JPH03262608A - Die for molding of thermosetting resin - Google Patents

Die for molding of thermosetting resin

Info

Publication number
JPH03262608A
JPH03262608A JP6168590A JP6168590A JPH03262608A JP H03262608 A JPH03262608 A JP H03262608A JP 6168590 A JP6168590 A JP 6168590A JP 6168590 A JP6168590 A JP 6168590A JP H03262608 A JPH03262608 A JP H03262608A
Authority
JP
Japan
Prior art keywords
molding
cavity
mold
gap
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6168590A
Other languages
Japanese (ja)
Inventor
Shigeru Maruyama
茂 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6168590A priority Critical patent/JPH03262608A/en
Publication of JPH03262608A publication Critical patent/JPH03262608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain inexpensively a die for molding of thermosetting resin which is durable for molding operation of exceeding 1,000 times, by providing a cavity core comprised of an epoxy resin cast body to be obtained by shaping a cavity, an intermediate force which surrounds the cavity core by holding a fixed gap and is comprised of a top and bottom forces and a positioned metallic framelike part and a rubber packing material which prevents molding resin from entering into the gap. CONSTITUTION:The title die is constituted of three-layer structure of an intermediate force 1 and a top and bottom forces 11, 21 which are arranged on the top and bottom of the same. The intermediate force 1 is constituted of a framelike part 2 comprised of a metallic material, which is the same as that of the top and bottom forces, and a plurality of cavity cores 3 comprised of a molding tool made of resin where a principal part 4 of the cavity is formed as a recessed part. The cavity core 3 is comprised of an epoxy resin composition and holds a gap 7 between the cavity core 3 and the framelike part 2. An 0 ring 5B which is held into an 0 ring groove 5A is provided within the gap 7. Then the fringe part of the cavity 4 also is provided with a packing groove 6A, a rubber packing 6B having a T-shaped section is projected out to a gap 7 side and the 0 ring 5B is provided close by the rubber packing 6B. With this construction, since entering of molding resin into the gap 7 is prevented and the resin entered into the gap 7 is cured, thermal stress to be generated can be avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、50#/−以下の低い成形圧力で電気部品
などをトランスファー成形筐たは液状射出成形する際使
用する熱硬化性樹脂成形用金型、ことに多品種小量生産
に適した成形金型に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention is for thermosetting resin molding used in transfer molding or liquid injection molding of electrical parts etc. at a low molding pressure of 50#/- or less. Molds, especially molding molds suitable for high-mix, low-volume production.

〔従来の技術〕[Conventional technology]

トランスファー成形法や液状射出成形法などによる熱硬
化性樹脂成形品の製造方法は、その成形時間が短かぐ、
かつ成形品の寸法精度や形態安定性が優れているために
多量生産に適した製造方法として多くのグラスチック部
品の製造分野に広く普及して来てかり、これら成形品の
製造に使用する成形金型にかいても、例えば日本工業規
格に規定された鉄系金属xsD−i i ’e用いてキ
ャビティを機械加工した後、表面を浸炭焼き入れし、さ
らにハードクロムメツキを流子などの高度の製造技術に
よシ、金型表面硬度が高く、したがって10万回の成形
に耐える量産型の成形金型が知られている。
Manufacturing methods of thermosetting resin molded products, such as transfer molding and liquid injection molding, shorten the molding time.
In addition, the dimensional accuracy and shape stability of molded products are excellent, so it has become widely used in the manufacturing field of many glass parts as a manufacturing method suitable for mass production. For molds, for example, after machining the cavity using iron-based metal xsD-i-i'e specified in the Japanese Industrial Standards, the surface is carburized and quenched, and then hard chrome plating is applied using a high-grade metal such as Ryuko. Mass-produced molds are known that have high mold surface hardness and can withstand 100,000 molding cycles.

一万、電気機器や電子機器の分野では多量生産する機種
と多品種少量生産する機種とが混存する状態にあり、多
品種少量生産する機種に使用する熱硬化性樹脂成形品は
その使用量が100個から1000個程度のものが多く
、このような条件で使用する成形型としては便化性液状
シリコーンゴム筐たはエポキシ樹脂組成物を素材とする
合成樹脂製成形型が知られている。丁なわち、切削加工
した製品模型の周囲に液状樹脂を注入固化し、製品の形
状に相応するキャビティを液状樹脂の便化物中に形成し
、これを成形金型の中間型として使用するものである。
In the field of electrical and electronic equipment, there is a coexistence of mass-produced models and high-mix, low-volume models, and the amount of thermosetting resin molded products used in high-mix, low-volume models is limited. Many molds have about 100 to 1,000 pieces, and molds made of synthetic resin made of a facilitable liquid silicone rubber casing or an epoxy resin composition are known as molds used under such conditions. In other words, liquid resin is injected and solidified around the cut product model, a cavity corresponding to the shape of the product is formed in the liquid resin, and this is used as an intermediate mold for the mold. be.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

10万個以上の成形に耐える多量生産用の成形金型は高
度のカロエ技術を必要とするために高価であシ、その製
造コストは小型のものでも数十万円、大型のものでは数
百万円にも達する。したがって、このように高価な成形
金型を100個から1000個程度の成形品の製造に用
いた場合にはイニシアルコストが極めて高くなシ、これ
が製品コストにはね返って成形品コストが著しく上昇す
るという問題が発生する。
Molding molds for mass production that can mold more than 100,000 pieces are expensive because they require advanced Kaloe technology, and the manufacturing cost is several hundred thousand yen for a small one, and several hundred for a large one. It can reach up to 10,000 yen. Therefore, when such an expensive molding die is used to manufacture 100 to 1,000 molded products, the initial cost is extremely high, and this reflects on the product cost, resulting in a significant increase in the cost of the molded product. A problem occurs.

一方、樹脂製成形型を用いることによってイニシアルコ
ストは大幅に下がシ、製品コストも低下する利点が得ら
れるが、100#/cIdに及ぶ圧力1r:加えて型締
めし、樹脂製成形型を80℃ないし150℃程度の成形
温度に保持した状態で、キャビティ内に成形樹脂を数1
0に9/adに及ぶ成形圧力で圧入する熱硬化性樹脂の
トランスファー成形法、筐たは液状射出成形法に釦いて
は、成形温度にかける樹脂製成形型の剛性が低いために
、型締め荷重や成形圧力によって型が変形してし1い、
繰り返し成形を行うことが困難になるとともに、寸法p
よび形状のばらつききの小さい成形品を得難いという致
命的欠陥が発生する。
On the other hand, using a resin mold has the advantage of significantly lowering the initial cost and lowering the product cost. While maintaining the molding temperature at around 80°C to 150°C, pour several pieces of molded resin into the cavity.
In transfer molding, housing or liquid injection molding of thermosetting resins, which are press-fitted at molding pressures of 0 to 9/ad, mold clamping is difficult due to the low rigidity of the resin mold at the molding temperature. The mold may be deformed due to load or molding pressure.
It becomes difficult to perform repeated molding, and the dimension p
A fatal defect occurs in that it is difficult to obtain molded products with small variations in shape and shape.

この発明の目的は、樹脂製成形型の欠点を排除してトラ
ンスファー成形法または液状射出成形法による成形作業
を100回以上安定して行える安価な成形金型を得るこ
とにある。
An object of the present invention is to eliminate the drawbacks of resin molds and to obtain an inexpensive mold that can be stably used for molding operations of 100 times or more by transfer molding or liquid injection molding.

〔課題t−解決するための手段〕[Problem t-Means for solving]

上記課題を解決するために、この発明によれば、キャビ
ティの主体部分が形成された金属製の中間型と、加熱ヒ
ータが埋設された金属製の上型卦よび下型との3層構造
を有する熱硬化性樹脂成形用金型に釦いて、キャビティ
が賦型されたエポキシ樹脂注型体からなるキャビティコ
アと、このキャピテイコアを所定の間@を保持して包囲
し、かつ上型)よび下型に位置決めされた金属製の枠状
部とからなる中間型と、前記間隙への成形樹脂の侵入1
1止するゴムパッキング材とを備えてなるものとする。
In order to solve the above problems, the present invention has a three-layer structure consisting of a metal intermediate mold in which the main part of the cavity is formed, and metal upper and lower molds in which a heating heater is embedded. A cavity core made of an epoxy resin cast body in which a cavity has been formed by pressing a button on a thermosetting resin molding die, and a cavity core made of an epoxy resin cast body having a cavity formed therein, and a cavity core formed by holding and surrounding this cavity core for a predetermined period, and an upper mold and a lower mold. An intermediate mold consisting of a metal frame portion positioned in the mold, and intrusion of molding resin into the gap 1
It shall be equipped with a rubber packing material for one stop.

〔作用〕[Effect]

この発明の構成に分いては、上型、中間型、および下型
の3層構造からなる成形金型において、その中間型をキ
ャビティの主体部分を有する樹脂製成形型としてのキャ
ビティコアと、このキャビティコアを所定の間@を保持
して包囲する金属製の枠状部とで構成し、かつキャビテ
ィコアと枠状部との隙間にゴムバクキング材を介在させ
てシールおよび位置決めを行うよう構成したことによシ
、枠状部はキャビティコアを挿入する方形の孔を有する
簡素な構造の枠体として上型、下型と同じ金属材料を用
いて簡素に構成でき、かつキャビティコアはエポキシ樹
脂注型法によυ任意な形状寸法のキャビティを精度よ〈
容易に形成できる。また、金属製の枠状部とアルミニウ
ム粉末を充填材として含む樹脂製のキャビティコアとの
熱膨張差金考慮してこれよ、!70.1m程度大きな間
隙をキャビティコアと枠状部との間、または上型との間
に保持するよう構成すれば、成形m度にkいてキャビテ
ィコアに熱応力が加わらない状態で成形作業を行えると
ともに、これらの間隙にゴムパッキング材を配してシー
ルおよび位置決めを行うことによって間隙への樹脂の侵
入を阻止し、かつキャビティに加わる成形圧力を枠状部
や上型、下型に伝達してキャビティコアの変形km止で
きるので、熱硬化性樹脂成形品の成形作業を繰り返して
行える機能が得られる。
The structure of the present invention is that, in a molding die having a three-layer structure of an upper mold, an intermediate mold, and a lower mold, the intermediate mold is a cavity core as a resin mold having a main part of the cavity; The cavity core is composed of a metal frame-shaped part that holds and surrounds the cavity core for a predetermined period of time, and a rubber backing material is interposed in the gap between the cavity core and the frame-shaped part to perform sealing and positioning. Additionally, the frame part has a simple structure with a rectangular hole into which the cavity core is inserted, and can be simply constructed using the same metal material as the upper and lower molds, and the cavity core is cast using epoxy resin. By the method, a cavity of arbitrary shape and size can be made with precision.
Easy to form. Also, take into account the difference in thermal expansion between the metal frame and the resin cavity core containing aluminum powder as a filler! If a gap as large as 70.1 m is maintained between the cavity core and the frame-shaped part or between the upper mold and the mold, the molding operation can be carried out without applying thermal stress to the cavity core during molding. In addition, rubber packing material is placed in these gaps for sealing and positioning to prevent resin from entering the gaps and to transmit the molding pressure applied to the cavity to the frame, upper mold, and lower mold. Since the deformation of the cavity core can be stopped by 1 km, the function of repeatedly molding a thermosetting resin molded product can be obtained.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図はこの発明の実施例になる熱硬化性樹脂成形用金
型を上下方向に分離した状態で示す側断面図、第2図は
実施例になる成形金型の要部を示す拡大断面図である。
Fig. 1 is a side cross-sectional view showing a thermosetting resin molding mold according to an embodiment of the present invention separated vertically, and Fig. 2 is an enlarged cross-sectional view showing the main parts of the molding mold according to an embodiment. It is a diagram.

図にふ−いて、成形金型は中間型1と、その上下に配さ
れた上型11pよび下型21の3層構造からなり、中間
型1は上型、下型と同じ金属材料(例えば前出の鉄系合
金KSD−11,膨張係数1.4X10−5/℃ン等か
らなる枠状部2と、キャビティの主体部分4が凹所とし
て形成された樹脂、I!!成形型からなる値数のキャビ
ティコア3とで構成される。実施例の場合、キャビティ
コア5が挿入される枠状部2の窓寸法は25 m X 
50 mの方形孔であり、厚みt=iQwの金属板を機
械加工して窓を形成する。
As shown in the figure, the molding die consists of a three-layer structure of an intermediate mold 1, an upper mold 11p and a lower mold 21 arranged above and below the intermediate mold 1, and the intermediate mold 1 is made of the same metal material as the upper mold and the lower mold (e.g. The frame part 2 is made of the above-mentioned iron-based alloy KSD-11 with an expansion coefficient of 1.4 x 10-5/°C, etc., and the main part 4 of the cavity is made of a resin I!! mold formed as a recess. In the case of the example, the window size of the frame portion 2 into which the cavity core 5 is inserted is 25 m x
The window is formed by machining a metal plate of 50 m square hole and thickness t=iQw.

−万、キャビティコア3はアルミニウム粉末を充填材と
して含み、脂環式アミンヲ硬化剤とするエポキシ樹脂組
成物からなり、その熱膨張係数は5 2.7X10  /℃ であり、かつその外径寸法は窓
寸法よりΔ□だけ小さい方形に形成して枠状部2との間
に間隙7を保持するとともに、その高さhも枠状部2の
厚みt=iotmよりΔhだけ低い寸法とし、間隙7内
には0リング溝5Aに収納されたOリング5Bを設けて
ガスシールDよび枠状部2に対するキャビティコアの位
置決めを行う。
- The cavity core 3 is made of an epoxy resin composition containing aluminum powder as a filler and an alicyclic amine as a hardening agent, and its coefficient of thermal expansion is 52.7X10/℃, and its outer diameter is It is formed into a rectangular shape smaller than the window size by Δ□ to maintain a gap 7 between it and the frame-shaped part 2, and its height h is also set to be Δh lower than the thickness t=iotm of the frame-shaped part 2, so that the gap 7 An O-ring 5B housed in an O-ring groove 5A is provided inside to position the cavity core with respect to the gas seal D and the frame portion 2.

筐た、キャビティ4の周縁部にもノζツキング溝6Aを
設け、このバッキング溝によって位置決めされた断面T
字形のゴムノ〈ツキング6Bを配して枠状部2とキャビ
ティコア5との段差Δhを補間するよう構成した。
A backing groove 6A is also provided on the periphery of the cavity 4 in the housing, and the cross section T positioned by this backing groove is
It is configured to interpolate the level difference Δh between the frame portion 2 and the cavity core 5 by disposing a letter-shaped rubber bracket 6B.

筐た、枠状部2には複数の位置決め孔9が形成され、下
型に設けられた位置決めピン23.および上型側の図示
しない位置決めビンが位置決め孔9に嵌合して3層構造
の成形金型を形成するとともに、この成形金型が油圧プ
レス等に挟持されて100#/−程度の締付圧力が加え
られることによって型締めが行われる。さらに、上型1
1しよび下型21には要所に加熱ヒータ12ふ・よび2
2が埋設されており、金型温度を成形温度である例えば
150℃に保持する。さらに筐た、キャピテイ4の開口
部を覆う上型11の下面12Aにはランナ25t−介し
て樹脂の注入口である図示しないスプルーに連通するゲ
ート26がキャビティ4それぞれに連通ずるよう形成さ
れ、成形圧力例えば10#/−で射出成形機から送られ
る熱硬化性の成形樹脂の成形刃Ω工が行われる。なお、
中間型と上型との界面(パーティング面)には数10μ
m程度の微小間隙からなるベントが設けられ、キャビテ
ィ内の空気が侵入する樹脂の圧力によって金型内に追い
出され、ボイドを含!ない成形品が得られる。
A plurality of positioning holes 9 are formed in the frame-shaped part 2 of the housing, and positioning pins 23 provided on the lower mold. A positioning pin (not shown) on the upper mold side is fitted into the positioning hole 9 to form a three-layer mold, and this mold is held in a hydraulic press or the like and tightened to about 100#/-. Mold clamping is performed by applying pressure. Furthermore, upper mold 1
1 and the lower mold 21 are equipped with heaters 12 and 2 at key points.
2 is embedded, and the mold temperature is maintained at the molding temperature, for example, 150°C. Further, on the lower surface 12A of the upper mold 11 covering the opening of the cavity 4, a gate 26 is formed so as to communicate with each of the cavities 4 via a runner 25t to a sprue (not shown) which is a resin injection port. The thermosetting molding resin sent from the injection molding machine is subjected to molding at a pressure of, for example, 10#/-. In addition,
The interface between the intermediate mold and the upper mold (parting surface) has a thickness of several tens of microns.
A vent consisting of a minute gap of about 1.5 m is provided, and the air inside the cavity is forced out into the mold by the pressure of the invading resin, including voids! The result is a molded product with no

上述のように構成された成形金型において、成形温度を
150℃とした場合、枠状部とキャビティコアとの熱膨
張差は室温(30℃)に対して窓の長辺50閣側でキャ
ビティコアの膨張量の方が0.078鳩大きくなる。し
たがって、キャビティコア3の30℃にかける長辺側の
寸法が0.078mだけ枠状部2の窓寸法よシ小さくな
るようあらかじめ製作してかけば、成形温度150℃に
かいてキャビティコア3と枠状部2との間に熱応力が作
用することなく成形を行うことができる。
In the molding die configured as described above, when the molding temperature is 150°C, the difference in thermal expansion between the frame portion and the cavity core is such that the difference in thermal expansion between the cavity core and the long side of the window at room temperature (30°C) is The amount of expansion of the core is 0.078 times larger. Therefore, if the dimension of the long side of the cavity core 3 at 30°C is made in advance to be smaller than the window dimension of the frame part 2 by 0.078 m, the cavity core 3 can be formed at a molding temperature of 150°C. Molding can be performed without any thermal stress acting between the frame portion 2 and the frame portion 2.

しかし、樹脂注型品であるキャビティコアうには注型時
に生ずる寸法誤差が存在するので、間隙長Δ9は上記熱
膨張差分0.078鶏÷2=0 、039mに寸法誤差
分として0.1鶏程度を加えた0、14mm程度保持す
ることが好1しくキャビティコアの短辺側についても同
様である。筐た、ゲート26は間隙7を横断する形でキ
ャビティ4に成形樹脂を供給するため、この部分でゲー
ト26から間隙7に成形樹脂が侵入することが懸念され
る。ソコで、ゴムパッキング6Bを間隙7側に突き出す
とともに、0リング5Btゴムパッキング6B近くに設
ければ、間隙7への成形樹脂の侵入を阻止でき、したが
って間隙7に侵入した樹脂が硬化することによって発生
する熱応力を回避することができる。
However, since the cavity core, which is a resin-cast product, has dimensional errors that occur during casting, the gap length Δ9 is the above thermal expansion difference of 0.078 mm ÷ 2 = 0, and the dimensional error is 0.1 mm to 0.39 m. It is preferable to maintain a distance of about 0.14 mm, and the same applies to the short side of the cavity core. Since the gate 26 supplies molding resin to the cavity 4 across the gap 7, there is a concern that the molding resin may enter the gap 7 from the gate 26 at this portion. By protruding the rubber packing 6B toward the gap 7 side and providing it near the O-ring 5Bt rubber packing 6B, it is possible to prevent the molding resin from entering the gap 7. Therefore, the resin that has entered the gap 7 will harden. Thermal stress generated can be avoided.

第3図は前述の実施例にkけるキャビティコアの製造方
法を示す断面図であり、注型型31ばそノ内法がキャビ
ティコア3の外径寸法例えば24゜75!111X49
,7簡に形成されてかっ、その底面にはキャビティ4に
相応するキャピテイ模型34およびバッキング溝6Aを
模擬した溝模型36が接着剤またはビスなどによって所
定位置に取シ付けられ、注型樹脂59として例えば所定
量のアルミニウム粉末を含むエポキシ樹脂組成物(例え
ばチバガイギー社製商品名アラルダイ)T−301/R
−4,−・−ドナーT−5(11/H−4の混合物)が
注入され、60℃で12時間程度の加熱処理によって半
硬化状態となった時点で離型され、とらに180℃、2
0時間程度の後硬化が行われる。硬化処理を終った注型
体は、その液面側が傾角0刀ロエされ、高さHが9.8
W(Δkl=0.2m)のキャピテイコア3に仕上げら
れ、さらにキャビティ4の表面にはシリコーン樹脂離型
剤(例えば信越シリコーン社製1品番KS700)が塗
布され、220℃2時間程度の加熱処理により、硬化し
た離型膜を有するキャビティコア3が得られる。
FIG. 3 is a cross-sectional view showing the method for manufacturing the cavity core in the above-mentioned embodiment, in which the outside diameter of the cavity core 3 is 24°75!111×49.
, 7 pieces, and a cavity model 34 corresponding to the cavity 4 and a groove model 36 simulating the backing groove 6A are attached to predetermined positions with adhesive or screws on the bottom surface of the molded resin 59. For example, an epoxy resin composition containing a predetermined amount of aluminum powder (for example, Ciba Geigy's trade name Araldai) T-301/R
-4,-.- Donor T-5 (mixture of 11/H-4) was injected and released from the mold when it became semi-cured by heat treatment at 60°C for about 12 hours, and heated to 180°C. 2
Post-curing is performed for about 0 hours. After the hardening process, the cast body has an inclination angle of 0 on the liquid side and a height H of 9.8.
A cavity core 3 of W (Δkl=0.2m) is finished, and a silicone resin mold release agent (for example, product number KS700 manufactured by Shin-Etsu Silicone Co., Ltd.) is applied to the surface of the cavity 4, and heat treated at 220°C for about 2 hours. , a cavity core 3 having a cured release film is obtained.

上述のようにして形成されたキャビティコア3ば、0リ
ング5Bt−介して枠状部2に取シ付けられ、ゴムパッ
キング6B’r介して上型11.下型21に挟持した状
態で型締荷重10ta+を力lえることによって一体化
される。この状態で金型温度を加熱ヒータ12,22に
よって成形温度150℃に予熱し、成形圧力I Dkg
/ctllでエポキシ樹脂系の成形樹脂を注入するトラ
ンスファー成形を1000回以上繰シ返し行ったが、金
型、ことにキャビティコア3に異常は認められず、所定
の寸法精度金有する成形品が得られた。なか、比較例と
して中間型全体をエポキシ樹脂注型体で製作した成形金
型を用いて前述と同様な条件でトランスファー成形を試
みたが、僅か3回の成形作業で中間型にクラックが発生
し、その後の成形が不可能になった。
The cavity core 3 formed as described above is attached to the frame portion 2 through the O-ring 5Bt, and is attached to the upper mold 11 through the rubber packing 6B'r. They are integrated by applying a mold clamping load of 10 ta+ while being held between the lower molds 21. In this state, the mold temperature is preheated to a molding temperature of 150°C by the heaters 12 and 22, and the molding pressure is increased to I Dkg.
Transfer molding in which epoxy resin molding resin is injected with /ctll was repeated over 1000 times, but no abnormality was observed in the mold, especially in the cavity core 3, and a molded product with the specified dimensional accuracy was obtained. It was done. As a comparative example, transfer molding was attempted under the same conditions as above using a mold in which the entire intermediate mold was made of epoxy resin casting, but cracks occurred in the intermediate mold after only three molding operations. , subsequent molding became impossible.

〔発明の効果〕 この発明による成形金型は前述のように、中間型に枠状
部を設けて型締め荷重がキャビティコアに直接作用しな
いよう構成し、筐たキャビティコアと枠状部との間およ
びキャビティコアト上型との間に間If111′fr:
設け、かつこの間隙に介装されたバッキング材によりキ
ャビティコアを金型部分に弾性支持し、キャビティコア
に作用する熱応力を回避するとともに、成形圧力を金型
部分に伝達して支承するよう構成した。その結果、中間
型全体をエポキシ樹脂注型体で形成する従来の成形金型
に比べてキャビティコアに作用する熱応力会よび型締め
圧力、成形圧力が大幅に低減され、したがって1000
回を超える成形作業に耐える熱硬化性樹脂成形用全型金
従来の全金属製金型に比べて大幅に安価に提供すること
ができる。また、キャビティコアを交換することによシ
異なる形の成形品を一つの金型(金属部分)を用いて行
うことができるので、多品種少量生産形の成形品の製造
に際してそのイニシアルコストヲ大幅に低減することが
可能になり、したがって成形品を経済的に有利に提供で
きる利点が得られる。
[Effects of the Invention] As described above, the molding die according to the present invention is configured such that the frame-shaped portion is provided in the intermediate mold so that the mold clamping load does not directly act on the cavity core, and the molding die is configured so that the mold clamping load does not directly act on the cavity core and the frame-shaped portion. If111'fr between the gap and between the cavity core and the upper mold:
The cavity core is elastically supported by the mold part by the backing material provided and interposed in this gap, and the molding pressure is transmitted to the mold part and supported while avoiding thermal stress acting on the cavity core. did. As a result, compared to conventional molding molds in which the entire intermediate mold is made of epoxy resin casting, the thermal stress acting on the cavity core, mold clamping pressure, and molding pressure are significantly reduced.
A complete mold for thermosetting resin molding that can withstand more than one molding operation can be provided at a significantly lower cost than conventional all-metal molds. In addition, by replacing the cavity core, molded products of different shapes can be made using one mold (metal part), which significantly reduces the initial cost when manufacturing molded products of high variety, low volume production. Therefore, it is possible to provide molded products economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例になる熱硬化性樹脂成形用金
型を分解した状態で示す断面図、第2図は実施例にかけ
る要部の拡大断面図、第3図は実施例におけるキャビテ
ィコアの製造方法を示す断面図である。 1・・・中間型、2・・・枠状部、3・・・キャビティ
コア、4・・・キャビティ、5A、(5A・・・バッキ
ング溝、5B、6B・・・バッキング、7・・・間隙、
9・・・位置決め孔、11・・・上型、12.22・・
・加熱ヒータ、21゛°下型、23・・・位置決めビン
、31・・・注型型、34・・・キャビティ模型、36
・・・溝模型、39・・・注型樹脂、Δ9.Δh・・・
間隙長。          へ\代雇人弁理士 山 
ロ  巖   − 第1目 第2廓
FIG. 1 is an exploded cross-sectional view of a thermosetting resin molding mold according to an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of the main parts of the embodiment, and FIG. FIG. 3 is a cross-sectional view showing a method for manufacturing a cavity core. DESCRIPTION OF SYMBOLS 1... Intermediate mold, 2... Frame-shaped part, 3... Cavity core, 4... Cavity, 5A, (5A... Backing groove, 5B, 6B... Backing, 7... gap,
9...Positioning hole, 11...Upper mold, 12.22...
・Heating heater, 21° lower mold, 23... Positioning bottle, 31... Casting mold, 34... Cavity model, 36
...Groove model, 39...Casting resin, Δ9. Δh...
Gap length. To\Representative Patent Attorney Yama
Ro Iwao - 1st and 2nd area

Claims (1)

【特許請求の範囲】[Claims] 1)キャビティの主体部分が形成された金属製の中間型
と、加熱ヒータが埋設された金属製の上型および下型と
の3層構造を有する熱硬化性樹脂成形用金型において、
キャビティが賦型されたエポキシ樹脂注型体からなるキ
ャビティコアと、このキャビティコアを所定の間隙を保
持して包囲し、かつ上型および下型に位置決めされた金
属製の枠状部とからなる中間型と、前記間隙への成形樹
脂の侵入を阻止するゴムパッキング材とを備えてなるこ
とを特徴とする熱硬化性樹脂成形用金型。
1) In a thermosetting resin molding mold having a three-layer structure of a metal intermediate mold in which the main part of the cavity is formed, and metal upper and lower molds in which a heating heater is embedded,
Consists of a cavity core made of an epoxy resin cast body into which a cavity is formed, and a metal frame-shaped part that surrounds this cavity core with a predetermined gap and is positioned on the upper mold and the lower mold. A mold for molding a thermosetting resin, comprising an intermediate mold and a rubber packing material that prevents molding resin from entering the gap.
JP6168590A 1990-03-13 1990-03-13 Die for molding of thermosetting resin Pending JPH03262608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6168590A JPH03262608A (en) 1990-03-13 1990-03-13 Die for molding of thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6168590A JPH03262608A (en) 1990-03-13 1990-03-13 Die for molding of thermosetting resin

Publications (1)

Publication Number Publication Date
JPH03262608A true JPH03262608A (en) 1991-11-22

Family

ID=13178369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6168590A Pending JPH03262608A (en) 1990-03-13 1990-03-13 Die for molding of thermosetting resin

Country Status (1)

Country Link
JP (1) JPH03262608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123315A (en) * 2004-10-28 2006-05-18 Daiwa Can Co Ltd Molding die for container made of resin
JP2010537867A (en) * 2007-09-06 2010-12-09 スリーエム イノベイティブ プロパティズ カンパニー Method of forming a mold and method of forming an article using such a mold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123315A (en) * 2004-10-28 2006-05-18 Daiwa Can Co Ltd Molding die for container made of resin
JP2010537867A (en) * 2007-09-06 2010-12-09 スリーエム イノベイティブ プロパティズ カンパニー Method of forming a mold and method of forming an article using such a mold
US9102083B2 (en) 2007-09-06 2015-08-11 3M Innovative Properties Company Methods of forming molds and methods of forming articles using said molds
US9440376B2 (en) 2007-09-06 2016-09-13 3M Innovative Properties Company Methods of forming molds and methods of forming articles using said molds

Similar Documents

Publication Publication Date Title
JPH03262608A (en) Die for molding of thermosetting resin
CN109014035B (en) Method for rapidly preparing wax mold for precision casting by adopting gypsum and silica gel combination mode
JP3476841B2 (en) Plastic lens injection molding method
US6491855B1 (en) Moulding tooling
JPS6253809A (en) Manufacture of rubber mold for molding reactive liquid resin
US20050098919A1 (en) Method of manufacturing low pressure injection type RIM mold, and product formed using the mold
JPH03182313A (en) Manufacture of mold
JP3580560B2 (en) Elastic compression molding method and elastic compression mold
JPH05111939A (en) Injection molding die for liquid resin
JPS61188120A (en) Manufacture of substrate for magneto-optical disc
JPH0730339Y2 (en) Mold for fiber reinforced composite material
JPH03199015A (en) Manufacture of molding die
JPH03182311A (en) Manufacture of mold
JPH1058460A (en) Mold
JP2957614B2 (en) Plastic lens molding method and molding die
JPH04329112A (en) In-mold coating method of plastic
JPH07125014A (en) Manufacture of simplified injection mold
JP2675503B2 (en) Injection molding resin mold and mold device
JPH08258018A (en) Mold for forming powder
JPH05309659A (en) Manufacture of resin mold
JP2000117748A (en) Preparation of mold for molding
KR100193238B1 (en) Casting method using low melting point metal
JPH0585334B2 (en)
CN116214829A (en) Production method of encapsulated product and encapsulated product
JPH03284913A (en) Manufacture of plastic lens and apparatus therefor