JPH03257077A - Insulating substrate having high radiation of heat and its production - Google Patents

Insulating substrate having high radiation of heat and its production

Info

Publication number
JPH03257077A
JPH03257077A JP5451490A JP5451490A JPH03257077A JP H03257077 A JPH03257077 A JP H03257077A JP 5451490 A JP5451490 A JP 5451490A JP 5451490 A JP5451490 A JP 5451490A JP H03257077 A JPH03257077 A JP H03257077A
Authority
JP
Japan
Prior art keywords
substrate
ceramic layer
insulating substrate
layer
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5451490A
Other languages
Japanese (ja)
Inventor
Akira Yamakawa
晃 山川
Nobuo Ogasa
小笠 伸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5451490A priority Critical patent/JPH03257077A/en
Publication of JPH03257077A publication Critical patent/JPH03257077A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate

Abstract

PURPOSE:To obtain the title insulating substrate having high bonding strength, inhibiting the generation of thermal stress and not causing the peeling and cracking of the joined part by joining a metallic Mo or Mo alloy sheet to a ceramic substrate with a ceramic layer in-between. CONSTITUTION:The surface of a ceramic substrate 1 having high heat conductivity is coated with a ceramic layer 2 different from the substrate 1 in compsn., a metallic Mo or Mo alloy sheet 3 is put on the ceramic layer 2 and they are heated to a temp. above the melting temp. of the layer 2. The layer 2 is then solidified by cooling and an insulating substrate having high radiation of heat is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱伝導性の高いセラミックスからなる基板の
上に金属板を接合した高放熱絶縁基板およびその製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high heat dissipation insulating substrate in which a metal plate is bonded to a substrate made of highly thermally conductive ceramics, and a method for manufacturing the same.

[従来の技術] 従来より、高熱伝導の絶縁基板をパワーモジュール用基
板として使用するために、Al2O3基板にCu回路板
を張付けることが行われている。
[Prior Art] Conventionally, in order to use a highly thermally conductive insulating substrate as a power module substrate, a Cu circuit board has been attached to an Al2O3 substrate.

特に、Al2O3基板にCuを直接接合する技術、活性
金属を介して接合する技術などが実用化されている。活
性金属を介してCu回路板を接合する技術は、Ti、Z
rなどの活性度の高い金属を含む金属層をセラミック部
材表面に形成し、その上にCu回路板を乗せて加熱接合
するものであり、セラミック部材とCu板の接着がTi
などの活性金属によって達成されている。
In particular, techniques for directly bonding Cu to an Al2O3 substrate and techniques for bonding via an active metal have been put into practical use. The technique of bonding Cu circuit boards through active metals is Ti, Z
A metal layer containing a highly active metal such as R is formed on the surface of a ceramic member, a Cu circuit board is placed on top of the metal layer, and the Cu circuit board is heated and bonded.
This has been achieved by active metals such as

[発明が解決しようとする課題] しかしながら、上記従来のAl2O3基板にCU回路板
を張付ける方法は、いずれも、Al2O3とCuの熱膨
脹率の差異が大きい(下記の表参照)ために、接着後の
冷却において熱応力が発生し、それによる接合部の剥離
や割れなどが発生しやすくなる。したがって、製品の信
頼性が低いという問題があった。
[Problems to be Solved by the Invention] However, in all of the above conventional methods of attaching a CU circuit board to an Al2O3 substrate, since there is a large difference in the coefficient of thermal expansion between Al2O3 and Cu (see the table below), During cooling, thermal stress is generated, which makes it easier for joints to peel or crack. Therefore, there was a problem that the reliability of the product was low.

また、近年、トランジスタの容量が増大するに伴って、
基板からの放熱が良好に行われることがさらに重要な要
素となり、SiC,AINなどの非酸化物系の高熱伝導
性基板が採用されようとしている。これら非酸化物系の
基板は、Al2O3に比べてさらに熱膨張率が小さく 
(下記の表参照)、Cu板との接着はより一層困難であ
る。
In addition, as the capacity of transistors has increased in recent years,
Good heat dissipation from the substrate has become an even more important factor, and highly thermally conductive non-oxide substrates such as SiC and AIN are being adopted. These non-oxide-based substrates have a smaller coefficient of thermal expansion than Al2O3.
(See the table below), adhesion to the Cu plate is even more difficult.

表 また、Al2O3基板とCu回路板を活性金属を介して
接合する方法は、その作業を真空雰囲気中で実施する必
要があり、生産性が低いうえに接着力が不安定であると
いう問題がある。
Additionally, the method of bonding an Al2O3 substrate and a Cu circuit board via an active metal requires the work to be carried out in a vacuum atmosphere, which has the problems of low productivity and unstable adhesive strength. .

本発明は上記従来の問題点に鑑み、高熱伝導性を有し、
大電流回路用に適した信頼性の高い高放熱絶縁基板およ
びその製造方法を提供することを目的とする。
In view of the above conventional problems, the present invention has high thermal conductivity,
The present invention aims to provide a highly reliable heat dissipation insulating substrate suitable for large current circuits and a method for manufacturing the same.

[課題を解決するための手段] 本発明の高放熱絶縁基板は、熱伝導性の高いセラミック
スからなる基板と、この基板の表面上に塗布形成された
、その基板の材質とは異なる材質のセラミック層と、こ
のセラミック層を接着層として、その上に張付けられた
、モリブデン単体又はモリブデンを含む合金からなる金
属板とからなるものである。
[Means for Solving the Problems] The high heat dissipation insulating substrate of the present invention includes a substrate made of highly thermally conductive ceramic, and a ceramic made of a material different from that of the substrate, which is coated on the surface of the substrate. A metal plate made of molybdenum alone or an alloy containing molybdenum is bonded thereon using the ceramic layer as an adhesive layer.

また、本発明の高放熱絶縁基板の製造方法は、絶縁性の
高いセラミックスからなる基板表面の一部または全面に
、その基板の材質とは異なる材質のセラミック層を塗布
形成する工程と、このセラミック層の上に、モリブデン
単体の又はモリブデンを含む合金からなる金属板を重ね
合わせその状態でセラミック層の溶融温度以上に加熱す
る工程と、冷却してそのセラミック層を固化させること
により、基板と金属板を接着固定する工程とからなるも
のである。
Further, the method for manufacturing a high heat dissipation insulating substrate of the present invention includes a step of coating a ceramic layer of a material different from that of the substrate on a part or the entire surface of a substrate made of highly insulating ceramic; A metal plate made of molybdenum alone or an alloy containing molybdenum is placed on top of the layer, and in that state, the substrate and metal are heated to a temperature higher than the melting temperature of the ceramic layer, and then cooled to solidify the ceramic layer. This process consists of the step of adhesively fixing the plates.

本発明に用いられる基板を形成する熱伝導性の高いセラ
ミックスとしては、AA’203.SiC。
Ceramics with high thermal conductivity forming the substrate used in the present invention include AA'203. SiC.

AA’N、Si3N4などが用いられ、これらに加えて
焼結助剤としテMgO,S i 02 、 Al103
、Y2O3,CaOなどが含まれる。この焼結助剤は、
AA’203.SiC,AIN、Si3N4などのセラ
ミックスに少量添加することにより、その焼結を促進し
、緻密質のセラミックスを得る作用を有するものである
。基板と金属板との接着層を形成するセラミック層の材
質としては、高融点ガラス、活性金属含有ガラス、活性
金属含有セラミック、などが用いられる。また、金属板
を接着する際のセラミック層の融解は、一般には400
°C〜1200℃の非酸化雰囲気中で行われる。
AA'N, Si3N4, etc. are used, and in addition to these, MgO, Si02, Al103 are used as sintering aids.
, Y2O3, CaO, etc. This sintering aid is
AA'203. By adding a small amount to ceramics such as SiC, AIN, Si3N4, etc., it has the effect of promoting sintering and obtaining dense ceramics. As the material of the ceramic layer forming the adhesive layer between the substrate and the metal plate, high melting point glass, active metal-containing glass, active metal-containing ceramic, etc. are used. Additionally, the melting time of the ceramic layer when bonding metal plates is generally 400
It is carried out in a non-oxidizing atmosphere at a temperature between 1200°C and 1200°C.

セラミック層の形成方法としては、スクリーン印刷、デ
イツプ、刷毛塗りなどの公知の方法が用いられる。金属
板は、基板に接着後にエツチング加工によって回路形成
しても、あるいはあらかじめエツチングや打抜きなどに
より回路板に加工した後に、基板に接着してもよい。
As a method for forming the ceramic layer, known methods such as screen printing, dip coating, and brush coating can be used. The metal plate may be bonded to the substrate and then etched to form a circuit, or it may be processed into a circuit board by etching or punching in advance and then bonded to the substrate.

なお、金属板の表面は、ニッケルメッキなどを施すこと
によって保護される。
Note that the surface of the metal plate is protected by applying nickel plating or the like.

[作用] 本発明の高放熱絶縁基板は、その金属板がモリブデン単
体またはモリブデンを含む合金からなり、その熱膨脹率
がAINなどの基板を形成するセラミックスに比較的近
いため、製造工程における加熱接着後の冷却時に発生す
る熱応力が極めて小さい。
[Function] In the high heat dissipation insulating substrate of the present invention, the metal plate is made of molybdenum alone or an alloy containing molybdenum, and its coefficient of thermal expansion is relatively close to that of the ceramics forming the substrate such as AIN, so that it can be used after heat bonding in the manufacturing process. The thermal stress generated during cooling is extremely small.

また、接着層となるセラミック層の成分は、金属板およ
び基板の双方に接着しやすいため、金属板と基板との良
好な接合状態が得られる。さらに、セラミック層が基板
と金属層との熱膨脹率の差を吸収し、−層熱応力の発生
を抑制しているものと考えられる。
In addition, since the components of the ceramic layer serving as the adhesive layer easily adhere to both the metal plate and the substrate, a good bonding state between the metal plate and the substrate can be obtained. Furthermore, it is considered that the ceramic layer absorbs the difference in coefficient of thermal expansion between the substrate and the metal layer and suppresses the occurrence of negative layer thermal stress.

[実施例コ 本発明の実施例を以下に示す。各実施例における絶縁性
基板の接合強度の評価は、いずれも第2図に示すように
して行った。すなわち、セラミックスの基板としてのA
IN基板11上に約10μmの厚さ(第2図に示すδ)
にセラミック層12を形成し、厚さ(第2図に示すt)
約0. 2mm。
[Example] Examples of the present invention are shown below. The bonding strength of the insulating substrates in each example was evaluated as shown in FIG. 2. In other words, A as a ceramic substrate
A thickness of approximately 10 μm (δ shown in FIG. 2) is formed on the IN substrate 11.
A ceramic layer 12 is formed in the thickness (t shown in FIG. 2).
Approximately 0. 2mm.

幅(第2図に示すW)約10mmの金属板13を第2図
に示すように接合固定し、矢印方向に力Fで引上げた時
の接合部が剥離し始める時の力Fの値によって評価した
Metal plates 13 with a width (W shown in Fig. 2) of about 10 mm are bonded and fixed as shown in Fig. 2, and when pulled up with force F in the direction of the arrow, the value of force F at which the joint starts to peel off is determined by the value of force F. evaluated.

(実施例1) 焼結助剤としてY2O3を2.0重量%含有するAIN
基板(寸法:縦30mm、横30mm。
(Example 1) AIN containing 2.0% by weight of Y2O3 as a sintering aid
Board (dimensions: height 30mm, width 30mm.

厚さ0.6mm)の上に、Na2O・P2O3・5i0
2系ガラス(融点=700℃)をスクリーン印刷法によ
って10μmの厚さに塗布し、乾燥した後に、Mo板(
厚さ0.2mm)をその上に置いた状態で、Ar雰囲気
中で1000℃加熱した。これを冷却した後に、第2図
に示す接合強度試験を行ったところ、接合部が剥離し始
める時の力Fは10kgであった。
(thickness 0.6 mm) on top of Na2O・P2O3・5i0
2 series glass (melting point = 700°C) was applied to a thickness of 10 μm by screen printing method, and after drying, Mo plate (
A film (thickness: 0.2 mm) was placed thereon and heated at 1000° C. in an Ar atmosphere. After cooling, a bonding strength test shown in FIG. 2 was conducted, and the force F at which the bonded portion began to peel was 10 kg.

(実施例2) 焼結助剤としてY2O3を8.0重量%を含有するAI
N基板(熱伝導率: 160W/mk、寸法:縦3Qm
m、横30mm、厚さ0.6mm)を大気中において1
100℃で10分間加熱したと:ろAIN表面には10
μmのAl2O3・Y2O3層が形成された。
(Example 2) AI containing 8.0% by weight of Y2O3 as a sintering aid
N substrate (thermal conductivity: 160W/mk, dimensions: length 3Qm
m, width 30mm, thickness 0.6mm) in the atmosphere.
When heated at 100℃ for 10 minutes: 10% on the surface of the filter AIN.
A μm thick Al2O3/Y2O3 layer was formed.

得られたAIN基板の両面にMo板(寸法:縦28mm
、横28mm、厚さ0.5mm)を置いた状態でN2雰
囲気中で1200℃に加熱したところ、AIN基板とM
o板は、両面とも強固に接合された。このようにして形
成された絶縁基板について、第2図に示す接合強度試験
を行ったところ、接合部が剥離し始める時の力Fは5k
gであった。
Mo plates (dimensions: length 28 mm) were placed on both sides of the obtained AIN board.
, width 28 mm, thickness 0.5 mm) was heated to 1200°C in an N2 atmosphere, and the AIN substrate and M
Both sides of the o-plate were firmly joined. When the insulating substrate thus formed was subjected to a bonding strength test shown in Figure 2, the force F at which the bonded portion began to peel was 5k.
It was g.

(実施例3) 焼結助剤としてAl2O3を5重量%、Y2O3を5重
量%含むSi3N4焼結体についても実施例2と同様に
NO板を接合させることが可能であることが分かった。
(Example 3) It was found that it was possible to join the NO plate in the same manner as in Example 2 with respect to a Si3N4 sintered body containing 5% by weight of Al2O3 and 5% by weight of Y2O3 as sintering aids.

この得られた接合体について一50℃と120℃の間の
ヒートサイクルテストを500サイクル行ったところ、
その後も何ら接合強度が損なわれることはなく、ヒート
サイクル後において第2図に示す接合強度試験を行った
ところ、接合部が剥離し始める時の力Fは6kgであっ
た。
A heat cycle test between -50°C and 120°C was carried out for 500 cycles on the obtained joined body.
There was no loss in bonding strength after that, and when the bonding strength test shown in FIG. 2 was conducted after the heat cycle, the force F at which the bonded portion began to peel was 6 kg.

(比較例) 比較例として、Al2O3基板上にTi層を介して、C
u板を加熱接合した従来の絶縁性基板について、第2図
に示す接合強度試験を同様に行ったところ、接合部が剥
離し始める時のFは4kgであった。
(Comparative example) As a comparative example, C was deposited on an Al2O3 substrate through a Ti layer.
When the bonding strength test shown in FIG. 2 was similarly conducted on a conventional insulating substrate to which U-plates were heat-bonded, the F at which the bonded portion began to peel was 4 kg.

(実施例4) 第3図に示すように、筒状のAIN基板21の端部近傍
の外周に上記実施例1〜3いずれかのセラミック層を形
成し、筒状のMo板23を加熱接合して電子管外囲管2
4を形成したところ、良好な気密封止を実現することが
できた。
(Example 4) As shown in FIG. 3, one of the ceramic layers of Examples 1 to 3 described above is formed on the outer periphery near the end of a cylindrical AIN substrate 21, and a cylindrical Mo plate 23 is heat-bonded. electron tube outer tube 2
4, it was possible to achieve a good hermetic seal.

[発明の効果コ 以上を説明したように本発明によれば、モリブデン単体
またはモリブデンを含む合金からなる金属板をセラミッ
ク層を介して基板と接合させるため、接合力が強固でし
かも熱応力の発生が大幅に抑制され、接合部の剥離や割
れなどの生じない高放熱絶縁基板を得ることができる。
[Effects of the Invention] As explained above, according to the present invention, since a metal plate made of molybdenum alone or an alloy containing molybdenum is bonded to a substrate via a ceramic layer, the bonding force is strong and thermal stress does not occur. It is possible to obtain a high heat dissipation insulating substrate in which the heat dissipation is significantly suppressed and peeling or cracking does not occur at the bonded portion.

したがって、信頼性の高い大電流用の回路形成が可能な
高放熱絶縁基板を提供することができる。
Therefore, it is possible to provide a high heat dissipation insulating substrate on which a highly reliable circuit for large currents can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の高放熱絶縁基板の概略構造を示す断面
図、第2図は本発明の各実施例における高放熱絶縁基板
の接合強度の評価方法を示す図、第3図は本発明を適用
した電子管外囲管の構造を示す断面図である。 図において、1は基板、2はセラミック層、3は金属板
である。 特許出癲人  住友電気工業株式会社
FIG. 1 is a cross-sectional view showing the schematic structure of the high heat dissipation insulating substrate of the present invention, FIG. 2 is a diagram showing a method for evaluating the bonding strength of the high heat dissipation insulating substrate in each embodiment of the present invention, and FIG. 3 is the present invention. FIG. 2 is a cross-sectional view showing the structure of an electron tube envelope to which the method is applied. In the figure, 1 is a substrate, 2 is a ceramic layer, and 3 is a metal plate. Patent issuer Sumitomo Electric Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1) 熱伝導性の高いセラミックスからなる基板と、 この基板の表面上に塗布形成された、その基板の材質と
は異なる材質のセラミック層と、 このセラミック層を接着層として、その上に張付けられ
た、モリブデン単体またはモリブデンを含む合金からな
る金属板と からなる高放熱絶縁基板。
(1) A substrate made of highly thermally conductive ceramics, a ceramic layer made of a material different from that of the substrate that is coated on the surface of this substrate, and this ceramic layer used as an adhesive layer to stick on top of it. A high heat dissipation insulating substrate consisting of a metal plate made of molybdenum alone or an alloy containing molybdenum.
(2) 熱伝導性の高いセラミックスからなる基板表面
の一部または全面に、前記基板の材質とは異なる材質の
セラミック層を塗布形成する工程と、 このセラミック層の上に、モリブデン単体またはモリブ
デンを含む合金からなる金属板を重ね合わせ、その状態
で前記セラミック層の溶融温度以上に加熱する工程と、 冷却して前記セラミック層を固化させることにより、前
期基板と前記金属板を接着固定する工程と からなる高放熱絶縁基板の製造方法。
(2) A process of coating a ceramic layer of a material different from the material of the substrate on a part or the entire surface of a substrate made of highly thermally conductive ceramics, and coating molybdenum alone or molybdenum on this ceramic layer. a step of stacking metal plates made of an alloy containing the metal alloy and heating the metal plates in this state to a temperature higher than the melting temperature of the ceramic layer; and a step of adhesively fixing the substrate and the metal plate by cooling and solidifying the ceramic layer. A method for manufacturing a high heat dissipation insulating substrate consisting of.
JP5451490A 1990-03-06 1990-03-06 Insulating substrate having high radiation of heat and its production Pending JPH03257077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5451490A JPH03257077A (en) 1990-03-06 1990-03-06 Insulating substrate having high radiation of heat and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5451490A JPH03257077A (en) 1990-03-06 1990-03-06 Insulating substrate having high radiation of heat and its production

Publications (1)

Publication Number Publication Date
JPH03257077A true JPH03257077A (en) 1991-11-15

Family

ID=12972758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5451490A Pending JPH03257077A (en) 1990-03-06 1990-03-06 Insulating substrate having high radiation of heat and its production

Country Status (1)

Country Link
JP (1) JPH03257077A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945641A (en) * 2014-05-13 2014-07-23 张伯平 High thermal conductive circuit board and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945641A (en) * 2014-05-13 2014-07-23 张伯平 High thermal conductive circuit board and production method thereof

Similar Documents

Publication Publication Date Title
JP3126977B2 (en) Reinforced direct bond copper structure
JPH0525397B2 (en)
JPH0945757A (en) Electrostatic chuck
KR100374379B1 (en) Substrate
JPH1065296A (en) Ceramic circuit board
JPH05347469A (en) Ceramic circuit board
JPH09283656A (en) Ceramic circuit board
JP2008108957A (en) Production method of junction structure
JPH022836B2 (en)
JPH03257077A (en) Insulating substrate having high radiation of heat and its production
JP4124497B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
JPH06131934A (en) Insulator
JPH0518477B2 (en)
JP2000031254A (en) Ceramic electrostatic chuck and manufacture thereof
JP2020107671A (en) Insulation circuit board manufacturing method and insulation circuit board manufactured using the method
JP4088515B2 (en) Electrostatic chuck
JPH0223498B2 (en)
JP2018195784A (en) Method for manufacturing ceramic circuit board
JP2001024296A (en) Ceramic circuit board
JP2011066387A (en) Power module substrate, power module, and method of manufacturing the power module substrate
JPS63122253A (en) Seminconductor package
JPH04170089A (en) Ceramic circuit board
JPH03112638A (en) Directly connected symmetrical metal layered body/substrate structure
JP2715686B2 (en) Method for manufacturing ceramic-metal joined body
JPS62182172A (en) Method of joining ceramics to metal