JPH03257362A - Ultrasonic flaw detection apparatus - Google Patents

Ultrasonic flaw detection apparatus

Info

Publication number
JPH03257362A
JPH03257362A JP2056897A JP5689790A JPH03257362A JP H03257362 A JPH03257362 A JP H03257362A JP 2056897 A JP2056897 A JP 2056897A JP 5689790 A JP5689790 A JP 5689790A JP H03257362 A JPH03257362 A JP H03257362A
Authority
JP
Japan
Prior art keywords
probe
distance
square billet
flaw detection
angle probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2056897A
Other languages
Japanese (ja)
Other versions
JPH0760150B2 (en
Inventor
Mitsuo Yoshida
吉田 三男
Junichi Fujisawa
淳一 藤沢
Yukiro Sugimoto
幸郎 杉元
Yukio Mitani
三谷 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Steel Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Steel Corp filed Critical Mitsubishi Electric Corp
Priority to JP2056897A priority Critical patent/JPH0760150B2/en
Publication of JPH03257362A publication Critical patent/JPH03257362A/en
Publication of JPH0760150B2 publication Critical patent/JPH0760150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect a flaw with high reliability by reducing a flaw undetected region by calculating the distance up to the corner part of an oblique angle probe by utilizing the beam distance up to the bottom surface of a material to be inspected due to the ultrasonic beam of an oblique probe. CONSTITUTION:A beam distance operation circuit 11 uses the distance X up to the bottom surface of a material 1 to be inspected measured by the vertical probe 2a present at the almost same position as an oblique angle probe 2n and the distance S from the probes 2a, 2n to the side surface of the material 1 to be inspected is used to calculate the distance Y up to the corner part to which the beam from the oblique angle probe 2n goes. When the position of a bottom surface echo B moves to a position B' by some cause, since a flaw detection gate FG changes like FG' according to the moving quantity, the position of the flaw detection gate FG is controlled according to the fluctuation of the distance Y up to the corner part so as to follow a member 9 to prevent the generation of a flaw undetected region or the erroneous detection of the bottom surface echo.

Description

【発明の詳細な説明】 [産業上の利用分野1 この発明は、鉄鋼製造ラインにおいて搬送されてくる角
ビレツト鋼材内部に存在する欠陥の有無を超音波を利用
して検査する超音波探傷装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to an ultrasonic flaw detection device that uses ultrasonic waves to inspect the presence or absence of defects inside square billet steel materials transported in a steel production line. It is something.

「従来の技術] 超音波探傷法は、一般に探触子と呼ばれる超音波センサ
ーから超音波を発信し、その超音波を水などの音響伝搬
媒体(接触媒質と呼ぶ。)を介して被検査材中に入射す
るとともに、被検査材中の欠陥からの反射エコーを受信
して欠陥の有無を検知するものであり、被検査材の形状
や寸法などに合わせて種々の装置が用いられており9例
えば特開昭58−61462号には複数の探傷接触子に
よるビレットの超音波探傷方法および装置が開示されて
いる。
[Prior art] In the ultrasonic flaw detection method, an ultrasonic sensor, generally called a probe, emits ultrasonic waves, and the ultrasonic waves are transmitted through an acoustic propagation medium (called a couplant) such as water to the inspected material. The presence or absence of defects is detected by receiving reflected echoes from defects in the material to be inspected, and various devices are used depending on the shape and size of the material to be inspected9. For example, Japanese Unexamined Patent Publication No. 58-61462 discloses an ultrasonic flaw detection method and apparatus for billets using a plurality of flaw detection contacts.

第4図は、従来の技術の一例として、角ビレツト用超音
波自動探傷装置の超音波探触子の配置と角ビレツト断面
における超音波ビームの概念を示すものである。
FIG. 4 shows, as an example of the prior art, the arrangement of ultrasonic probes of an automatic ultrasonic flaw detection device for square billets and the concept of ultrasonic beams in the cross section of square billets.

図において、(1)は被検査材である角ビレット(断面
図) 、 f2a)−(2dlは上記の角ビレットの一
面に配置された超音波探触子群で(3al−(3dlは
それぞれ(2a) −(2d)の各探触子に収納されて
いる振動子、 (4a)−(4dlはそれぞれ(3a)
 −(3dlの各振動子が発生する超音波の角ビレット
(1)内におけるビームの拡がり(探傷範囲)を示すも
のである。
In the figure, (1) is the square billet (cross-sectional view) that is the material to be inspected, f2a)-(2dl is a group of ultrasonic probes arranged on one side of the square billet, (3al-(3dl is each ( 2a) - The transducer housed in each probe of (2d), (4a) - (4dl are each (3a)
-(This shows the beam spread (flaw detection range) within the rectangular billet (1) of the ultrasonic waves generated by each 3dl transducer.

また、  (5a)−(5dl 、  (6a)−(6
dl 、  (7a)−(7dlはいずれも角ビレット
の別の面に配置された探触子群を表しており、それぞれ
が(4al −(4d)と同様な超音波ビーム(図にお
いては省略)を発生する。角ビレツト用超音波自動探傷
装置では、この図の紙面に垂直方向に角ビレットが搬送
されることによって先端から後端までの全長にわたる探
傷が実行される。
Also, (5a)-(5dl, (6a)-(6
dl , (7a) - (7dl all represent probe groups placed on different faces of the square billet, and each of them has an ultrasonic beam similar to (4al - (4d)) (omitted in the figure) In the automatic ultrasonic flaw detection device for square billets, flaw detection is performed over the entire length from the leading edge to the trailing edge by transporting the square billet in a direction perpendicular to the plane of the drawing.

第5図は角ビレットの搬送ラインにおける探傷機構の一
例を示したもので、第5図(a)は正面図、第5図(b
)は側面図である。図において。
Figure 5 shows an example of a flaw detection mechanism in a square billet conveyance line, with Figure 5 (a) being a front view and Figure 5 (b) being a front view.
) is a side view. In fig.

超音波探触子は上部探触子ホルダー(8a)および下部
探触子ホルダー(8b)に収納され、被検査材である角
ビレットが搬送されてくると上部追従機構(9a)およ
び下部追従機構(9b)を作動させることによって、そ
の先端で探触子ホルダーが接材し後端で離材する動作を
繰り返しながら探傷される。
The ultrasonic probe is stored in an upper probe holder (8a) and a lower probe holder (8b), and when a square billet, which is the material to be inspected, is conveyed, the upper tracking mechanism (9a) and the lower tracking mechanism By activating (9b), flaw detection is carried out while repeating the operation of the probe holder making contact with the material at the tip and separating the material at the rear end.

従来の超音波自動探傷装置においては、第4図に示すよ
うに角ビレットの内部欠陥の有無を検査するために1個
々の超音波探触子を角ビレットの各面に並べて配置する
が、角ビレットの平面寸法と探触子の幅とから並べられ
る探触子の数は自ずと制限を受け、−面当りの探触子数
は4個程度となるのが普通である。その場合、角ビレツ
ト内部にできるかぎり未探傷領域が発生しないようにす
るためには1図からも明らかなように個々の探触子の超
音波ビームが一定以上の幅を持って拡がっていることが
必要である。また、垂直探触子たけでは角ビレットのコ
ーナ一部にある程度の未探傷領域ができるため、上記の
コーナ一部探傷用として斜角探触子も具備している装置
が多く見られるようになってきた。
In conventional automatic ultrasonic flaw detection equipment, one individual ultrasonic probe is arranged side by side on each side of a square billet in order to inspect the presence or absence of internal defects in the square billet, as shown in Fig. 4. The number of probes that can be lined up is naturally limited by the planar dimensions of the billet and the width of the probes, and the number of probes per surface is usually about four. In that case, in order to prevent the occurrence of undetected areas inside the square billet as much as possible, the ultrasonic beam of each probe must spread out over a certain width, as is clear from Figure 1. is necessary. In addition, since vertical probes leave some undetected areas in corners of square billets, many devices are now equipped with angle probes for partially detecting corners. It's here.

方1通常の超音波自動探傷装置においては。Method 1: In normal ultrasonic automatic flaw detection equipment.

接触媒質の厚さ(水ギャップ)や被検査材の寸法の変動
に対して、できるかぎり未探傷部分が小さくなるように
欠陥検出用ゲートの位置が追従して変化するように、底
面エコーを用いて欠陥検出ゲト位置のトラッキング機能
を持っているのが普通である。
The bottom echo is used so that the position of the defect detection gate changes to keep the undetected area as small as possible as the thickness of the couplant (water gap) and the dimensions of the inspected material change. It usually has a tracking function for the defect detection gate position.

[発明が解決しようとする課題] 従来の超音波自動探傷装置において、角ビレツト内部に
できるかぎり未探傷領域が発生しないようにするために
は、垂直探触子が発生する超音波ビームはそれぞれが一
定以上の幅を持って拡がって内部を探傷し、残ったコー
ナ一部を斜角探触子でカバーすることになる。さらに、
欠陥検出ゲートは常に底面ぎりぎりの位置までかかるよ
うに底面エコーの位置変動に追従しながらトラッキング
することが必要である。
[Problems to be Solved by the Invention] In conventional automatic ultrasonic flaw detection equipment, in order to prevent the occurrence of undetected areas inside the square billet as much as possible, the ultrasonic beams generated by the vertical probes must be The interior will be inspected by expanding over a certain width, and the remaining corners will be covered with an angle probe. moreover,
It is necessary for the defect detection gate to always track the position of the bottom echo so that it reaches the very edge of the bottom surface.

一方、斜角探触子の場合は底面エコーのレベルが非常に
低くて満足できる底面位置が得られないため欠陥検出ゲ
ートのトラッキング機能が不安定になりやすい。この発
明が解決しようとする課題は、斜角探触子においても未
探傷領域を最小限にするために欠陥検出ゲート位置のト
ラッキング機能を安定して実行することである。
On the other hand, in the case of an angle probe, the level of the bottom echo is so low that a satisfactory bottom position cannot be obtained, so the tracking function of the defect detection gate tends to become unstable. The problem to be solved by this invention is to stably perform the tracking function of the defect detection gate position in order to minimize the undetected area even in an angle probe.

[課題を解決するための手段] この発明に係る超音波探傷装置は、斜角探触子の位置か
らビームが向かっているコーナ一部までの距離を求める
ためには、はぼ同じ位置に配置された垂直探触子で測定
した角ビレットの厚さと。
[Means for Solving the Problems] In order to determine the distance from the position of the angle probe to a part of the corner toward which the beam is directed, the ultrasonic flaw detection device according to the present invention is arranged at approximately the same position. The thickness of the square billet was measured with a vertical transducer.

その探触子位置から側面までの既知の距離を使つて、計
算し、その結果で斜角探触子の欠陥検出ゲトの位置をト
ラッキングするようにしたものである。
The known distance from the probe position to the side surface is used for calculations, and the position of the defect detection gate of the angle probe is tracked using the results.

また、この発明は上記の斜角探触子のビームが向かって
いる側面までの距離が角ビレットの寸法によって変化す
るような場合は、同じ探触子追従機構に取付けられ、上
記の側面とは対向する面に取付けられた垂直探触子でま
ず直交する角ビレットの厚さを測定し、その値から一定
値を引くことで上記の斜角探触子のビームが向かってい
る側面までの距離を知ることにして、同じ演算を行いな
がら欠陥検出グー1−の位置をトラッキングし未探傷領
域の発生をできるかぎり少なくしたものである。
In addition, in the case where the distance to the side surface toward which the beam of the above-mentioned angle probe is directed changes depending on the dimensions of the square billet, the present invention can be installed on the same probe tracking mechanism and separate from the above-mentioned side surface. First measure the thickness of the orthogonal billet with a vertical probe attached to the opposite surface, then subtract a constant value from that value to determine the distance to the side where the beam of the angle probe is facing. By knowing this, the position of the defect detection target 1- is tracked while performing the same calculation, and the occurrence of undetected areas is minimized.

[作用] この発明においては、斜角探触子とほぼ同じ位置にある
垂直探触子で角ビレットの厚さを測定し、その値と探触
子から角ビレツト側面までの距離を使って演算すること
で、斜角探触子がらビームの向かっているコーナ一部ま
での距離を求め。
[Operation] In this invention, the thickness of the square billet is measured with a vertical probe located at approximately the same position as the angle probe, and calculations are performed using that value and the distance from the probe to the side surface of the square billet. By doing this, find the distance from the angle probe to the part of the corner where the beam is heading.

その距離によって欠陥検出ゲートの位置を追従して変化
させることでで、斜角探触子における未探傷領域の発生
を少なくなるようにする。
By tracking and changing the position of the defect detection gate according to the distance, the occurrence of undetected areas in the bevel probe is reduced.

[実施例1 第■図は、この発明による−・実施例を示したものであ
り、同図において(1)は被検査材、 (2n)は超音
波垂直探触子、、 (2a)は超音波斜角探触子、Xお
よびyはそれぞれ垂直および斜角探触子が発生ずる超音
波ビームの中心線、 (5a)および(5n)はそれぞ
れ角ビレットの隣の面に配置された垂直および斜角探触
子、(9)は上記の探触子を保持し角ビレットの面にあ
て追従機構、 (10)はそれぞれの探触子の電極に接
続されている送受信回路、 (illは送受信回路から
の受信信号を受け7上記垂直探触子で測定した角ビレッ
トの厚さと探触子の角ビレツト側面までの距離とから斜
角探触子のコーナまでの距離を求めるビーム路程演算回
路である。
[Example 1] Figure 2 shows an example according to the present invention, in which (1) is the material to be inspected, (2n) is the ultrasonic vertical probe, and (2a) is the ultrasonic vertical probe. Ultrasonic angle probe, and an angle probe, (9) is a tracking mechanism that holds the above probe and places it on the surface of the square billet, (10) is a transmitting/receiving circuit connected to the electrode of each probe, (ill is A beam path calculation circuit that receives the received signal from the transmitter/receiver circuit and calculates the distance to the corner of the angle probe from the thickness of the square billet measured with the vertical probe and the distance to the side surface of the square billet of the probe. It is.

また、Lは探触子と送受信回路を接続する同軸ケーブル
で、Rは受信信号を示している。
Further, L is a coaxial cable connecting the probe and the transmitting/receiving circuit, and R is a received signal.

いま、上記のように構成された超音波探傷装置で、垂直
探触子(2n)が出す超音波ビームXは角ビレットの底
面に垂直に当たるため安定した反射エコーが得られるが
、斜角探触子(2a)が出す探触子ビームyは角ビレッ
トのコーナ一部に向かっているため安定した底面エコー
が得られない。その結果、欠陥検出ゲートの位置を底面
エコーの位置の変動に追従させるゲートトラッキングが
不可能となり、上記欠陥検出ゲートの終端位置はいかな
るときでも底面エコーを検出することがないように、一
定の余裕距離をもって底面エコーの手前に固定して設定
されることになる。従って、その余裕距離の分だけ底面
近傍の未探傷領域が増えるのは士むを得ない。
Now, in the ultrasonic flaw detection device configured as above, the ultrasonic beam X emitted by the vertical probe (2n) hits the bottom of the square billet perpendicularly, so a stable reflected echo can be obtained. Since the probe beam y emitted by the probe (2a) is directed towards a part of the corner of the square billet, a stable bottom echo cannot be obtained. As a result, gate tracking, which causes the position of the defect detection gate to follow changes in the position of the bottom echo, becomes impossible, and the end position of the defect detection gate has a certain margin so that the bottom echo will not be detected at any time. It will be fixed and set in front of the bottom echo at a certain distance. Therefore, it is unavoidable that the undetected area near the bottom surface increases by the margin distance.

第1図におけるこの発明による超音波探傷装置は、上記
の欠点を補うためになされたものである。いま、斜角探
触子(2a)の位置から角ビレットの端面までの距離S
が既知である場合、第1図からも明らかなように斜角探
触子の底面までのビム路程yは下記で表される。
The ultrasonic flaw detection device according to the present invention shown in FIG. 1 has been developed to compensate for the above-mentioned drawbacks. Now, the distance S from the position of the angle probe (2a) to the end face of the square billet
As is clear from FIG. 1, when y is known, the beam path distance y to the bottom of the angle probe is expressed as follows.

y=f7177 ・・・(1) 上式から、垂直探触子(2n)の底面までのビーム路程
Xを知ることによって、yを計算することができる。
y=f7177 (1) From the above equation, y can be calculated by knowing the beam path length X to the bottom of the vertical probe (2n).

第2図はこの発明による超音波探傷装置の他の実施例を
示したもので、第1図と同一部分には同−打ちが付しで
ある。いま、第2図では斜角探触子の位置が追従機構(
9)の端部に配置されているもので、斜角探触子の位置
と角ビレットの端面までの距離Sが角ビレットの寸法に
よって変化し一定の値にならない。この場合は反対側の
端面までの距離りが角ビレットの寸法によらず一定であ
ることを利用し、まず同じ探触子追従機構に収納され、
90°角度の異なる面にある垂直探触子(5n)の底面
までのビーム路程2を求める。その結果。
FIG. 2 shows another embodiment of the ultrasonic flaw detection apparatus according to the present invention, in which the same parts as in FIG. 1 are marked with the same markings. Now, in Figure 2, the position of the angle probe is determined by the tracking mechanism (
9), and the distance S between the position of the bevel probe and the end face of the square billet changes depending on the dimensions of the square billet and does not take a constant value. In this case, taking advantage of the fact that the distance to the opposite end face is constant regardless of the size of the square billet, the probe is first housed in the same probe tracking mechanism.
Determine the beam path length 2 to the bottom of the vertical probe (5n) located on a different plane at a 90° angle. the result.

斜角探触子(2a)の端面までの距tiiIsは下式で
表される。
The distance tiiis to the end face of the angle probe (2a) is expressed by the following formula.

5=z−t          ・・・  (2)上記
(2)式を(1)式に代入すると、斜角探触子(2a)
のコーナ一部までのビーム路程yが下式で求められる。
5=z−t... (2) Substituting the above equation (2) into equation (1), the angle probe (2a)
The beam path length y to a part of the corner of is determined by the following formula.

y−!P=]7:汀r   ・・・(3)以上のように
、送受信回路(lO)を介して受信信号Rを受信したビ
ーム路程演算回路(11)において垂直探触子の底面ま
でのビーム路程をもとめることによって、第1図におい
てはfi1式で、また第2図においては(3)式で、斜
角探触子の位置からビームの向かっているコーナ一部ま
での距離を計算することができる。
Y-! P=]7: 汀r...(3) As described above, the beam path calculation circuit (11) that receives the reception signal R via the transmitter/receiver circuit (lO) calculates the beam path to the bottom of the vertical probe. By finding , the distance from the angle probe position to the part of the corner where the beam is heading can be calculated using the fi1 formula in Figure 1 and the formula (3) in Figure 2. can.

第3図は、一般的な底面エコーによる欠陥検出ゲートの
終端位置のトラッキング動作を例示したもので、SGが
表面エコー検出用ゲート、FGが欠陥検出用ゲートであ
る。いま底面エコーBの位置が何らかの要因によってB
′の位置に移動した場合、その移動量に従って、欠陥検
出ゲートもFG(実線)からFG′ (破線)のように
変化し、未探傷領域の発生や底面エコーの誤検出を極力
防止するように制御される。この発明においては、ビー
ム路程演算回路(11)の出力である斜角探触子のコー
ナーまでのビーム路程yの変動に従って、上記欠陥検出
ゲートの位を追従させるようにしたものである。
FIG. 3 shows an example of the tracking operation of the end position of a defect detection gate using a general bottom echo, where SG is a surface echo detection gate and FG is a defect detection gate. Now, the position of bottom echo B is changed to B due to some reason.
When moving to the position ', the defect detection gate also changes from FG (solid line) to FG' (broken line) according to the amount of movement, in order to prevent undetected areas and false detection of bottom echoes as much as possible. controlled. In this invention, the position of the defect detection gate is made to follow the variation of the beam path length y to the corner of the angle probe which is the output of the beam path calculation circuit (11).

[発明の効果] 以上のように、この発明によれば垂直探触子の超高波ビ
ームによる底面までのビーム路程を利用し、斜角探触子
のコーナ一部までの距離を演算で求めることによって、
安定した欠陥検出ゲート位置のトラッキングが可能とな
り、未探傷領域の少ない信頼性の高い装置を提供するこ
とができる効果がある。
[Effects of the Invention] As described above, according to the present invention, the distance to a part of the corner of the angle probe can be calculated by using the beam path to the bottom surface of the ultrahigh wave beam of the vertical probe. By,
It is possible to stably track the position of the defect detection gate, and it is possible to provide a highly reliable device with a small number of undetected areas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明による超音波探傷装置の一実施例を
示す図、第2図は同じくこの発明による超音波探傷装置
の他の実施例を示す図、第3図は欠陥ゲームトラッキン
グ動作の一例を示す図、第4図は従来技術の一例として
角ビレツト用超音波(ll) (12) 自動探傷装置における超音波探触子の配置と断面におけ
る超音波ビームを示す図、第5図は角ビレットの搬送ラ
インにおける探傷機構の一例を示す図である。 図において、(1)は被検査材、(2)は超音波探触子
、(3)は振動子、(4)は超音波ビーム(5)。 (7)は超音波探触子、(8)は探触子ホルダ(9)は
追従機構、  (101は送受信回路、 (11)はビ
ーム路程演算回路である。 なお9図中同一符号は同一または相当部分を示している
FIG. 1 is a diagram showing one embodiment of the ultrasonic flaw detection device according to the present invention, FIG. 2 is a diagram showing another embodiment of the ultrasonic flaw detection device according to the present invention, and FIG. 3 is a diagram showing the defect game tracking operation. FIG. 4 is a diagram showing an example of the conventional technique, and FIG. FIG. 3 is a diagram showing an example of a flaw detection mechanism in a square billet conveyance line. In the figure, (1) is the material to be inspected, (2) is the ultrasonic probe, (3) is the transducer, and (4) is the ultrasonic beam (5). (7) is an ultrasonic probe, (8) is a probe holder, (9) is a tracking mechanism, (101 is a transmitting/receiving circuit, and (11) is a beam path calculation circuit. Note that the same symbols in Figure 9 are the same. or a considerable portion thereof.

Claims (2)

【特許請求の範囲】[Claims] (1)角ビレツトの表面に対して垂直に超音波を入射す
る垂直探触子と、表面に対して斜めに超音波を入射する
斜角探触子と、上記それぞれの探触子に接続された複数
の送受信回路とからなる超音波探傷装置において、角ビ
レツトの断面に対して上記の斜角探触子とほぼ同じ位置
に配置された垂直探触子で測定した角ビレツトの厚さと
、斜角探触子の位置からそのビームが向かつている方の
角ビレツト側面までの距離とから、斜角探触子のビーム
が向かつている角ビレツトのコーナーまでの距離を求め
るビーム路程演算回路を具備し、上記ビーム路程演算回
路によつて求めた斜角探触子からコーナーまでの距離に
よつて、上記斜角探触子の欠陥検出ゲートの位置を追従
するようにしたことを特徴とする超音波探傷装置。
(1) A vertical probe that injects ultrasonic waves perpendicularly to the surface of the square billet, an oblique probe that injects ultrasonic waves obliquely to the surface, and a probe that is connected to each of the above probes. In an ultrasonic flaw detection device consisting of multiple transmitter/receiver circuits, the thickness of the square billet measured with a vertical probe placed at approximately the same position as the above-mentioned angle probe with respect to the cross section of the square billet, and the thickness of the square billet Equipped with a beam path calculation circuit that calculates the distance from the position of the angle probe to the side of the corner billet to which the beam is directed, to the corner of the billet to which the beam of the angle probe is directed. and the position of the defect detection gate of the bevel probe is tracked based on the distance from the bevel probe to the corner determined by the beam path calculation circuit. Sonic flaw detection equipment.
(2)前記の斜角探触子の位置から斜角探触子のビーム
が向かつている方の側面までの距離が角ビレツトの寸法
によつて変化し、上記の側面とは対向するもう一方の側
面までの距離が一定である場合、同じ探触子追従機構に
取付けられ、上記の斜角探触子の接する面とは直交する
隣の面にある垂直探触子で求められる角ビレツトの厚さ
から、上記の一定距離を引くことによつて、上記斜角探
触子の位置からビームが向かつている方の側面までの距
離を得るようにしたことを特徴とする特許請求の範囲第
(1)項記載の超音波探傷装置。
(2) The distance from the position of the angle probe to the side surface toward which the beam of the angle probe is directed varies depending on the dimensions of the square billet, and the distance from the side surface to the side surface facing the beam of the angle probe varies depending on the dimensions of the square billet. If the distance to the side surface of The distance from the position of the angle probe to the side surface toward which the beam is directed is obtained by subtracting the constant distance from the thickness. The ultrasonic flaw detection device described in (1).
JP2056897A 1990-03-08 1990-03-08 Ultrasonic flaw detector Expired - Lifetime JPH0760150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2056897A JPH0760150B2 (en) 1990-03-08 1990-03-08 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2056897A JPH0760150B2 (en) 1990-03-08 1990-03-08 Ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JPH03257362A true JPH03257362A (en) 1991-11-15
JPH0760150B2 JPH0760150B2 (en) 1995-06-28

Family

ID=13040239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2056897A Expired - Lifetime JPH0760150B2 (en) 1990-03-08 1990-03-08 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPH0760150B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203630A (en) * 1992-01-28 1993-08-10 Mitsubishi Electric Corp Ultrasonic flaw detection for square steel
CN105223270A (en) * 2014-06-26 2016-01-06 上海金艺检测技术有限公司 Eliminate the detection method of square steel Inner Defect Testing system fillet scanning blind area
JP2019113320A (en) * 2017-12-21 2019-07-11 大同特殊鋼株式会社 Flaw detection range determination method of ultrasonic flaw detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203630A (en) * 1992-01-28 1993-08-10 Mitsubishi Electric Corp Ultrasonic flaw detection for square steel
CN105223270A (en) * 2014-06-26 2016-01-06 上海金艺检测技术有限公司 Eliminate the detection method of square steel Inner Defect Testing system fillet scanning blind area
JP2019113320A (en) * 2017-12-21 2019-07-11 大同特殊鋼株式会社 Flaw detection range determination method of ultrasonic flaw detection device

Also Published As

Publication number Publication date
JPH0760150B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
US6070466A (en) Device for ultrasonic inspection of a multi-layer metal workpiece
US8393218B2 (en) Ultrasonic testing method and apparatus
WO1995027897A1 (en) Ultrasonic flaw detection device
US7240554B2 (en) Method and device for sizing a crack in a workpiece using the ultrasonic pulse-echo technique
EP0053034B1 (en) Method of determining stress distribution in a solid body
JP2009150679A (en) Surface flaw evaluation device of round bar steel by submerged ultrasonic flaw detection using electron scanning type array prob,e and surface flaw evaluation method of round bar steel
JPH03257362A (en) Ultrasonic flaw detection apparatus
US6474163B1 (en) Ultrasonic flaw detection method and instrument therefor
JP3671819B2 (en) Ultrasonic flaw detector for welded steel pipe
JPH03257363A (en) Ultrasonic flaw detection apparatus
US4603583A (en) Method for the ultrasonic testing of ferritic parts having a cladding
JPS61160053A (en) Ultrasonic flaw detection test
JP2002277447A (en) Ultrasonic flaw detection method and apparatus
JP2007147423A (en) Method and device for detecting internal defect in rolled material
JPH09101288A (en) Ultrasonic probe
JPH0146027B2 (en)
CA2330662C (en) Method and apparatus for ultrasonic flaw detection
JPH05203630A (en) Ultrasonic flaw detection for square steel
JP3752807B2 (en) Surface defect detector
JP4143527B2 (en) Thin plate ultrasonic flaw detector
JPS56128409A (en) Detection for form of material to be checked in ultrasonic inspector
JPH0521011Y2 (en)
JP3036632B2 (en) Local water immersion ultrasonic testing equipment
JP4549512B2 (en) Ultrasonic flaw detection apparatus and method
CN115066607A (en) Nondestructive material testing