JPH03264610A - Manufacture of super fine particles - Google Patents

Manufacture of super fine particles

Info

Publication number
JPH03264610A
JPH03264610A JP2065419A JP6541990A JPH03264610A JP H03264610 A JPH03264610 A JP H03264610A JP 2065419 A JP2065419 A JP 2065419A JP 6541990 A JP6541990 A JP 6541990A JP H03264610 A JPH03264610 A JP H03264610A
Authority
JP
Japan
Prior art keywords
fine particles
super fine
plasma
ultrafine particles
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2065419A
Other languages
Japanese (ja)
Other versions
JP3008433B2 (en
Inventor
Hiroshi Anzai
博 安斉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2065419A priority Critical patent/JP3008433B2/en
Publication of JPH03264610A publication Critical patent/JPH03264610A/en
Application granted granted Critical
Publication of JP3008433B2 publication Critical patent/JP3008433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prevent joining among super fine particles and change in the quality caused by oxidation and contamination at the time of taking out these in the air by executing vapor phase growth to the super fine particles under plasma polymerizing atmosphere of organic monomer. CONSTITUTION:The reaction vessel 2 is evacuated while causing carrier gas to flow into a reaction vessel 2 from a cylinder 3. By impressing electric field from high frequency electric source 4 to the carrier gas reduced with the pressure, the plasma is generated. At the same time, the organic monomer is introduced from a tank 5. Metal kind 8 in a crucible 7 heated with an induction coil 6 for heating is vaporized and also coated with the plasma polymerized film. Successively, this is collected in a collecting system 10 at the vacuum evacuating system 9 side as the plasma polymerized film coated super fine particles. By this method, the surface protecting coating is formed to the super fine particles under keeping state at the time of developing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超微粒子の製造方法に関する。更に詳しくは
、金属類からの気相生成法による超微粒子の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing ultrafine particles. More specifically, the present invention relates to a method for producing ultrafine particles from metals using a gas phase production method.

〔従来の技術〕[Conventional technology]

金属、合金、金属化合物などの金属類を種々の熱源によ
って蒸発させ、原子状態またはクラスター状態となし、
それがキャリヤーガスによって冷却される過程で凝集し
、超微粒子を形成する気相生成法が従来から行われてお
り、その際不活性ガス中で蒸発させると金属超微粒子が
、また反応性ガス中で蒸発させると各種セラミックス超
微粒子がそれぞれ生成する。
Evaporates metals such as metals, alloys, and metal compounds using various heat sources to form atomic or cluster states,
A gas phase generation method has traditionally been used in which metal particles coagulate during the process of being cooled by a carrier gas and form ultrafine particles, and when evaporated in an inert gas, ultrafine metal particles can be When evaporated, various types of ultrafine ceramic particles are generated.

このようにして行われる超微粒子の気相生成法において
は、超微粒子の生成後期または捕集時に超微粒子の表面
活性により粒子同志が合体したり、あるいは大気中に取
り出されたときに酸化されたり、汚染されたりするとい
う問題がみられる。
In the gas phase generation method of ultrafine particles carried out in this way, particles may coalesce together due to surface activity of the ultrafine particles during the late stage of generation or during collection, or may be oxidized when taken out into the atmosphere. There are problems such as contamination.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、超微粒子同志の合体を防止しかつそれ
が大気中に取り出されたとき酸化、汚染などの変質を生
じさせない超微粒子の製造方法を提供することにある。
An object of the present invention is to provide a method for producing ultrafine particles that prevents coalescence of ultrafine particles and does not cause alteration such as oxidation or pollution when the particles are taken out into the atmosphere.

〔課題を解決するための手段〕[Means to solve the problem]

かかる本発明の目的は、気相生成した超微粒子の表面を
有機物モノマーのプラズマ重合膜で被覆することにより
達成されることが見出された。
It has been found that the object of the present invention can be achieved by coating the surfaces of ultrafine particles produced in a vapor phase with a plasma polymerized film of an organic monomer.

従って、本発明は超微粒子の製造方法に係り、超微粒子
の製造は、金属、合金または金属化合物から気相生成法
で超微粒子を生成させるに際し、有機物モノマーのプラ
ズマ重合雰囲気中で超微粒子を気相生成させることによ
り行われる。
Therefore, the present invention relates to a method for producing ultrafine particles, and the production of ultrafine particles involves vaporizing ultrafine particles in an atmosphere of plasma polymerization of organic monomers when producing ultrafine particles from metals, alloys, or metal compounds by a gas phase generation method. This is done by phase generation.

超微粒子形成原料となる金属としては、例えばFe、 
Co、 Ni、 Ag、 Au、 Sn、 W、 V、
 Cr、 Mn、 An、Cu、 Ptなどが、合金と
しては例えばFe−Ni、Fe−Co、Go−Niなど
が、また金属化合物としては例えばSiH4,TiCQ
 4、InC(13、SiCQ 4. A D、 CQ
 3.5nCfl、、 V(1,、MoCQ、、Fe 
(Go) 、、Cr(Co)、。
Examples of metals used as raw materials for forming ultrafine particles include Fe,
Co, Ni, Ag, Au, Sn, W, V,
Cr, Mn, An, Cu, Pt, etc., alloys such as Fe-Ni, Fe-Co, Go-Ni, etc., metal compounds such as SiH4, TiCQ, etc.
4, InC (13, SiCQ 4. A D, CQ
3.5nCfl,,V(1,,MoCQ,,Fe
(Go), Cr(Co),.

Fe(CsHs)zなどがそれぞれ用いられる。Fe(CsHs)z, etc. are used, respectively.

これらの金属類を種々の熱源で加熱蒸発させ、それを冷
却して超微粒子を形成させ、同時にプラズマ重合膜を形
成させる際に用いられるキャリヤーガスとしては、アル
ゴン、窒素、水素などの不活性ガスあるいはアルゴン−
酸素混合ガス、水素−アンモニア混合ガス、水素−アン
モニアー二酸化炭素混合ガスなどの反応性ガスが、それ
ぞれ全圧的1〜100Paで用いられる。反応性ガスの
場合、例えばアルゴン−酸素混合ガスでは酸素の分圧が
全圧の約5〜5部のとき、Fe2O3、SnO□、■n
203.1lIO3、M2O3、CrO□、SiO□、
AQ203などの金属酸化物(セラミックス)超微粒子
を、また水素−アンモニア混合ガスではアンモニアの分
圧が全圧の約10%以上のとき、Fe4N、 Si3N
4’、 A Q Nなどの金属窒化物(セラミックス)
超微粒子をそれぞれ生成させる。
Inert gases such as argon, nitrogen, and hydrogen are used as carrier gases to heat and evaporate these metals using various heat sources, cool them to form ultrafine particles, and simultaneously form plasma polymerized films. Or argon
Reactive gases such as oxygen mixed gas, hydrogen-ammonia mixed gas, and hydrogen-ammonia carbon dioxide mixed gas are used at a total pressure of 1 to 100 Pa, respectively. In the case of reactive gases, for example, in the case of argon-oxygen mixed gas, when the partial pressure of oxygen is about 5 to 5 parts of the total pressure, Fe2O3, SnO□, ■n
203.1lIO3, M2O3, CrO□, SiO□,
Ultrafine particles of metal oxides (ceramics) such as AQ203, or in hydrogen-ammonia mixed gas, when the partial pressure of ammonia is about 10% or more of the total pressure, Fe4N, Si3N
4', Metal nitrides (ceramics) such as AQN
Generate ultrafine particles.

この際の有機物モノマーのプラズマ重合雰囲気中での超
微粒子の気相生成は、次のようにして行われる。即ち、
キャリヤーガスを流しながら反応容器内を真空排気し、
0.1Torr程度に減圧したキャリヤーガスに高周波
電源から電界を印加すると、キャリヤーガスはイオン化
してプラズマを形成する。そのプラズマ発生域内にセッ
トした金属類蒸気はイオンと衝突して冷却され、合体し
て粒成長し、超微粒子を形成する。それと同時に、プラ
ズマ発生域内に有機物モノマーを導入すると、生成した
超微粒子の表面はプラズマ重合膜によって被覆される。
At this time, the gas phase generation of ultrafine particles in the plasma polymerization atmosphere of organic monomers is performed as follows. That is,
Evacuate the inside of the reaction vessel while flowing carrier gas,
When an electric field is applied from a high frequency power source to the carrier gas whose pressure has been reduced to about 0.1 Torr, the carrier gas is ionized to form plasma. The metal vapor set within the plasma generation area collides with ions, is cooled, coalesces, and grows into grains to form ultrafine particles. At the same time, when an organic monomer is introduced into the plasma generation area, the surfaces of the generated ultrafine particles are covered with a plasma polymerized film.

図面の第1図は、本発明方法の一態様の概要図であり、
真空計1を備えた反応容器2内にキャリヤーガスボンベ
3からキャリヤーガスを流しながら真空排気し、減圧し
たキャリヤーガスに高周波3 電源4から電界を印加してプラズマを発生させ、それと
同時に有機物モノマータンク5から有機物子ツマ−を導
入すると、加熱用誘導コイル6によって加熱されたルツ
ボ7内に収容されていた金属類8は蒸発すると共にプラ
ズマ重合膜によって被覆され、真空排気系9側の捕集系
10でプラズマ重合膜被覆超微粒子として捕集される。
FIG. 1 of the drawings is a schematic diagram of one embodiment of the method of the present invention,
A reaction vessel 2 equipped with a vacuum gauge 1 is evacuated while flowing a carrier gas from a carrier gas cylinder 3, and an electric field is applied to the reduced pressure carrier gas from a high frequency power source 4 to generate plasma, and at the same time, an organic monomer tank 5 When the organic particles are introduced from the heating induction coil 6, the metals 8 housed in the crucible 7 are evaporated and covered with a plasma polymerized film, and the metals 8 are heated by the heating induction coil 6 and are covered with a plasma polymerized film. The particles are collected as ultrafine particles coated with plasma polymerized membrane.

プラズマ重合膜被覆形成に用いられる有機物モノマーと
しては、例えばエチレン、アセチレン、ベンゼン、スチ
レン、メタン、エタン、シクロヘキサン、酢酸ビニル、
メチルアクリレート、ヘキサメチルジシラン、テトラメ
チルジシロキサン、ヘキサメチルジシロキサン、ビニル
トリメチルシラン、クロロトリフルオロエチレンなどが
用いられ、生成した超微粒子の表面に約20Å以上の被
膜を形成させる。
Examples of organic monomers used to form a plasma-polymerized film include ethylene, acetylene, benzene, styrene, methane, ethane, cyclohexane, vinyl acetate,
Methyl acrylate, hexamethyldisilane, tetramethyldisiloxane, hexamethyldisiloxane, vinyltrimethylsilane, chlorotrifluoroethylene, etc. are used to form a film of about 20 Å or more on the surface of the produced ultrafine particles.

〔発明の効果〕〔Effect of the invention〕

本発明方法においては、次のような効果が奏せられる。 The method of the present invention provides the following effects.

(1)超微粒子は、それの生成時の状態のままで、− 表面保護被覆を形成させることができる。(1) Ultrafine particles remain in the state in which they were created, - A surface protective coating can be formed.

(2)形成された表面保護被覆は、超微粒子同志の合体
を防止しかつ大気中に取り出されても酸化や汚染などの
変質を起さない。
(2) The formed surface protective coating prevents coalescence of ultrafine particles and does not cause alteration such as oxidation or contamination even when taken out into the atmosphere.

(3)一般の気相法による超微粒子の生成では、粒径の
コントロールが殆んど不可能で、数100人程度迄粒成
長してしまうが、本発明方法によれば、表面保護被覆膜
が粒成長を抑える効果をも示すため、金属類の蒸発速度
とモノマーの流量とをコントロールすることにより、数
10〜数100人の範囲内で粒径をコントロールするこ
とができる。このような粒径範囲では、超微粒子の物性
が粒径によっては大きく左右される。
(3) In the production of ultrafine particles using a general vapor phase method, it is almost impossible to control the particle size and the particles grow to about several hundred particles, but according to the method of the present invention, the surface protective coating can be applied. Since the film also exhibits the effect of suppressing grain growth, by controlling the evaporation rate of metals and the flow rate of monomer, the grain size can be controlled within the range of several tens to several hundred. In such a particle size range, the physical properties of the ultrafine particles are greatly influenced by the particle size.

(4)機能性重合膜で表面被覆することにより、超微粒
子表面に種々の機能を付与することができる。
(4) By coating the surface with a functional polymer film, various functions can be imparted to the surface of the ultrafine particles.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例1 第1図に示された装置を用い、まず装置内の全混合ガス
圧力を約10Paに制御する。混合ガスは、酸素分圧4
Paのアルゴンガスで、それを約10mQ1分の流量で
流している。そこに、周波数13.56MHzの高周波
を有効電力101Nで印加してプラズマ放電させ、その
状態でスチレンモノマーガスを約5mu1分の流量で流
しなからSnを蒸発させると、膜厚約20Å以上のスチ
レンプラズマ重合膜で表面被覆された、粒径約100Å
以上のSnO□超微粒子が得られた。得られた超微粒子
は合体せず、それぞれが孤立粒子として存在していた。
Example 1 Using the apparatus shown in FIG. 1, first, the total mixed gas pressure in the apparatus was controlled to about 10 Pa. The mixed gas has an oxygen partial pressure of 4
Argon gas of Pa is flowing at a flow rate of about 10 mQ1 minute. A high frequency wave with a frequency of 13.56 MHz and an effective power of 101 N is applied to create a plasma discharge, and in this state, styrene monomer gas is flowed at a flow rate of about 5 μl to evaporate Sn, resulting in a styrene film with a thickness of about 20 Å or more. Particle size approximately 100 Å, surface coated with plasma polymerized film
The above SnO□ ultrafine particles were obtained. The obtained ultrafine particles did not coalesce and each existed as an isolated particle.

また、その超微粒子は、TEM (透過型電子顕微鏡)
観察および電子線回折により、不純物を含んでいないこ
とが確認された。
In addition, the ultrafine particles can be seen using a TEM (transmission electron microscope)
It was confirmed by observation and electron diffraction that it contained no impurities.

実施例2 実施例1において、混合ガスの代わりに同圧のアルゴン
ガスを、スチレンモノマーガスの代わりに同量のエチレ
ンモノマーガスを、またSnの代わりにFeをそれぞれ
用いると、膜厚約20人のエチレンプラズマ重合膜で表
面被覆された、粒径約100人のFe超微粒子が得られ
た。得られた超微粒子は合体せず、それぞれが孤立粒子
として存在していた。その超微粒子は、TEM観察、電
子線回折および磁気的特性により、不純物を含んでいな
いこと、また大気中に取り出しても酸化されないことが
確認された。
Example 2 In Example 1, if the same pressure of argon gas was used instead of the mixed gas, the same amount of ethylene monomer gas was used instead of the styrene monomer gas, and Fe was used instead of Sn, the film thickness was approximately 20 mm. Fe ultrafine particles with a particle size of approximately 100 μm were obtained, the surface of which was coated with an ethylene plasma polymerized film. The obtained ultrafine particles did not coalesce and each existed as an isolated particle. It was confirmed by TEM observation, electron beam diffraction and magnetic properties that the ultrafine particles did not contain any impurities and were not oxidized even when taken out into the atmosphere.

実施例3 第1図に示された装置を用い、まず装置内の全混合ガス
圧力を約100Paに制御する。混合ガスは、アンモニ
ア分圧22.5Pa、二酸化炭素分圧2.5Paの水素
ガスで、それを約10On+ Il/分の流量で流して
いる。そこに、周波数13.56MHzの高周波を有効
電力90Wで印加してプラズマ放電させ、その状態でエ
チレンモノマーガスを約50m n /分の流量で流し
ながらFe (C5H,)、、を蒸発させると、膜厚約
20Å以上のエチレンプラズマ重合膜で表面被覆された
、粒径約100Å以上のFe4N超微粒子が得られた。
Example 3 Using the apparatus shown in FIG. 1, first, the total mixed gas pressure in the apparatus was controlled to about 100 Pa. The mixed gas is hydrogen gas with an ammonia partial pressure of 22.5 Pa and a carbon dioxide partial pressure of 2.5 Pa, which is flowed at a flow rate of about 10 On+Il/min. A high frequency wave with a frequency of 13.56 MHz and an effective power of 90 W is applied thereto to cause plasma discharge, and in this state, Fe (C5H,) is evaporated while flowing ethylene monomer gas at a flow rate of about 50 m n /min. Fe4N ultrafine particles with a particle size of about 100 Å or more were obtained whose surface was coated with an ethylene plasma polymerized film with a film thickness of about 20 Å or more.

得られた超微粒子は合体せず、それぞれが孤立粒子とし
て存在していた。その超微粒子は、TEM観察、電子線
回折および磁気的特性により、不純物を含んでいないこ
と、また大気中に取り出しても酸化されないことが確認
された。
The obtained ultrafine particles did not coalesce and each existed as an isolated particle. It was confirmed by TEM observation, electron beam diffraction and magnetic properties that the ultrafine particles did not contain any impurities and were not oxidized even when taken out into the atmosphere.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法の一態様の概要図である。 (符号の説明) 2・・・・・反応容器 3・・・・・キャリヤーガスボンベ 4・・・・・高周波電源 5・・・・・有機物モノマータンク 7・・・・・ルツボ 8・・・・・溶融金属類 10・・・・・超微粒子捕集系 − FIG. 1 is a schematic diagram of one embodiment of the method of the present invention. (Explanation of symbols) 2...Reaction container 3...Carrier gas cylinder 4...High frequency power supply 5...Organic monomer tank 7... Crucible 8... Molten metals 10...Ultrafine particle collection system −

Claims (1)

【特許請求の範囲】[Claims] 1、金属、合金または金属化合物から気相生成法で超微
粒子を生成させるに際し、有機物モノマーのプラズマ重
合雰囲気中で超微粒子を気相生成させることを特徴とす
る超微粒子の製造方法。
1. A method for producing ultrafine particles, which is characterized in that when ultrafine particles are generated from a metal, alloy, or metal compound by a vapor phase generation method, the ultrafine particles are generated in a vapor phase in an atmosphere of plasma polymerization of an organic monomer.
JP2065419A 1990-03-15 1990-03-15 Ultrafine particle manufacturing method Expired - Lifetime JP3008433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2065419A JP3008433B2 (en) 1990-03-15 1990-03-15 Ultrafine particle manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2065419A JP3008433B2 (en) 1990-03-15 1990-03-15 Ultrafine particle manufacturing method

Publications (2)

Publication Number Publication Date
JPH03264610A true JPH03264610A (en) 1991-11-25
JP3008433B2 JP3008433B2 (en) 2000-02-14

Family

ID=13286518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2065419A Expired - Lifetime JP3008433B2 (en) 1990-03-15 1990-03-15 Ultrafine particle manufacturing method

Country Status (1)

Country Link
JP (1) JP3008433B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560800A (en) * 1994-08-31 1996-10-01 Mobil Oil Corporation Protective coating for pressure-activated adhesives
WO2005075132A1 (en) * 2004-02-04 2005-08-18 Ebara Corporation Composite nanoparticle and process for producing the same
JP2007522347A (en) * 2004-02-16 2007-08-09 クライマックス・エンジニアード・マテリアルズ・エルエルシー Method and apparatus for producing silver nanoparticles
JP2011524245A (en) * 2008-05-19 2011-09-01 エボニック デグサ ゲーエムベーハー Phase transition method of matter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560800A (en) * 1994-08-31 1996-10-01 Mobil Oil Corporation Protective coating for pressure-activated adhesives
WO2005075132A1 (en) * 2004-02-04 2005-08-18 Ebara Corporation Composite nanoparticle and process for producing the same
US7799425B2 (en) 2004-02-04 2010-09-21 Ebara Corporation Composite nanoparticles method for producing the same
JP2007522347A (en) * 2004-02-16 2007-08-09 クライマックス・エンジニアード・マテリアルズ・エルエルシー Method and apparatus for producing silver nanoparticles
JP2011524245A (en) * 2008-05-19 2011-09-01 エボニック デグサ ゲーエムベーハー Phase transition method of matter

Also Published As

Publication number Publication date
JP3008433B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
JP3660866B2 (en) Method and apparatus for forming hard carbon film
Biederman et al. Nanocomposite and nanostructured films with plasma polymer matrix
JPH03264610A (en) Manufacture of super fine particles
JPH0511491B2 (en)
JPH0797607A (en) Amorphous metallic hyper fine particle and production thereof
JPH03267301A (en) Manufacture of surface coated super fine particles
Ishii et al. Hollow cathode sputtering cluster source for low energy deposition: Deposition of Fe small clusters
Yamada et al. Cubic crystals in ti films evaporated on nacl substrates
JP3723377B2 (en) Method and apparatus for producing alloy or compound cluster particles
CN113667935B (en) Preparation method of magnesium-based hollow nanomaterial
Ishii et al. A new process for producing a granular material
JP2903106B2 (en) Ultra-fine gold-copper alloy particles having a regular icosahedral structure and method for producing the same
RU2685564C1 (en) Method of synthesis of metal nanoparticles by deposition on a porous carbon material
JPH01104763A (en) Production of thin metal compound film
JP2010163662A (en) Dry process apparatus
JP2003013200A (en) Hard carbon film and manufacturing method therefor
JPS5917190B2 (en) Formation method of boron film
JPH02268818A (en) Hydrogen separating material
JPS63475A (en) Hybrid ion plating device
WO2020187743A1 (en) Improved cathode arc source
JPH02214701A (en) Plasma polymerization reactor
Yamamuro et al. Nanometric Cr cluster formation by plasma-gas-aggregation
JPH026837A (en) Production of superfine powder and device therefor
JPS6357768A (en) Continuous ion plating device for high-speed moving film
JPS62170047A (en) Production of optical recording medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11