FIG. 1 is a schematic diagram showing the scale removal mechanism in the descaling method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、被脱スケール材料表層のスケール層を300℃以上
、500℃以下の温度域に1000℃/分以上の昇温速
度で急速加熱し、続いて200気圧以上の高圧水または
研磨材混入高圧水を前記スケール層に吹き付けることを
特徴とする脱スケール方法。
1. Rapidly heat the scale layer on the surface of the material to be descaled to a temperature range of 300°C or higher and 500°C or lower at a heating rate of 1000°C/min or higher, followed by high-pressure water of 200 atm or higher or high-pressure water mixed with abrasives. A descaling method characterized by spraying onto the scale layer.
JP15640889A 1989-06-19 1989-06-19 Descalling method Pending JPH0326464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15640889A JPH0326464A (en) 1989-06-19 1989-06-19 Descalling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15640889A JPH0326464A (en) 1989-06-19 1989-06-19 Descalling method

Publications (1)

Publication Number Publication Date
JPH0326464A true JPH0326464A (en) 1991-02-05

Family

ID=15627093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15640889A Pending JPH0326464A (en) 1989-06-19 1989-06-19 Descalling method

Country Status (1)

Country Link
JP (1) JPH0326464A (en)

Similar Documents

Publication Publication Date Title
WO2016151825A1 (en) Method and device for descaling metal wire
US4289541A (en) Process of cleaning an austenitic steel surface
US3188776A (en) Surface treatment of steel
JPH06269839A (en) Descaling method and rolling method for slab
JPH0326464A (en) Descalling method
JPH1094817A (en) Method for mechanically descaling hot rolled steel strip whose lubricity is improved
JPS5741821A (en) Descaling method for steel strip
JPH07204739A (en) Method and device for drawing metallic wire
CA1076812A (en) Process of cleaning an austenitic steel surface
JP3130814B2 (en) Metal heat treatment
JPS613611A (en) Descaling method of stainless steel sheet
JPH0447012B2 (en)
JPH01205976A (en) Scale removing method by gas mixed high pressure water
JP3122545B2 (en) Descaling method of heated slab for rolling
JP2624599B2 (en) Method of treating strip-shaped metal body with excellent surface properties
JP3333405B2 (en) Descaling method of hot rolled steel strip by high pressure rolling
RU2812150C1 (en) Method for laser cleaning of metal surfaces from scale
JP4655379B2 (en) Surface care method for billets
JPH09108724A (en) Mechanical descaling method for hot rolled strip
JPH0839130A (en) Scale breaking method of stainless steel strip
JPH1024318A (en) Descaling method
JPH09164416A (en) Method and equipment for descaling by rolling
JPH10263677A (en) Method for descaling hot rolled slab
JPH07275920A (en) Continuous surface treatment device sequence for metal
JPH11138208A (en) Hot rolling equipment train and method for rolling hot rolled steel strip