JPH03260072A - Elastic deformable body and corrosion-resistant valve using the same - Google Patents
Elastic deformable body and corrosion-resistant valve using the sameInfo
- Publication number
- JPH03260072A JPH03260072A JP6050690A JP6050690A JPH03260072A JP H03260072 A JPH03260072 A JP H03260072A JP 6050690 A JP6050690 A JP 6050690A JP 6050690 A JP6050690 A JP 6050690A JP H03260072 A JPH03260072 A JP H03260072A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- elastic
- resistant
- coating film
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 38
- 230000007797 corrosion Effects 0.000 title claims abstract description 38
- 238000000576 coating method Methods 0.000 claims abstract description 27
- 239000011248 coating agent Substances 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 21
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims abstract description 14
- 239000012530 fluid Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 abstract description 19
- 239000000919 ceramic Substances 0.000 abstract description 8
- 230000005489 elastic deformation Effects 0.000 abstract description 7
- 238000002844 melting Methods 0.000 abstract description 6
- 230000008018 melting Effects 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 230000006866 deterioration Effects 0.000 abstract description 2
- 229920003002 synthetic resin Polymers 0.000 abstract description 2
- 239000000057 synthetic resin Substances 0.000 abstract description 2
- 229910052581 Si3N4 Inorganic materials 0.000 abstract 2
- 239000013013 elastic material Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 19
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910000423 chromium oxide Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000892865 Heros Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Landscapes
- Details Of Valves (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はスーパークリーンを必要とする半導体製造工程
において用いるに適した耐食性に優れた弾性変形体およ
びこれを使用した耐食バルブに関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an elastically deformable body with excellent corrosion resistance suitable for use in semiconductor manufacturing processes that require super cleanliness, and a corrosion-resistant valve using the same.
(従来の技術)
近年における半導体の高集積化の傾向に伴い、各種の半
導体製造装置にはサブ稟クロンのパーティクルの発生を
防止する手段が必要となってきているにのため、半導体
製造装置を構成する各部材にはガス溜まりのないクリー
ニングパージが容易な形状であること、真空中における
ガス放出のないこと、部材から発生するパーティクルが
最小であることが要求されている。(Prior Art) With the recent trend toward higher integration of semiconductors, various semiconductor manufacturing equipment has become required to have means to prevent the generation of sub-scale particles. Each constituent member is required to have a shape that allows easy cleaning and purging without gas accumulation, no gas release in a vacuum, and minimum particle generation from the member.
しかし、バネ、ダイヤフラム、ベローズのような弾性変
形体においては、材料の腐食が原因となるガスやパーテ
ィクルの発生の他に、機械的運動に伴う変形摩擦が原因
となるパーティクルの発生があり、大きい問題となって
いる。However, in elastic deformable bodies such as springs, diaphragms, and bellows, in addition to the generation of gas and particles caused by material corrosion, particles are also generated due to deformation friction associated with mechanical movement, and large particles are generated. This has become a problem.
そこで現在のところ、SO3316L等の耐食性に優れ
た弾性基材を加工後に電解研摩により表面粗さを約0.
2Ra以下とし、不動態化処理し、さらに洗浄したうえ
でクラス100以下でのクリーンルームで組立を行って
いる。ところが塩素系や弗素系のガスを流すラインでは
微量のガスがこれらの弾性変形体の表面に吸着され、大
気開放時の水分侵入によって塩酸、弗酸等の酸になり腐
食が進行し、パーティクルの発生が抑えられなかった。Therefore, at present, after processing an elastic base material with excellent corrosion resistance such as SO3316L, the surface roughness is reduced to about 0.000 by electrolytic polishing.
2Ra or less, passivation treatment, cleaning, and assembly in a clean room of class 100 or less. However, in lines that flow chlorine-based or fluorine-based gases, trace amounts of gases are adsorbed on the surfaces of these elastic deformable bodies, and when moisture enters when exposed to the atmosphere, they turn into acids such as hydrochloric acid and hydrofluoric acid, leading to corrosion and particle formation. The outbreak could not be prevented.
また特にこのようなガスを流すラインのバルブは、操作
部と接液部との完全シールを図るためにダイヤフラム、
ヘローズ等の弾性変形体を利用して軸ンールのない構造
が主流となっているが、これらの弾性変形体にはガス溜
まりがあり腐食環境下゛での弾性変形応力による腐食の
進行が避けられず、パーティクルの発生が抑えられなか
った。In particular, valves in lines that allow such gas to flow are equipped with diaphragms,
The mainstream is a structure that uses elastically deformable bodies such as heros and does not have a shaft ring, but these elastically deformable bodies have gas pockets that prevent the progression of corrosion due to elastic deformation stress in a corrosive environment. However, the generation of particles could not be suppressed.
さらにまた、これらの弾性変形体には上記のような厳し
い要求があるため、安価な樹脂や不純物を含む金属は真
空中でのガス放出やガス吸着腐食の点より使用すること
ができなくなってきており、部材が高価となる問題があ
った。Furthermore, because these elastically deformable bodies have the above-mentioned strict requirements, it has become impossible to use cheap resins or metals containing impurities due to gas release in vacuum or gas adsorption corrosion. However, there was a problem in that the components were expensive.
一方、このような腐食環境下には、セラミックスを使用
することによってパーティクルを押さえることが可能と
予想されるが、ダイヤフラム部分の弾性変形を必要とす
る材料には、脆性材料であるセラミックスは金属製に比
べて変形量を小さく押さえる必要があり、バルブに使用
した場合には弁のリフト量が小さくなり、cvl(バル
ブの容量能力〕を大きくできず、また信頼性の面からも
セラ電ンクス製とすることは困難であった。On the other hand, in such a corrosive environment, it is expected that particles can be suppressed by using ceramics. It is necessary to keep the amount of deformation small compared to the valve, and when used in a valve, the lift amount of the valve will be small, and the cvl (valve capacity capacity) cannot be increased, and from the reliability point of view, It was difficult to do so.
(発明が解決しようとする課題)
本発明は上記したような従来の問題を解決して、腐食性
のガスと接触する部分に使用してもパーティクルの発生
がなく、しかも安価な材質を使用することもできる弾性
変形体およびこれを使用した耐食バルブを提供するため
に完成されたものである。(Problems to be Solved by the Invention) The present invention solves the conventional problems as described above, and uses an inexpensive material that does not generate particles even when used in parts that come into contact with corrosive gases. This work was completed in order to provide an elastically deformable body that can be deformed and a corrosion-resistant valve using the same.
(課題を解決するための手段)
上記の課題は、弾性基材の表面にプラズマCVDによる
非晶質の耐食性被膜を形成したことを特徴とする弾性変
形体により解決される。(Means for Solving the Problems) The above problems are solved by an elastically deformable body characterized by forming an amorphous corrosion-resistant coating on the surface of an elastic base material by plasma CVD.
また上記の課題は、流体との接触表面にプラズマCVD
tこよる非晶質の耐食性被膜を形成したダイヤフラム又
はベローズを備えたことを特徴とする耐食バルブにより
解決される。In addition, the above problem is solved by plasma CVD on the surface in contact with the fluid.
The problem is solved by a corrosion-resistant valve characterized by having a diaphragm or a bellows formed with an amorphous corrosion-resistant coating.
上記したように、本発明の弾性変形体は弾性基材の表面
にプラズマCVDによる非晶質の耐食性被膜を形成した
ものであり、この弾性基材としては例えば金属、合成樹
脂、セラミックス等の任意の材質を使用することができ
る。その表面に形成される非晶質の耐食性被膜としては
、プラズマCVDによるピンホールのないSiC被膜、
5iJa 被膜、St被被膜C被膜等があるが、セラミ
ックス系で耐食性の良好な非晶質のSiC又は5jJ4
被膜が最も好ましいものである。ここでプラズマCVD
を利用したのは、プラズマの発生により低温で原料ガス
を分解できるために低温でSiC被膜等を形成すること
ができ、低融点の材料を弾性基材として使用できるから
であり、さらに非晶質であるために粒界が無く弾性変形
への追従性が大変良いためである。これに対して熱CV
DによりSiC被膜を形成するには1100’C以上の
高温が必要となるため、例えばアルミニウムのような低
融点の弾性基材を用いることは不可能となる。As described above, the elastically deformable body of the present invention has an amorphous corrosion-resistant coating formed by plasma CVD on the surface of an elastic base material, and this elastic base material may be made of any material such as metal, synthetic resin, or ceramics. materials can be used. The amorphous corrosion-resistant coating formed on the surface includes a pinhole-free SiC coating formed by plasma CVD;
There are 5iJa coatings, St coatings, C coatings, etc., but amorphous SiC or 5jJ4 which is ceramic and has good corrosion resistance.
A coating is most preferred. Here plasma CVD
The reason for using this method is that it is possible to decompose the raw material gas at low temperatures by generating plasma, so it is possible to form SiC films etc. at low temperatures, and it is possible to use low melting point materials as elastic base materials. This is because there are no grain boundaries and the ability to follow elastic deformation is very good. On the other hand, thermal CV
Since a high temperature of 1100'C or more is required to form a SiC film using D, it is impossible to use an elastic base material with a low melting point such as aluminum.
このように、表面にプラズマCVDによる非晶質の耐食
性被膜が形成された本発明の弾性変形体は、腐食性ガス
と接触する部分に使用しても耐食性被膜によってパーテ
ィクルの発生が防止され、非晶質の耐食性被膜は弾性変
形を繰り返しても損傷せず、更に低融点の弾性基材が使
用できるのでコストダウンを図ることが可能となる。As described above, even when the elastic deformable body of the present invention, which has an amorphous corrosion-resistant coating formed on its surface by plasma CVD, is used in a part that comes into contact with corrosive gas, the corrosion-resistant coating prevents the generation of particles. The crystalline corrosion-resistant coating will not be damaged even after repeated elastic deformation, and furthermore, since an elastic base material with a low melting point can be used, costs can be reduced.
さらに、このプラズマCVDによる非晶質SiC等の膜
を使用することにより、金属製と同等の変形量を有する
ダイヤフラムの製作が可能となり、バルブのボディをセ
ラミックスとした複合型セラミックスバルブが実現でき
、パーティクルのない高耐食性を付与できる。Furthermore, by using a film such as amorphous SiC produced by plasma CVD, it becomes possible to manufacture a diaphragm with the same amount of deformation as a metal diaphragm, and a composite ceramic valve with a ceramic valve body can be realized. Can provide high corrosion resistance without particles.
(実施例) 以下に本発明を実施例により更に詳細に説明する。(Example) The present invention will be explained in more detail below using examples.
まf肉Kが0.5 amのステンレススチール製のダイ
ヤフラムの表面に、本発明による非晶質のSiC被膜を
プラズマCVDによりコーティングしたものと、同しダ
イヤフラムの表面に酸化クロム被膜を溶射コーティング
したものと、肉厚が0.5閣のアルミニウム製のダイヤ
フラムの表面に加圧蒸気法によってアルマイト処理を行
ったものとを作威し、これらから輻lO閣、長さ50■
のテストピースを切り出した。これら3種類のテストピ
ースの一端を片持ち式の固定をし、弾性範囲内において
振幅0.5■の繰り返し曲げ試験を1万回行った。The surface of a stainless steel diaphragm with a wall thickness K of 0.5 am was coated with an amorphous SiC film according to the present invention by plasma CVD, and the surface of the same diaphragm was spray-coated with a chromium oxide film. A diaphragm made of aluminum with a wall thickness of 0.5 mm and an alumite treated surface using a pressurized steam method were made from these.
A test piece was cut out. One end of each of these three types of test pieces was fixed in a cantilevered manner, and a repeated bending test with an amplitude of 0.5 square meters was performed 10,000 times within the elastic range.
試験開始に先立ちコーティング層部分の断面SEMによ
る観察を行ったところ、本発明の非晶質のSiC被膜は
膜厚が4000人と薄いもののピンホールもなく、ダイ
ヤフラムの表面の段差部分にも完全に付着していた。溶
射酸化クロム被膜は膜厚が100 μと最も厚いものの
ピンホールが多く、ひび割れが生して密着性の点でも本
発明品に比較して劣るものであった。またアルマイト処
理品はピンホールもなく、7μの一定膜厚でよく付着し
ていた。Prior to the start of the test, a cross-sectional SEM observation of the coating layer section revealed that although the amorphous SiC coating of the present invention is 4,000 people thin, there were no pinholes and it completely covered the stepped portions of the diaphragm surface. It was attached. Although the thermally sprayed chromium oxide coating was the thickest at 100 μm, it had many pinholes, cracks, and was inferior to the product of the present invention in terms of adhesion. In addition, the alumite-treated product had no pinholes and adhered well with a constant film thickness of 7μ.
しかし1万回の繰り返し曲げ試験後に再び断面SEMに
よる観察を行った結果、本発明品の非晶質SiC被膜は
全く変化がなかったが、溶射酸化クロム被膜及びアルマ
イト処理品は表面にひび割れを生していた。However, after repeating the bending test 10,000 times, cross-sectional SEM observation was performed again. Although the amorphous SiC coating of the product of the present invention had not changed at all, the thermally sprayed chromium oxide coating and the alumite-treated product showed cracks on the surface. Was.
更に本発明品に対して、極めて過酷なIIFガス及びC
lF5ガスによる曝露試験を行ったところ、SiC被膜
の微量の減肉はあるものの、パーティクルとしてではな
くガス化による減肉であるため、スーパークリーンに対
応できることが判明した。Furthermore, the product of the present invention is subjected to extremely harsh IIF gas and C
When an exposure test with 1F5 gas was conducted, it was found that although there was a small amount of thinning of the SiC film, the thinning was caused by gasification rather than particles, so it was found to be compatible with super cleanliness.
また本発明の弾性変形体の非晶質SiC被膜は疎水性で
あるために大気開放時の水分の吸着が極めて少なく、反
応ガスと水分による腐食を未然に防止することができる
。更に非晶質SiC被膜は反応ガスを高純度化すること
により不純物の極めて少ない状態にすることができるた
め、弾性基材の内部からの不純物の放出を防止する効果
もある。Furthermore, since the amorphous SiC coating of the elastically deformable body of the present invention is hydrophobic, it adsorbs very little moisture when exposed to the atmosphere, making it possible to prevent corrosion due to reaction gas and moisture. Furthermore, since the amorphous SiC film can be made into a state with extremely few impurities by highly purifying the reaction gas, it also has the effect of preventing the release of impurities from inside the elastic base material.
第1図〜第3図は第2の発明の実施例を示すものであり
、流体との接触表面にプラズマCVDによる非晶質の耐
食性被膜を形成したダイヤフラム(1)と、ベローズ(
2)とを備えた耐食バルブを示すものである。1 to 3 show an embodiment of the second invention, which includes a diaphragm (1) whose surface in contact with a fluid is coated with an amorphous corrosion-resistant coating by plasma CVD, and a bellows (
2) shows a corrosion-resistant valve equipped with the following.
第1図の耐食バルブではハンドル(3)による操作力は
ダイヤフラム(1)を介して弁体(4)に伝達されてい
るため、流体通路(5)をダイヤフラム(1)により完
全にシールすることができる。また第2図の耐食バルブ
ではベローズ(2)によって弁体(4)の周囲が完全に
シールされている。第3図の耐食バルブでは、変形を必
要としないボディ(7)にセラミックスを用い、ハンド
ル(3)の上下動によって流体通路(5)をダイヤフラ
ム(1)が上下して完全シールしている。In the corrosion-resistant valve shown in Figure 1, the operating force from the handle (3) is transmitted to the valve body (4) via the diaphragm (1), so the fluid passageway (5) must be completely sealed by the diaphragm (1). I can do it. Further, in the corrosion-resistant valve shown in FIG. 2, the periphery of the valve body (4) is completely sealed by the bellows (2). In the corrosion-resistant valve shown in FIG. 3, ceramic is used for the body (7) that does not require deformation, and the diaphragm (1) moves up and down the fluid passageway (5) to completely seal it by moving the handle (3) up and down.
そして流体通路に腐食性のガスや腐食性の液体が流され
た場合にも、これらのダイヤフラム(1)やベローズ(
2)の表面はプラズマCVDによる非晶質の耐食性被膜
により保護されているため、腐食や弾性変形によるパー
ティクル発生のおそれがなく、塩素系や弗素系のガスを
流すラインの耐食バルブとして使用することができる。And even if corrosive gas or corrosive liquid is flowed into the fluid passage, these diaphragms (1) and bellows (
2) Since the surface is protected by an amorphous corrosion-resistant coating created by plasma CVD, there is no risk of particle generation due to corrosion or elastic deformation, and it can be used as a corrosion-resistant valve for lines that flow chlorine-based or fluorine-based gases. I can do it.
さらに、水分の混入を極めて少なくする必要があるライ
ンでは水の吸着、放出の少ないバルブとすることが可能
である。Furthermore, in lines where it is necessary to extremely reduce the amount of water mixed in, it is possible to create a valve that absorbs and releases less water.
第4図は回転力を大気圧から真空中へ伝達するためにス
テンレス製のベローズ(2)を使用して完全シールを実
現した動力伝達機構である。この断面図のようにベロー
ズ(2)には曲面が多く、ガス溜りが発生し易く、変形
による応力発生でかつ腐食性環境下では膨大なパーティ
クルの発生源となっていた。しかし第1の発明のプラズ
マCVDコーティングにより前記と同様の効果が期待で
きる。なお第4図の真空側のヘアリングにはパーティク
ル発生の少ないセラミックスベアリングを用いており、
真空系全体のパーティクルを押さえるように工夫する必
要があるのはいうまでもない。Figure 4 shows a power transmission mechanism that uses stainless steel bellows (2) to achieve a complete seal in order to transmit rotational force from atmospheric pressure to vacuum. As shown in this cross-sectional view, the bellows (2) has many curved surfaces, which makes it easy for gas to accumulate, generates stress due to deformation, and becomes a source of a huge amount of particles in a corrosive environment. However, the plasma CVD coating of the first invention can be expected to produce the same effects as described above. In addition, the hair ring on the vacuum side in Figure 4 uses a ceramic bearing that generates fewer particles.
Needless to say, it is necessary to take measures to suppress particles in the entire vacuum system.
(発明の効果)
以上に説明したように、第1の発明の弾性変形体は腐食
性のガスと接触する部分に使用してもパーティクルの発
生がないこと、弾性変形によっても品質の劣化がないこ
と、安価な低融点の材質を使用できること等の利点を有
するものである。(Effects of the Invention) As explained above, the elastically deformable body of the first invention does not generate particles even when used in areas that come into contact with corrosive gases, and there is no deterioration in quality due to elastic deformation. It has advantages such as being able to use an inexpensive material with a low melting point.
また第2の発明の耐食バルブは、第1の発明の弾性変形
体をダイヤフラムやベローズスプリングとして組み込む
ことにより、塩素系や弗素系のガスを流すラインの耐食
バルブとして使用することができるようにしたものであ
る。Moreover, the corrosion-resistant valve of the second invention can be used as a corrosion-resistant valve for a line through which chlorine-based or fluorine-based gas flows by incorporating the elastic deformable body of the first invention as a diaphragm or a bellows spring. It is something.
よって本発明は従来の問題点を解消した弾性変形体およ
びこれを使用した耐食バルブとして、産業の発展に寄与
するところは極めて大きいものである。Therefore, the present invention greatly contributes to the development of industry by providing an elastically deformable body that solves the problems of the prior art and a corrosion-resistant valve using the same.
第
第1図、第2図、第3図はいずれも第2の発明の実施例
を示す断面図、第4図は第1の発明の実施例を示す断面
図である。
(1):ダイヤフラム、
(2):ヘローズ。1, 2, and 3 are all sectional views showing an embodiment of the second invention, and FIG. 4 is a sectional view showing an embodiment of the first invention. (1): Diaphragm, (2): Heroes.
Claims (1)
食性被膜を形成したことを特徴とする弾性変形体。 2、流体との接触表面にプラズマCVDによる非晶質の
耐食性被膜を形成したダイヤフラム又はベローズを備え
たことを特徴とする耐食バルブ。[Scope of Claims] 1. An elastic deformable body characterized by forming an amorphous corrosion-resistant coating on the surface of an elastic base material by plasma CVD. 2. A corrosion-resistant valve characterized by comprising a diaphragm or a bellows with an amorphous corrosion-resistant coating formed by plasma CVD on the surface in contact with a fluid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2060506A JPH0794713B2 (en) | 1990-03-12 | 1990-03-12 | Corrosion resistant valve for semiconductor manufacturing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2060506A JPH0794713B2 (en) | 1990-03-12 | 1990-03-12 | Corrosion resistant valve for semiconductor manufacturing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03260072A true JPH03260072A (en) | 1991-11-20 |
JPH0794713B2 JPH0794713B2 (en) | 1995-10-11 |
Family
ID=13144266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2060506A Expired - Lifetime JPH0794713B2 (en) | 1990-03-12 | 1990-03-12 | Corrosion resistant valve for semiconductor manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0794713B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006316852A (en) * | 2005-05-11 | 2006-11-24 | Saginomiya Seisakusho Inc | Pilot operated solenoid valve and heat exchange system using the same |
JP2008103754A (en) * | 2007-12-10 | 2008-05-01 | Tadahiro Omi | Method of using valve for vacuum evacuation system |
JP2008196518A (en) * | 2007-02-08 | 2008-08-28 | Smc Corp | Flow control valve |
US9234586B2 (en) | 2012-04-23 | 2016-01-12 | Ckd Corporation | Linear actuator and vacuum control device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58141377A (en) * | 1982-02-16 | 1983-08-22 | Seiko Epson Corp | Plasma coating method |
JPH01173846A (en) * | 1987-09-10 | 1989-07-10 | Komatsu Ltd | Manufacture of thin film pressure sensor |
-
1990
- 1990-03-12 JP JP2060506A patent/JPH0794713B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58141377A (en) * | 1982-02-16 | 1983-08-22 | Seiko Epson Corp | Plasma coating method |
JPH01173846A (en) * | 1987-09-10 | 1989-07-10 | Komatsu Ltd | Manufacture of thin film pressure sensor |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006316852A (en) * | 2005-05-11 | 2006-11-24 | Saginomiya Seisakusho Inc | Pilot operated solenoid valve and heat exchange system using the same |
JP2008196518A (en) * | 2007-02-08 | 2008-08-28 | Smc Corp | Flow control valve |
JP2008103754A (en) * | 2007-12-10 | 2008-05-01 | Tadahiro Omi | Method of using valve for vacuum evacuation system |
JP4644242B2 (en) * | 2007-12-10 | 2011-03-02 | 忠弘 大見 | How to use vacuum exhaust valve |
US9234586B2 (en) | 2012-04-23 | 2016-01-12 | Ckd Corporation | Linear actuator and vacuum control device |
Also Published As
Publication number | Publication date |
---|---|
JPH0794713B2 (en) | 1995-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4987911B2 (en) | Inside the plasma processing vessel | |
US20050084617A1 (en) | Method for coating internal surface of plasma processing chamber | |
US20090194233A1 (en) | Component for semicondutor processing apparatus and manufacturing method thereof | |
KR20070044508A (en) | Mixture layer coated member in plasma processing container and production method therefor | |
WO2004059474A2 (en) | Micromachined intergrated fluid delivery system | |
JPWO2010032722A1 (en) | Seal plate, seal member used for seal plate, and manufacturing method thereof | |
JPWO2006038328A1 (en) | Seal parts | |
JPH03260072A (en) | Elastic deformable body and corrosion-resistant valve using the same | |
JP2007258634A (en) | Member for plasma processor and method for manufacturing the same | |
US20100144147A1 (en) | Sample holding tool, sample suction device using the same and sample processing method using the same | |
JP5040119B2 (en) | Environmentally resistant member, semiconductor manufacturing apparatus, and environmentally resistant member manufacturing method | |
JP2004225725A (en) | Slide part | |
JP4855356B2 (en) | Sealed structure | |
JPH03153876A (en) | Silicon carbide member | |
JPS61159566A (en) | Coating method of metallic or ceramic base material | |
JP2007277620A (en) | Method for depositing spray deposit film on brittle base material | |
JPS62211390A (en) | Ceramic coated heat resistant member and its production | |
JP2006063421A (en) | Method for repairing member in semiconductor-manufacturing apparatus | |
JP2019100628A (en) | Heat pipe and process of manufacture of heat pipe | |
JPH08338574A (en) | Joint | |
TWM629471U (en) | Flange and flange connector | |
US20050112289A1 (en) | Method for coating internal surface of plasma processing chamber | |
JP3004143B2 (en) | Ceramic liquid control valve | |
JPH0454358Y2 (en) | ||
JP2023086129A (en) | Complex seal for high temperature corrosive gas integrated with buck-up ring seal |