JPH03259960A - Silica filler and its preparation - Google Patents

Silica filler and its preparation

Info

Publication number
JPH03259960A
JPH03259960A JP5867990A JP5867990A JPH03259960A JP H03259960 A JPH03259960 A JP H03259960A JP 5867990 A JP5867990 A JP 5867990A JP 5867990 A JP5867990 A JP 5867990A JP H03259960 A JPH03259960 A JP H03259960A
Authority
JP
Japan
Prior art keywords
silica
particle size
crushed
filler
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5867990A
Other languages
Japanese (ja)
Other versions
JP2958402B2 (en
Inventor
Sadahiko Shimada
島田 貞彦
Takeo Miyabe
宮辺 武夫
Nobuyuki Yamazaki
信幸 山崎
Yutaka Konose
豊 木ノ瀬
Kyuzo Yoshikawa
吉川 久三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP5867990A priority Critical patent/JP2958402B2/en
Publication of JPH03259960A publication Critical patent/JPH03259960A/en
Application granted granted Critical
Publication of JP2958402B2 publication Critical patent/JP2958402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a silica filler giving a semiconductor-sealing resin compsn. excellent in flowability, prevention of flash formation, and high-temp. strengths by adhering, to the surface of a fused spherical silica having a specified particle size, a pulverized silica having a particle size smaller than the spherical silica. CONSTITUTION:A mixture of a fused spherical silica having a mean particle size of 10-40mum with a pulverized silica having a mean particle size of 5mum or lower is introduced into and treated in an air current rotating at a high speed, and is then classified under the condition of a classification point of 1-10mum. Thus the particles in the mixture collide with each other in the air current, generating static electricity and physically adhering to each other, and are then classified under a specified classification point to give a silica filler suitable for a semiconductor-sealing resin compsn. The compsn. shows an excellent balance among flowability, prevention of flash formation, and high-temp. strengths.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、シリカフィラーおよびその製造方法に関する
。更に詳細には、半導体の樹脂封止用シリカフィラーと
して好適となる特定な粒子特性をもつシリカフィラーお
よびその工業的に有利な製造方法に係るものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a silica filler and a method for producing the same.More specifically, the present invention relates to a silica filler and a method for producing the same. The present invention relates to a filler and an industrially advantageous manufacturing method thereof.

(従来の技術) 半導体の樹脂封止は、エポキシ樹脂を代表とする樹脂に
、特にシリカを主体とする多量のフィラーを充填した樹
脂組成物の封止材料によってなされるが、この関係につ
いては既に数多くの特許が公開されている。
(Prior art) Semiconductor resin encapsulation is performed using a encapsulating material made of a resin composition, which is a resin typically epoxy resin filled with a large amount of filler, especially silica. Many patents have been published.

従来、半導体の樹脂封止材のフィラーとして溶融シリカ
の粉砕品が利用されているが、近時、半導体の集積度が
上がるにつれて高充填性の樹脂封止が要求され、樹脂の
流動性を改善のために従来の粉砕品に代わって溶融球状
シリカがフィラーとして不可欠となってきている。
Conventionally, pulverized fused silica has been used as a filler in resin encapsulants for semiconductors, but as the degree of integration of semiconductors has increased, highly filling resin encapsulants have been required, and resin fluidity has been improved. Therefore, fused spherical silica has become indispensable as a filler in place of conventional pulverized products.

特公昭54−43201号公報、特公昭61−5734
7号公報などに記載のある発明はこの種の樹脂組成物を
対象としたものであり、微細な球状粒子や平均粒Pk1
〜60μmの溶融球状シリカを用いることが示されてい
る。
Special Publication No. 54-43201, Special Publication No. 61-5734
The invention described in Publication No. 7, etc. is aimed at this type of resin composition, and includes fine spherical particles and average particles Pk1.
It has been shown to use ~60 μm fused spherical silica.

このように、樹脂封止材用のシリカフィラーには、ボー
ルミル等で粉砕した破砕状の結晶性又は非晶質シリカや
、高温火炎中で溶融した球状シリカ等があって、それら
の1種又は2種以上を粒度調整したものを用いることも
知られている(特開昭54−141569号公報、特開
昭55−29532号公報、特開昭56−10947号
公報、特開昭57−212225号公報、特開昭62−
261161号公報)。
In this way, silica fillers for resin encapsulants include crushed crystalline or amorphous silica crushed with a ball mill, etc., spherical silica melted in a high-temperature flame, etc., and one of these types or It is also known to use two or more types with particle sizes adjusted (JP-A-54-141569, JP-A-55-29532, JP-A-56-10947, JP-A-57-212225). No. Publication, JP-A-62-
261161).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

近年、高集積度ICメモリーの分野では、パッケージは
ピン挿入型から表面実装型で薄型かつ小型化、多ピン化
の傾向を強めている。
In recent years, in the field of highly integrated IC memories, there has been a growing trend for packages to shift from pin-insertion type to surface-mount type, thinner and smaller, and to have more pins.

またICメモリーの集積度の向上につれてICチップの
面積は大きくなっており、パッケージに占めるチップの
占有率がますます大きくなってきている。これにともな
いパッケージには、チップとパッケージ組成物の熱膨張
率の差に起因する熱応力に基づくクラック発生が重要な
問題点となっている。
Furthermore, as the degree of integration of IC memories improves, the area of the IC chip increases, and the chip occupies a larger proportion of the package. Along with this, the occurrence of cracks in packages due to thermal stress caused by the difference in coefficient of thermal expansion between the chip and the package composition has become an important problem.

パッケージ組成物の熱膨張率は、該組成物中のシリカフ
ィラーの含有量の増大に応して小さくなる。そこで該組
成物中のシリカ含有量を上げるためには、組成物の流動
性の向上なしには達成できず、そのため従来用いられて
いた破砕シリカに代わって球状シリカを用いることが検
討された。球状シリカを使用した場合、確かに流動性が
向上するため組成物中のシリカ含有量を増大することが
できるけれども、当該樹脂組成物の成型時にハリが発生
しやすいという問題点が出てきた。また、表面実装方法
が主流になるにつれて、従来あまり問題にされていなか
ったパッケージクラック(吸湿後のハンダ温度における
熱時強度の低下に起因するりフロー炉にいれた場合に生
じるクラック〉が新たな問題として指摘され、特に球状
シリカを多量配合した場合、熱時強度の不足によるパッ
ケージクランクが生じ易いことが判明した。
The coefficient of thermal expansion of the packaging composition decreases as the content of silica filler in the composition increases. Therefore, increasing the silica content in the composition cannot be achieved without improving the fluidity of the composition, and therefore, consideration has been given to using spherical silica in place of the conventionally used crushed silica. When spherical silica is used, it is possible to increase the silica content in the composition due to improved fluidity, but a problem has arisen in that firmness tends to occur during molding of the resin composition. In addition, as surface mounting methods become mainstream, package cracks (cracks that occur when placed in a flow furnace due to a decrease in thermal strength at the solder temperature after moisture absorption), which had not been much of a problem in the past, have become a new problem. This has been pointed out as a problem, and it has been found that especially when a large amount of spherical silica is blended, package cranking is likely to occur due to insufficient strength when heated.

一般に、破砕シリカは樹脂組成物の流動性に劣る反面、
パリ特性、高温強度特性が優れており、一方球状シリカ
はその逆の傾向にある。従って、多くの場合、両者のシ
リカを適宜配合し、流動性を犠牲にした配合系で樹脂封
止している。
In general, crushed silica has poor fluidity in resin compositions, but
It has excellent Paris properties and high-temperature strength properties, while spherical silica has the opposite tendency. Therefore, in many cases, both types of silica are appropriately blended, and resin sealing is performed using a blending system that sacrifices fluidity.

例えば、前記特開昭56−10947号公報や特開昭5
7−212225号公報には、結晶性シリカ粉末と溶融
シリカ粉末との混合物を、特開昭62−261161号
公報には、破砕シリカと球状シリカとの混合物をフィラ
ーとするものが開示されているが、本発明者らの実験に
よれば、封止用樹脂組成物の流動性とパリ特性を同時に
満すような高充填可能なフィラーとして使用することが
できない。
For example, the above-mentioned Japanese Patent Application Laid-open No. 56-10947 and Japanese Patent Application Laid-open No. 5
7-212225 discloses a filler containing a mixture of crystalline silica powder and fused silica powder, and JP-A-62-261161 discloses a filler containing a mixture of crushed silica and spherical silica. However, according to experiments conducted by the present inventors, it cannot be used as a highly filling filler that simultaneously satisfies the fluidity and Paris characteristics of the sealing resin composition.

また、球状シリカと破砕状シリカとの単なる混合では、
多くの場合、その混合物は両者の利点を引き出すことが
出来ないのみならず、フィラーとしての信頼性にかける
ことも判った。
In addition, simply mixing spherical silica and crushed silica,
In many cases, it has been found that the mixture not only fails to bring out the best of both worlds, but also compromises its reliability as a filler.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、畝上の事実に鑑み、数多くの実験と研究
を重ねた結果、樹脂封止用フィラーとして高充填可能な
シリカフィラーとして形状や粒度は勿論のこと、それら
が異なるシリカ粒子との相互の物理的結合関係が極めて
重要であることを知見して本発明を完成するに至った。
In view of the fact of the ridges, the present inventors have conducted numerous experiments and research, and have found that silica filler that can be highly filled as a filler for resin sealing has not only different shapes and particle sizes, but also different silica particles. The present invention was completed based on the finding that the mutual physical bonding relationship between the two is extremely important.

すなわち、本発明により提供されるシリカフィラーは、
平均粒径IO〜40−の溶融球状シリカの粒子表面に該
シリカ粒子よりも微細な破砕状シリカを付着してなるこ
とを特徴とするものである。
That is, the silica filler provided by the present invention is
It is characterized in that crushed silica finer than the silica particles is adhered to the surface of fused spherical silica particles having an average particle size of IO to 40.

更に、本発明は上記シリカフィラーを工業的に有利な製
造方法を提供することにあり、その特徴とするのは平均
粒径10〜40μmの溶融球状シリカと該シリカ粒子よ
りも微細な破砕状シリカとの混合物を高速回転気流中に
投入処理した後、分級点が1〜10μmの条件で分級処
理することにある。
Furthermore, the present invention provides an industrially advantageous manufacturing method for the above-mentioned silica filler, which is characterized by comprising fused spherical silica having an average particle size of 10 to 40 μm and crushed silica finer than the silica particles. After the mixture is put into a high-speed rotating air stream, it is classified under the conditions that the classification point is 1 to 10 μm.

以下、本発明につき詳説する。The present invention will be explained in detail below.

本発明に係るシリカフィラーは前記したごとく比較的粒
径の大きな球状シリカの表面に微粒破砕シリカを付着し
てなることを特徴とする。すなわち、本発明に係るシリ
カフィラーは、これを用いた封止用樹脂組成物に対して
球状シリカのもつ高い流動性を保持しつつ、破砕シリカ
粒子の付着による形状効果により球状シリカ単独では得
られないパリ特性と優れた高温強度特性を同時に満足す
ることができ、本発明に係るシリカを適用して樹脂組成
物を調製する場合の自由度の幅を拡大させるものである
The silica filler according to the present invention is characterized in that, as described above, finely crushed silica is adhered to the surface of spherical silica having a relatively large particle size. That is, the silica filler according to the present invention maintains the high fluidity of spherical silica in the sealing resin composition using it, and has a shape effect that cannot be obtained with spherical silica alone due to the shape effect due to the adhesion of crushed silica particles. It is possible to simultaneously satisfy low-temperature properties and excellent high-temperature strength properties, thereby expanding the range of freedom when preparing a resin composition by applying the silica according to the present invention.

本発明に係る球状シリカは、溶融前の出発原料に関して
は特に規制はなく、天然の珪石や水晶の粉砕品、合成石
英粉砕品、アルコキシシラン等のシラン化合物の加水分
解より得られる粉末珪酸ソーダと酸との反応より得られ
る粉末等が利用できる。
The spherical silica according to the present invention has no particular restrictions on the starting materials before melting, and includes crushed products of natural silica stone and crystal, crushed synthetic quartz, powdered sodium silicate obtained by hydrolysis of silane compounds such as alkoxysilane, etc. A powder etc. obtained by reaction with an acid can be used.

通常は、これらの粉末シリカを酸素−可燃性ガス炎に分
散させて溶融球状化し、必要に応し粒度調製したもので
ある。
Usually, these powdered silicas are dispersed in an oxygen-combustible gas flame, molten and spheroidized, and the particle size is adjusted as necessary.

本発明に係るシリカフィラーにおいて溶融球状シリカは
その平均粒径が10〜40nであることが重要である。
In the silica filler according to the present invention, it is important that the fused spherical silica has an average particle size of 10 to 40 nm.

この理由は40n以上の場合、その中に含まれる粗大粒
子が金型のゲート部分に詰まるれがあると共に微粒部分
の不足によるスリットバリが発生するため好ましくない
、一方、逆に10μm以下の場合、粗粒部分の不足によ
る流動性の低下及びエアベントバリが発生するため好ま
しくない傾向があることによる。また、かかる球状シリ
カは、多くの場合、0.3〜51/gのBET比表面積
を有している。比表面積は、球状シリカの溶融化度の指
標の1つとして捉えられ、0.3 m”/g未満のもの
は経済的に有利な工業生産が不可能であり、逆に51/
g以上の場合は溶融球状化が不十分であり満足すべき流
動性が得られない。
The reason for this is that if the diameter is 40n or more, the coarse particles contained therein may clog the gate of the mold, and slit burrs may occur due to the lack of fine particles, which is undesirable.On the other hand, if the diameter is 10μm or less, This is because there is an undesirable tendency to reduce fluidity due to a lack of coarse particles and to generate air vent burrs. Further, such spherical silica often has a BET specific surface area of 0.3 to 51/g. The specific surface area is considered as one of the indicators of the degree of melting of spherical silica, and if it is less than 0.3 m''/g, economically advantageous industrial production is impossible;
If it is more than g, melt spheroidization is insufficient and satisfactory fluidity cannot be obtained.

次に、本発明に係るシリカフィラーは、前記の溶融球状
シリカに微細な破砕状シリカが付着しているものである
が、これは結晶質若しくは非晶質のいずれでもよく、ま
た天然若しくは合成のいずれであってもよい、好ましく
は、溶融シリカの粉砕品がよい。
Next, the silica filler according to the present invention has fine crushed silica attached to the fused spherical silica, which may be either crystalline or amorphous, and may be natural or synthetic. Any material may be used, but a pulverized product of fused silica is preferable.

微細化の程度は、溶融球状シリカの平均粒子径や破砕シ
リカ自体の物性等によって一様ではないけれども平均粒
子径として球状シリカの1/2以下であることが少なく
とも必要である。
Although the degree of refinement varies depending on the average particle size of the fused spherical silica and the physical properties of the crushed silica itself, it is necessary that the average particle size is at least 1/2 or less of that of the spherical silica.

この理由は、微細化度合が不充分であるとシリカフィラ
ーとしての流動性が低下してくるからである。
The reason for this is that if the degree of refinement is insufficient, the fluidity of the silica filler will decrease.

従って、多くの場合、破砕状シリカの平均粒子径は、5
n以下のものが好ましい。
Therefore, in many cases, the average particle size of crushed silica is 5
It is preferably n or less.

また、球状シリカに対する破砕状シリカの付着量につい
ては特に限定は無いものの通常は全重量当り10〜50
@t%が好ましい。lQwt%未満では破砕状シリカ付
着による高温強度改善効果が乏しく、また50−t%以
上の場合は高温強度は改善されるものの、流動性の低下
も大きくなる。それゆえ流動性と高温強度のバランスを
保ちつつ10〜50wt%の範囲で適宜選択するのが良
い。
Although there is no particular limitation on the amount of crushed silica attached to spherical silica, it is usually 10 to 50% per total weight.
@t% is preferred. If it is less than 1Qwt%, the effect of improving high temperature strength due to the adhesion of crushed silica is poor, and if it is more than 50-t%, although the high temperature strength is improved, the fluidity is greatly reduced. Therefore, it is preferable to appropriately select the content within the range of 10 to 50 wt% while maintaining a balance between fluidity and high-temperature strength.

なお、本発明に係る破砕状シリカ及び球状シリカの前記
粒度特性はいずれもレーザー散乱光法による粒度分布測
定法に基づく値であり、その測定機種としては例えば、
SKレーザー(セイシン企業■)やシーラスレーザー(
シーラス社)等が挙げられる。
The particle size characteristics of the crushed silica and spherical silica according to the present invention are both values based on a particle size distribution measurement method using a laser scattering light method, and examples of measurement models include, for example:
SK Laser (Seishin Enterprise ■) and Cirrus Laser (
Cirrus Inc.), etc.

また、シリカフィラーの粒子が球状であるか破砕状であ
るか否かは、電子顕微鏡又は普通の顕微鏡にて容易に確
認することができ、本発明で言う球状とは真球ないしは
実質的に角のない丸味のある粒子状態であるものをいい
、破砕状というのは粉砕粒子が有する角のある任意の形
状をもつ粒子状態であるものをいう。
Furthermore, whether the particles of silica filler are spherical or crushed can be easily confirmed with an electron microscope or an ordinary microscope. The term "crushed" refers to a particle state with a rounded shape without any roundness, and the term "crushed particle" refers to a particle state with an arbitrary shape with corners that the crushed particles have.

本発明に係るシリカフィラーは、上記形状および粒度の
異なる2種のシリカが相互に付着した状態であることが
重要である。ここに、付着とは両者の単なる混合物では
なく、粒径の大きな球状シリカの粒子表面に微細な破砕
状シリカ粒子が物理的に密着している状態をいう。
It is important that the silica filler according to the present invention has two types of silica having different shapes and particle sizes adhered to each other. Here, adhesion is not a mere mixture of the two, but refers to a state in which fine crushed silica particles are physically adhered to the particle surface of spherical silica having a large particle size.

次に本発明に係るシリカフィラーの製造方法につき詳説
する。
Next, the method for producing silica filler according to the present invention will be explained in detail.

本発明における球状シリカは、前記した特徴をもった操
作により工業的に有利に製造することができる。
The spherical silica in the present invention can be industrially advantageously produced by operations having the characteristics described above.

すなわち、所定の粒度特性と比表面積を有する原料シリ
カ粉を、火炎溶融炉に供給して溶融球状化することによ
り製造でき、この方法は公知である。
That is, it can be produced by supplying raw material silica powder having predetermined particle size characteristics and specific surface area to a flame melting furnace and melting it into a spheroid, and this method is well known.

溶融球状化は、酸素−可燃性ガスの燃焼による火炎、多
くの場合、酸素−プロパン炎にて行うが、そのシリカの
融点以上の温度にある火炎が得られれば、ガスの種類、
溶融方法については特に限定するものではない。
Melt spheroidization is carried out using a flame resulting from the combustion of an oxygen-combustible gas, often an oxygen-propane flame, but if a flame at a temperature above the melting point of the silica can be obtained,
The melting method is not particularly limited.

なお、この工程において使用できるシリカ原料は、特に
限定されるものではないが、可能な限り高純度の天然又
は合成シリカであることが望ましい。
Note that the silica raw material that can be used in this step is not particularly limited, but it is desirable to use natural or synthetic silica with the highest possible purity.

天然シリカとしては、精製された珪石、珪砂、水晶等が
挙げられ合成シリカとしては、ハロゲン化珪素の加水分
解によるもの、エチルシリケートの如きオルガノシリケ
ートの加水分解物又は珪酸アルカリ水溶液の中和に基づ
くシリカ等があげられる。
Examples of natural silica include purified silica, silica sand, and crystal, and examples of synthetic silica include those produced by hydrolysis of silicon halides, hydrolysates of organosilicate such as ethyl silicate, or those produced by neutralization of aqueous alkali silicate solutions. Examples include silica.

特に、珪酸アルカリ水溶液を鉱酸との中和反応に基づい
て得られる高純度シリカの製造法については、本出願人
が既に開発に成功しており、工業的に有利なシリカ原料
として用いることができるが、その詳細は、例えば特開
昭61−48421号公報、特開昭61−48422号
公報、特開昭61−178414号公報、特開昭62−
12608号公報等に記載されている。
In particular, the applicant has already successfully developed a method for producing high-purity silica obtained by neutralizing an aqueous alkali silicate solution with a mineral acid, and it can be used as an industrially advantageous raw material for silica. However, the details can be found in, for example, JP-A-61-48421, JP-A-61-48422, JP-A-61-178414, and JP-A-62-
It is described in Publication No. 12608 and the like.

破砕状シリカは球状シリカを粉砕して調製することも可
能であるが、前記したとおり通常は溶融炉にてシリカ原
料を加熱溶解乃至焼結して得られる粒状又は塊状の溶融
ソリ力を適宜所望の粉砕機にて粉砕して調製する。この
ほか必要に応じ天然シリカの粉砕品も使用することがで
きる。
It is also possible to prepare crushed silica by crushing spherical silica, but as mentioned above, it is usually possible to obtain the desired molten warping force in the form of granules or blocks obtained by heating and melting or sintering the silica raw material in a melting furnace. Prepare by crushing in a crusher. In addition, crushed natural silica can also be used if necessary.

本発明においては、上記の球状シリカと破砕シリカを混
合し、この混合物を高速回転気流中に投入することが重
要でその特徴となるものである。
In the present invention, it is important and characteristic that the above-mentioned spherical silica and crushed silica are mixed and this mixture is introduced into a high-speed rotating air stream.

この段階で球状シリカと破砕シリカの衝突及び静電気の
発生により球状シリカ表面に微細な破砕シリカが付着す
る。次いで、破砕シリカが表面に付着した球状シリカと
未付着の破砕シリカを分離するために分級点5n付近で
分級を行なう。
At this stage, fine crushed silica adheres to the surface of the spherical silica due to the collision between the spherical silica and the crushed silica and the generation of static electricity. Next, in order to separate the spherical silica to which the crushed silica has adhered to the surface and the crushed silica to which no crushed silica has adhered, classification is performed near the classification point 5n.

かかる高速回転気流中での付着から分級の操作は、強制
渦流タイプの分級機により行なうことができ、例えば、
ターポクラシファイヤー(日清エンジニアリング)、ミ
クロンセパレーター(ホソカワミクロン)、スペディッ
ククラシファイヤー(セイシン企業)等の機器が利用で
きる。
The operations from adhesion to classification in such a high-speed rotating airflow can be performed using a forced vortex type classifier, for example,
Equipment such as Tarpo Classifier (Nissin Engineering), Micron Separator (Hosokawa Micron), and Spedic Classifier (Seishin Enterprises) can be used.

なお、破砕状シリカの付着量は付着前の球状シリカのB
ET比表面積と付着後のシリカの比表面積、更に破砕シ
リカの比表面積より計算で求めることができる。
The amount of crushed silica deposited is B of spherical silica before deposition.
It can be calculated from the ET specific surface area, the specific surface area of silica after adhesion, and the specific surface area of crushed silica.

このようにして得られた本発明に係るシリカフィラーは
、それ単独でも樹脂封止用フィラーとして好適なもので
あるが、必要に応しこれを基材として他の特定の粒度の
球状フィラーを添加して粒度調整を行なって、微妙な流
動性、パリ特性、高温強度特性のバランスを取ることも
できる。また、必要に応してシランカップリング剤など
で表面処理して用いることもできる。
The silica filler according to the present invention obtained in this way is suitable as a filler for resin sealing even when used alone, but if necessary, other spherical fillers of a specific particle size can be added using this as a base material. Particle size can also be adjusted to achieve a delicate balance between fluidity, Paris properties, and high-temperature strength properties. Further, if necessary, the surface can be treated with a silane coupling agent or the like before use.

〔作 用〕[For production]

本発明に係るシリカフィラーは、特定な粒子特性を有す
る溶融球状シリカの粒子表面に該シリカよりも微細な破
砕状シリカを物理的に付着せしめたものをシリカフィラ
ーとするものである。かかるシリカフィラーは上記具な
る2種のシリカ混合物を渦流タイプの分級機で処理する
ことにより、混合粒子が高速回転気流中で相互に衝突と
静電気の発生を伴って物理的付着が生し、次いで所定の
分級点で分離することにより得ることができる。
The silica filler according to the present invention is a silica filler in which crushed silica, which is finer than the silica, is physically adhered to the particle surface of fused spherical silica having specific particle characteristics. Such silica filler is produced by processing the above-mentioned two types of silica mixture in a vortex type classifier, whereby the mixed particles collide with each other in a high-speed rotating airflow and generate static electricity, resulting in physical adhesion. It can be obtained by separating at a predetermined classification point.

〔実施例] 以下、本発明につき実施例、比較例を挙げて具体的に説
明する。なお、部はいずれも重量を表わす。
[Example] Hereinafter, the present invention will be specifically explained by giving examples and comparative examples. Note that all parts represent weight.

(1)球状シリカの調製 A、 R50=13.Oμmの合成シリカを酸素プロパ
ン火炎中に分散して溶融球状化した。得られた溶融シリ
カはR50=33.0gm、 B E T O,451
/gでありSEMによりi!認したところ球状を呈して
いた。
(1) Preparation A of spherical silica, R50=13. Synthetic silica of 0 μm was dispersed in an oxygen-propane flame and molten into spheroids. The obtained fused silica has R50=33.0 gm, B E T O, 451
/g and by SEM i! Upon inspection, it was found to be spherical.

B、 R50= 2.OnO合戒シリカを酸素プロパン
火炎中に分散して溶融球状化した。得られた溶融シリカ
を分級して粗粒分をとり除きR50= 2.8n、 B
 ET 2.65m”/gのシリカを得た。SEMによ
り確認したところ球状を呈していた。
B, R50=2. OnO Gakai silica was dispersed in an oxygen-propane flame and molten into spheroids. The obtained fused silica was classified to remove coarse particles and R50 = 2.8n, B
Silica with an ET of 2.65 m''/g was obtained. It was confirmed by SEM that it had a spherical shape.

C,R50= 2.2μmの合成シリカを酸素プロパン
火炎中に分散して溶融球状化した。得られた溶融シリカ
はR50= 2.On、 B ET 23m t / 
gでありSEMで確認したところ球状を呈していた。
C, R50 = 2.2 μm synthetic silica was dispersed in an oxygen-propane flame and molten into spheroids. The obtained fused silica has R50=2. On, B ET 23m t /
g, and when confirmed by SEM, it had a spherical shape.

(2)破砕状シリカの調製 天然石英を溶融したのちボールミルで粉砕してR50=
 4.8n、 B E77.5m”/g  の破砕状シ
リカを得た。
(2) Preparation of crushed silica After melting natural quartz, crush it with a ball mill to obtain R50=
4.8n, BE 77.5m"/g of crushed silica was obtained.

(3)封止用樹脂&ll戒物酸物製 組成物の配合 シリカフィラー・・・80w t% 注(1)エビクロンN665、〔大日本インキ■社製〕
注ぐz′  バーカムTD2131、〔大日本インキ■
社製]注(3〉 ヘキスト社製 (4)樹脂組成物の評価 上記の封止用エポキシ樹脂組成物を85〜95°Cの熱
ロールで混練した後、該組成物の流動性とパリ特性、高
温強度特性を評価した。
(3) Silica filler blended with sealing resin & 1. Kaido acid composition...80 w t% Note (1) Evicron N665, [manufactured by Dainippon Ink Company]
Pour z′ Barcam TD2131, [Dainippon Ink■
[manufactured by Hoechst] Note (3) Manufactured by Hoechst (4) Evaluation of resin composition After kneading the above epoxy resin composition for sealing with a hot roll at 85 to 95°C, the fluidity and Paris properties of the composition were evaluated. , the high temperature strength properties were evaluated.

すなわち、流動性はトランスファー成形機でEMMI 
 1−66に基づくスパイラルフロー値ヲ測定し、パリ
特性は5〜Soμmのスリ、ト幅を調整した金型の間際
に伸びるパリ長さの測定をもって評価した。
In other words, the fluidity is EMMI in the transfer molding machine.
The spiral flow value based on 1-66 was measured, and the slit characteristic was evaluated by measuring the slit length extending at the edge of the mold with the slit width adjusted to 5 to Soμm.

なお、トランスファーモールドの条件は金型温度170
°C1樹脂圧70kg/cm”とした。
The transfer molding conditions are a mold temperature of 170°C.
°C1 resin pressure was set at 70 kg/cm''.

高温強度の測定については、金型により底型した強度測
定用試験片(4■−)<lQmmXloo−m)を後硬
化(180°CX 4 hrs)させ、JISK−69
11に準してオートグラフ〔■島津製作所製〕により2
20°Cでの3点曲げ強度を測定した。また吸水後高湿
強度は、後硬化を終えた試験片をP CT (120℃
X 24hrs)テストで吸水させ、その後220°C
での3点曲げ強度を測定した。なお、1回の測定には、
試験片6本を用いその平均値を測定した。
For the measurement of high temperature strength, a test piece for strength measurement (4■-)<lQmmXloo-m) molded with a mold was post-cured (180°C
2 by Autograph [manufactured by Shimadzu Corporation] according to 11.
The three-point bending strength at 20°C was measured. In addition, the high humidity strength after water absorption is determined by P CT (120℃
x 24hrs) test to absorb water, then 220°C
The three-point bending strength was measured. In addition, for one measurement,
The average value was measured using six test pieces.

実施例1 球状シリカA300部と破砕シリカ200部を混合した
のち、この混合物を分級機〔ターボグラフファイヤー 
TC−15N、日清エンジニアリング■製]に通過させ
て微細な破砕状シリカが付着した球状シリカ960部を
得た。
Example 1 After mixing 300 parts of spherical silica A and 200 parts of crushed silica, this mixture was passed through a classifier [Turbograph Firer].
TC-15N, manufactured by Nisshin Engineering Corporation] to obtain 960 parts of spherical silica to which fine crushed silica was attached.

このときの分級条件はローター回転数4250RPm、
風量1.Oa+’/分であり分級点は4−であった。
The classification conditions at this time were: rotor rotation speed 4250RPm;
Air volume 1. Oa+'/min, and the classification point was 4-.

得られたシリカフィラーの粒度と比表面積を測定したと
ころ、平均粒子径(R50) =29.5faおよび比
表面積(B E T ) 1.36m”/gであった。
When the particle size and specific surface area of the obtained silica filler were measured, the average particle diameter (R50) was 29.5 fa and the specific surface area (B ET ) was 1.36 m''/g.

BETより計算した破砕状シリカ付着量は12%であっ
た。
The adhesion amount of crushed silica calculated from BET was 12%.

このシリカフィラーを用いて封止用樹脂All底物を調
製し流動性、高温強度を測定した。その結果を第1表に
示した。
Using this silica filler, a sealing resin All-in-bottom material was prepared, and its fluidity and high temperature strength were measured. The results are shown in Table 1.

実施例2 球状シリカA300部と破砕シリカ200部を混合した
のち、実施例1と同様の操作により分級機を通過させて
破砕シリカ付着球状シリカ970部を得た。このときの
分級条件はローター回転数4000RP−風量1.4m
’/分であり、分級点は5nであった。
Example 2 After mixing 300 parts of spherical silica A and 200 parts of crushed silica, the mixture was passed through a classifier in the same manner as in Example 1 to obtain 970 parts of spherical silica with crushed silica attached. The classification conditions at this time are rotor rotation speed 4000RP - air volume 1.4m
'/min, and the classification point was 5n.

得られたシリカの粒度と比表面積を測定したところR5
0=28.9−およびB E T1.92m”/gであ
り、BETより計算した破砕状シリカ付着量は20%で
あった。このシリカフィラーを用いて封止用樹脂組成物
を調製し、流動性、高温強度を測定した。
When the particle size and specific surface area of the obtained silica were measured, it was found to be R5.
0 = 28.9- and B E T 1.92 m"/g, and the amount of crushed silica adhered calculated from BET was 20%. A sealing resin composition was prepared using this silica filler, Fluidity and high temperature strength were measured.

その結果を第1表に併載した。The results are also listed in Table 1.

比較例1 球状シリカAを用いて封止用樹脂m酸物を調製し、流動
性、高温強度を測定した。得られた結果を第1表に併載
した。
Comparative Example 1 A sealing resin m-acid was prepared using spherical silica A, and its fluidity and high temperature strength were measured. The obtained results are also listed in Table 1.

第1表より実施例1.2のシリカフィラーは吸水後の高
温強度が比較例1に比べて約30%高く、高強度材料を
調製する場合の基材フィラーとして好適であることが判
った。
From Table 1, it was found that the silica filler of Example 1.2 had a high-temperature strength after water absorption that was approximately 30% higher than that of Comparative Example 1, and was suitable as a base filler for preparing high-strength materials.

実施例3 実施例1より得られたシリカ80部と球状シリカ810
部、球状シリカ010部を混合してシリカフィラーを調
製した。このシリカフィラーを用いて封止用樹脂m酸物
を調製し、流動性、パリ特性、高温強度を測定して第2
表の結果を得た。
Example 3 80 parts of silica obtained from Example 1 and 810 parts of spherical silica
A silica filler was prepared by mixing 0.1 parts of spherical silica and 0.10 parts of spherical silica. A sealing resin m-acid was prepared using this silica filler, and its fluidity, Paris properties, and high-temperature strength were measured.
Obtained the results in the table.

実施例4 実施例2より得られたシリカ80部と球状シリカ810
部、球状シリカ010部を混合してシリカフィラーを調
製した。このシリカフィラーを用いて封止用樹脂組成物
を調製し、流動性、パリ特性、高温強度を測定して第2
表の結果を得た。
Example 4 80 parts of silica obtained from Example 2 and 810 parts of spherical silica
A silica filler was prepared by mixing 0.1 parts of spherical silica and 0.10 parts of spherical silica. A sealing resin composition was prepared using this silica filler, and its fluidity, Paris properties, and high temperature strength were measured.
Obtained the results in the table.

比較例2 球状シリカA80部、810部、C10部を混合してシ
リカフィラーを調製した。このシリカフィラーを用いて
封止用樹脂組成物を調製し、流動性、パリ特性、高温強
度を測定して第2表の結果を得た。
Comparative Example 2 A silica filler was prepared by mixing 80 parts of spherical silica A, 810 parts of spherical silica, and 10 parts of C. A sealing resin composition was prepared using this silica filler, and its fluidity, Paris properties, and high temperature strength were measured, and the results shown in Table 2 were obtained.

比較例3 球状シリカA70部、810部、C10部及び破砕シリ
カ10部を渦流分級機で処理することなく単に混合して
シリカフィラーを調製した。このシリカフィラーを用い
て封止用樹脂組成物を調製し流動性、パリ特性、高温強
度を測定して第2表の結果を得た。
Comparative Example 3 A silica filler was prepared by simply mixing 70 parts of spherical silica A, 810 parts of spherical silica, 10 parts of C, and 10 parts of crushed silica without using a vortex classifier. A sealing resin composition was prepared using this silica filler, and its fluidity, Paris properties, and high temperature strength were measured, and the results shown in Table 2 were obtained.

第2表の測定結果より、実施例3と4は流動性、パリ特
性、強度のバランスがとれていることが判った。また、
破砕状シリカを付着させた基材を使用しているにもかか
わらず、流動性や弾性率は比較例2の全球状フィラーと
同等であって、破砕状シリカにより流動性等の低下は認
められない。比較例では高温強度が不充分であり、実施
例と比べて特に吸水後の高温強度が低い。破砕シリカを
混合しただけの比較例3は流動性がやや低く、高温強度
は高いものの弾性率も高いという欠点を有している。
From the measurement results shown in Table 2, it was found that Examples 3 and 4 had well-balanced fluidity, Paris properties, and strength. Also,
Despite using a base material to which crushed silica was attached, the fluidity and elastic modulus were the same as the whole spherical filler of Comparative Example 2, and no decrease in fluidity etc. was observed due to the crushed silica. do not have. The comparative examples have insufficient high-temperature strength, and the high-temperature strength after water absorption is particularly low compared to the examples. Comparative Example 3, in which only crushed silica was mixed, had the drawbacks of slightly low fluidity, high high-temperature strength, but high elastic modulus.

〔発明の効果] 本発明によれば、特定の粒子特性を有する球状シリカの
表面に特定の粒子特性を有する破砕シリカを付着させる
ことにより、半導体封止用樹脂フィラーとして好適なシ
リカフィラーが提供される。
[Effects of the Invention] According to the present invention, a silica filler suitable as a resin filler for semiconductor encapsulation is provided by attaching crushed silica having specific particle characteristics to the surface of spherical silica having specific particle characteristics. Ru.

かかるシリカフィラーを用いて封止用樹脂組成物を調製
した場合、その組成物は流動性、パリ特性、高温強度特
性のバランスの優れたものが得られ特に、従来の球状フ
ィラーの欠点であった高温強度特性を大巾に改善できる
When a sealing resin composition is prepared using such a silica filler, the composition has an excellent balance of fluidity, Paris properties, and high-temperature strength properties, and in particular, overcomes the drawbacks of conventional spherical fillers. High temperature strength properties can be greatly improved.

Claims (1)

【特許請求の範囲】 1、平均粒径10〜40μmの溶融球状シリカの粒子表
面に該シリカ粒子よりも微細な破砕状シリカを付着して
なることを特徴とするシリカフィラー。 2、平均粒径10〜40μmの溶融球状シリカと平均粒
径5μm以下の破砕状シリカとの混合物を高速回転気流
中に投入処理した後、分級点が1〜10μmの条件で分
級処理することを特徴とするシリカフィラーの製造方法
[Scope of Claims] 1. A silica filler characterized by having crushed silica finer than the silica particles adhered to the surface of fused spherical silica particles having an average particle size of 10 to 40 μm. 2. A mixture of fused spherical silica with an average particle size of 10 to 40 μm and crushed silica with an average particle size of 5 μm or less is introduced into a high-speed rotating air stream, and then classified under conditions where the classification point is 1 to 10 μm. Characteristic manufacturing method of silica filler.
JP5867990A 1990-03-09 1990-03-09 Silica filler for semiconductor resin encapsulation and method for producing the same Expired - Fee Related JP2958402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5867990A JP2958402B2 (en) 1990-03-09 1990-03-09 Silica filler for semiconductor resin encapsulation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5867990A JP2958402B2 (en) 1990-03-09 1990-03-09 Silica filler for semiconductor resin encapsulation and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03259960A true JPH03259960A (en) 1991-11-20
JP2958402B2 JP2958402B2 (en) 1999-10-06

Family

ID=13091258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5867990A Expired - Fee Related JP2958402B2 (en) 1990-03-09 1990-03-09 Silica filler for semiconductor resin encapsulation and method for producing the same

Country Status (1)

Country Link
JP (1) JP2958402B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530418A (en) * 1995-07-26 1996-06-25 Taiwan Semiconductor Manufacturing Company Method for shielding polysilicon resistors from hydrogen intrusion
JP2003212534A (en) * 2002-01-23 2003-07-30 Ube Nitto Kasei Co Ltd Conductive silica particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530418A (en) * 1995-07-26 1996-06-25 Taiwan Semiconductor Manufacturing Company Method for shielding polysilicon resistors from hydrogen intrusion
JP2003212534A (en) * 2002-01-23 2003-07-30 Ube Nitto Kasei Co Ltd Conductive silica particle

Also Published As

Publication number Publication date
JP2958402B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
KR101406571B1 (en) Silica powder, method for production of the same, and composition using the same
JPS6157347B2 (en)
JP6815087B2 (en) Spherical eucryptite particles and their manufacturing method
CN111629998B (en) Fused spherical silica powder and method for producing same
JP4043103B2 (en) Fused spherical silica and method for producing the same
JP7254493B2 (en) A composite material comprising at least one first material and particles, said particles having a negative coefficient of thermal expansion α, and an adhesive material comprising said composite material
JPH03259960A (en) Silica filler and its preparation
JP6329776B2 (en) Sealing material for mold underfill
JPS6296568A (en) Semiconductor sealing resin composition
JP2684396B2 (en) Fused spherical silica and sealing resin composition using the same
JP3445707B2 (en) Siliceous filler and its production method
JP2000319633A (en) Silica filter for epoxy resin sealing material
JP2004203664A (en) Spherical siliceous powder and manufacturing method and utilization of the same
JP2955672B2 (en) Silica filler for semiconductor resin encapsulation and method for producing the same
JP2665539B2 (en) Silica filler and sealing resin composition using the same
JPH02158637A (en) Silica filler and sealing resin composition using the same
JPH0368067B2 (en)
JPH0463846A (en) Silica filler and its production
JPS6296569A (en) Semiconductor sealing resin composition
JP4313924B2 (en) Spherical silica powder and method for producing the same
JPS6296538A (en) Inorganic filler and resin composition
JPH03211A (en) Manufacture of epoxy resin forming material
JPH01185373A (en) Silica and its production
JPH01161065A (en) Silica and its production
JPH02145415A (en) Fused spherical silica and sealing resin composition using the same as filler

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees