JPH03262908A - Electron beam coordinate measuring instrument - Google Patents

Electron beam coordinate measuring instrument

Info

Publication number
JPH03262908A
JPH03262908A JP6099390A JP6099390A JPH03262908A JP H03262908 A JPH03262908 A JP H03262908A JP 6099390 A JP6099390 A JP 6099390A JP 6099390 A JP6099390 A JP 6099390A JP H03262908 A JPH03262908 A JP H03262908A
Authority
JP
Japan
Prior art keywords
electron beam
sample
stage
electron
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6099390A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sakai
酒井 広之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6099390A priority Critical patent/JPH03262908A/en
Publication of JPH03262908A publication Critical patent/JPH03262908A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately correct a deflection gain according to the correction value for deflection width by moving one sample through an XY stage by an optional distance in the deflection range of an electron beam and calculating the accurate correcting value for the deflection width from its movement quantity and a value measured with the electron beam. CONSTITUTION:The electron beam 3 which is led out of an electron gun 1 is converged by electron lenses 2a and 2b to irradiate the sample 8. Further, the electron beam 3 is deflected by optional width through a deflecting coil 4. A secondary electron which is discharged when the sample 8 is irradiated with the electron beam 3 can be detected by a secondary electron detector 5. The sample 8 is fixed on the stage 6, which is driven in an X and a Y direction by a motor 11; and it position is measured by a laser length measurement system 7. Further, a stage control system 10 accurately positions the stage 6 according to the measured value of the system 7. A sample image, on the other hand, is projected on a cathode-ray tube 9 with the secondary electron signal which is detected 5 and a deflecting signal sent to the coil 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Siウェハあるいはガラスマスク等に形成さ
れた回路パターンの位置を電子線によって測定する、電
子線座標測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron beam coordinate measuring device that measures the position of a circuit pattern formed on a Si wafer, a glass mask, or the like using an electron beam.

〔従来の技術〕[Conventional technology]

従来の装置では、電子線の偏向器(倍率)の校正として
、既に寸法のわかっている試料を測定し、その測定結果
を基に偏向器アンプのゲインを手動にて調整していた。
In conventional equipment, the electron beam deflector (magnification) is calibrated by measuring a sample whose dimensions are already known, and then manually adjusting the gain of the deflector amplifier based on the measurement results.

・あるいは、既に寸法のわかっている試料を測定し誤差
をソフトウェアで補正していた。
-Alternatively, a sample whose dimensions were already known was measured and errors were corrected using software.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、既に寸法のわかっている試料(基準試
料)が必要であり、その寸法も正確なものでなくてはな
らない。基準となる基準試料の寸法をどのように測定す
るか、どのような測定機で測定するかが問題になる。結
局基準試料の寸法には、ある程度の誤差が当然含まれて
しまう。つまり従来技術では、基準試料の寸法を測定す
る測定機以上の精度は望めない、また、倍率によって、
試料の大きさも変えなければならず、多くの基準試料を
用意しなければならない。
The above-mentioned conventional technology requires a sample (reference sample) whose dimensions are already known, and the dimensions must also be accurate. The problem is how to measure the dimensions of the standard sample and what kind of measuring device to use. After all, the dimensions of the reference sample naturally include some error. In other words, with conventional technology, it is not possible to achieve higher accuracy than with a measuring machine that measures the dimensions of a reference sample, and depending on the magnification,
The size of the sample must also be changed, and many reference samples must be prepared.

本発明の目的は、上記問題点を解決し、正確で簡単な偏
向器校正のできる、高精度の電子線座標測定装置を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a highly accurate electron beam coordinate measuring device that can perform accurate and simple deflector calibration.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を遠戚するために、電子線の偏向器校正用にX
Yステージの位置を測定している測定器、たとえばレー
ザ干渉計を利用し、1つの試料(パターン)を、電子線
の偏向範囲内の任意の距離だけXYステージで移動し、
その移動量と、電子線で測定した値とで演算して、正確
な偏向器の補正値を求め、それを基に正確な偏向ゲイン
補正を行うものである。
In order to achieve the above purpose, X
Using a measuring instrument that measures the position of the Y stage, such as a laser interferometer, one sample (pattern) is moved on the XY stage by an arbitrary distance within the deflection range of the electron beam.
An accurate correction value for the deflector is calculated by calculating the amount of movement and a value measured with an electron beam, and based on this, accurate deflection gain correction is performed.

〔作用〕[Effect]

前記の偏向ゲイン補正は、レーザ干渉計を源器としてい
るので、正確な補正値が求められ、正確な補正が可能で
ある。それによって試料の正確な座標が求められる。
Since the deflection gain correction described above uses a laser interferometer as a source, an accurate correction value can be obtained and accurate correction can be performed. This allows the exact coordinates of the sample to be determined.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図、第3図及び
第4図により説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1, 2, 3, and 4.

第1図及び第2図により、本発明の装置概要と測定原理
について説明する。第1図は装置の概略図であるが、電
子銃1より引き出された電子線3は、電子レンズ2aと
2bにより収束され試料8上に照射される。また電子線
3は、偏向コイル4により、任意の巾だけ偏向される。
The outline of the apparatus and measurement principle of the present invention will be explained with reference to FIGS. 1 and 2. FIG. 1 is a schematic diagram of the apparatus, and an electron beam 3 extracted from an electron gun 1 is focused by electron lenses 2a and 2b and irradiated onto a sample 8. Further, the electron beam 3 is deflected by an arbitrary width by a deflection coil 4.

電子、1!3が試料8に照射された時に放出される二次
電子は二次電子検出器5によって検出できる。ここで試
料8はステージ6に固定されており、ステージ6はモー
タ11によりXY力方向駆動され、その位置はレーザ測
長システム7により正確に計測することができる。ステ
ージ制御系10は、レーザ測長システム7の計測値を基
に正確なステージ6の位置決めを行う、一方、二次電子
検出器5によって検出された二次電子信号と偏向コイル
4に送られる偏向信号とにより、ブラウン管9に試料像
を写し出す。
Secondary electrons emitted when the sample 8 is irradiated with electrons 1!3 can be detected by the secondary electron detector 5. Here, the sample 8 is fixed to a stage 6, the stage 6 is driven in the XY force directions by a motor 11, and its position can be accurately measured by a laser length measurement system 7. The stage control system 10 performs accurate positioning of the stage 6 based on the measured values of the laser length measurement system 7, and also uses the secondary electron signal detected by the secondary electron detector 5 and the deflection sent to the deflection coil 4. A sample image is projected onto the cathode ray tube 9 based on the signal.

次に上記装置を用いた試料測定原理を第2図を用いて説
明する。−例として、Si基板上にエツチングされた数
μm巾のパターン12の位置を測定することを考えると
、先づ試料をパターン12の設計位置15ヘスチーシロ
で移動する。ここでステージの停止位置が14とすると
、停止誤差Leが生じ、その誤差分だけ電子線3を偏向
コイル4により補正し、測定のための偏向中心が、パタ
ーン12の設計位置15と一致するようにする。
Next, the principle of sample measurement using the above device will be explained with reference to FIG. - As an example, if we consider measuring the position of a pattern 12 with a width of several μm etched on a Si substrate, first, the sample is moved to a designed position 15 of the pattern 12. Here, if the stop position of the stage is 14, a stop error Le occurs, and the electron beam 3 is corrected by the error by the deflection coil 4 so that the deflection center for measurement coincides with the design position 15 of the pattern 12. Make it.

ブラウン管の会では、偏向中心(設計位置15)は画面
の中央となる6次に電子線3を偏向器4でスキャン13
して、パターンエツジを、二次電子信号より求めその中
心をパターン12の設計位置15からのずれ量Lbとし
て計測する。したがってパターン12の座標は、ステー
ジの停止座標をLsとすると、Ls+Le+Lb とな
る。ここでLeとLしの測定精度は、スキャン13が、
どれだけ正確に偏向されているかで決定される。
At the cathode ray tube association, the deflection center (designed position 15) is the center of the screen, and the electron beam 3 is scanned 13 by the deflector 4.
Then, the pattern edge is determined from the secondary electron signal, and its center is measured as the deviation amount Lb of the pattern 12 from the designed position 15. Therefore, the coordinates of the pattern 12 are Ls+Le+Lb, where Ls is the stop coordinate of the stage. Here, the measurement accuracy of Le and L is that scan 13 is
Determined by how accurately it is deflected.

以下第3図及び第4図を用い、上記スキャン13の偏向
出校正について説明する。始めに、上記で説明したステ
ージの停止誤差Leの補正機能を削除し、補正をかけな
いようにする。この状態でパターン12が、ブラウン管
の画面の右端に見えるようにステージを移動する、ここ
でパターン12の中心からの距離Lbzを測定する1次
にステージをΔLsだけ移動しパターン12の中心から
の距離Lbxを測定する。上記測定において、ステージ
の移動量ΔLsと、画面上のパターン12のずれ量16
1+Lbzは一致しなければならず、一致しない場合に
は、偏向器が不正確であり、偏向器の補正を行う、第4
図に示す様に、レーザ測長システムによりΔLsを測定
し、二次電子信号よりLbx及びLb2を求め、それぞ
れをCPV18へ送り補正値εを t = (Lbr+Lbz−ΔLS)yΔLsから求め
る。この補正値εにより、偏向器りをL=Ld Xε として、偏向コイル4へ正しい偏向器として送られる。
The deflection output calibration of the scan 13 will be described below with reference to FIGS. 3 and 4. First, the correction function for the stage stop error Le explained above is deleted so that no correction is applied. In this state, move the stage so that the pattern 12 can be seen at the right edge of the screen of the cathode ray tube. Here, measure the distance Lbz from the center of the pattern 12. First, move the stage by ΔLs and measure the distance from the center of the pattern 12. Measure Lbx. In the above measurement, the amount of movement ΔLs of the stage and the amount of deviation 16 of the pattern 12 on the screen
1+Lbz must match, if they do not match, the deflector is inaccurate and the deflector is corrected.
As shown in the figure, ΔLs is measured by a laser length measurement system, Lbx and Lb2 are determined from the secondary electron signal, and each is sent to the CPV 18 and a correction value ε is determined from t = (Lbr+Lbz−ΔLS)yΔLs. With this correction value ε, the deflection device is set to L=Ld Xε and is sent to the deflection coil 4 as a correct deflection device.

もちろん、ステージの停止誤差Leの補正にも、このε
の補正が入れられる。
Of course, this ε is also used to correct the stop error Le of the stage.
Corrections are included.

本実施例によれば、ステージの座標を測定するレーザ測
長システムに、偏向器による電子線の偏向量を一致させ
ることができるので、パターンの座標が正確に測定でき
る。また1つのパターンで偏向中の校正ができるので、
偏向中の大小つまり、倍率の大小によって校正用パター
ンを変える必要がない。さらに、校正用パターンの中心
位置を検出するので1寸法精度の高い特殊パターンを作
る必要がない。
According to this embodiment, the amount of deflection of the electron beam by the deflector can be matched with the laser length measurement system that measures the coordinates of the stage, so the coordinates of the pattern can be accurately measured. Also, since it is possible to calibrate during deflection with one pattern,
There is no need to change the calibration pattern depending on the magnitude of deflection, that is, the magnitude of magnification. Furthermore, since the center position of the calibration pattern is detected, there is no need to create a special pattern with high dimensional accuracy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電子線の偏向中を正確かつ簡単な方法
で補正することができるので、試料の正確な位置測定に
効果がある。
According to the present invention, since the deflection of the electron beam can be corrected in an accurate and simple manner, it is effective in accurately measuring the position of the sample.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の装置概略図、第2図は測定
原理図、第3図は校正原理図、第4図は本発明を用いた
装置概略図である。 3・・・電子線、4・・・偏向コイル、5・・・二次型
、子検出器、6・・・ステージ、7・・・レーザ測長シ
ステム、 2 C′ξ−シ \−I/ 第1図 第2図
FIG. 1 is a schematic diagram of an apparatus according to an embodiment of the present invention, FIG. 2 is a diagram of the principle of measurement, FIG. 3 is a diagram of the principle of calibration, and FIG. 4 is a schematic diagram of the apparatus using the present invention. 3... Electron beam, 4... Deflection coil, 5... Secondary type, child detector, 6... Stage, 7... Laser length measurement system, 2 C′ξ-shi\-I / Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、電子線を発生する電子源と、前記電子線を収束する
ための電子レンズと、前記電子線を偏向するための偏向
器と、被測定試料をXY平面内で移動させるXYステー
ジと、前記XYステージの位置を正確に測定できる測定
器と、前記電子線を被測定試料上を走査した時に得られ
る反射電子あるいは二次電子を収光するための検出器と
、それらの制御する制御系からなる電子線座標測定装置
において、前記偏向器による電子線の偏向長さと、前記
XYステージの位置を測定する測定器との校正を行う手
段を設けたことを特徴とする電子線座標測定装置。
1. An electron source that generates an electron beam, an electron lens for converging the electron beam, a deflector for deflecting the electron beam, an XY stage for moving the sample to be measured within the XY plane, and the A measuring device that can accurately measure the position of the XY stage, a detector that collects reflected electrons or secondary electrons obtained when the electron beam scans the sample to be measured, and a control system that controls them. An electron beam coordinate measuring apparatus characterized in that the electron beam coordinate measuring apparatus further comprises means for calibrating the deflection length of the electron beam by the deflector and a measuring device for measuring the position of the XY stage.
JP6099390A 1990-03-14 1990-03-14 Electron beam coordinate measuring instrument Pending JPH03262908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6099390A JPH03262908A (en) 1990-03-14 1990-03-14 Electron beam coordinate measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6099390A JPH03262908A (en) 1990-03-14 1990-03-14 Electron beam coordinate measuring instrument

Publications (1)

Publication Number Publication Date
JPH03262908A true JPH03262908A (en) 1991-11-22

Family

ID=13158468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6099390A Pending JPH03262908A (en) 1990-03-14 1990-03-14 Electron beam coordinate measuring instrument

Country Status (1)

Country Link
JP (1) JPH03262908A (en)

Similar Documents

Publication Publication Date Title
US6624430B2 (en) Method of measuring and calibrating inclination of electron beam in electron beam proximity exposure apparatus, and electron beam proximity exposure apparatus
JPH0324771B2 (en)
KR20030030869A (en) Electron beam exposing method and exposure apparatus
JP4157410B2 (en) Electron beam drawing device
JP3508622B2 (en) Electron beam drawing apparatus and drawing method using electron beam
JPH03262908A (en) Electron beam coordinate measuring instrument
JPH03138842A (en) Electron beam drawing device with beam shape correcting device
JP2786660B2 (en) Charged beam drawing method
JP3522045B2 (en) Charged particle beam exposure apparatus and method
JP2786662B2 (en) Charged beam drawing method
JPH0922859A (en) Compensation method for sample surface height in electron beam exposure process
JP3550476B2 (en) Charged particle beam processing method and processing apparatus
JP2786661B2 (en) Charged beam drawing method
JP2002246303A (en) Method of adjusting focal point and electron beam lithography system
JP3315882B2 (en) Electron beam drawing equipment
JP3710422B2 (en) Gain calibration method for sub-deflector of proximity exposure type electron beam exposure apparatus
JP3242122B2 (en) Pattern forming method and semiconductor device manufacturing method
JP2008042173A (en) Charged-particle beam drawing method, charged-particle beam drawing device, and program
JPS6320376B2 (en)
JP3334341B2 (en) Electron beam exposure method
TW202341215A (en) charged particle beam system
JP2618919B2 (en) Electron beam drawing method and electron beam drawing apparatus
JPH0722349A (en) Charged beam lithography device
JPS6312146A (en) Pattern-dimension measuring apparatus
JP2001349997A (en) Electron beam irradiation device and method