JPH03254450A - Reproduction optical device for magneto-optical recording medium - Google Patents

Reproduction optical device for magneto-optical recording medium

Info

Publication number
JPH03254450A
JPH03254450A JP5397890A JP5397890A JPH03254450A JP H03254450 A JPH03254450 A JP H03254450A JP 5397890 A JP5397890 A JP 5397890A JP 5397890 A JP5397890 A JP 5397890A JP H03254450 A JPH03254450 A JP H03254450A
Authority
JP
Japan
Prior art keywords
polarized light
recording medium
light
magneto
circularly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5397890A
Other languages
Japanese (ja)
Other versions
JP2574915B2 (en
Inventor
Akira Takahashi
明 高橋
Yoshiteru Murakami
善照 村上
Junsaku Nakajima
淳策 中嶋
Kenji Ota
賢司 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2053978A priority Critical patent/JP2574915B2/en
Priority to CA002037428A priority patent/CA2037428C/en
Priority to US07/664,183 priority patent/US5202860A/en
Priority to EP91301830A priority patent/EP0446021B1/en
Priority to DE69121744T priority patent/DE69121744T2/en
Publication of JPH03254450A publication Critical patent/JPH03254450A/en
Application granted granted Critical
Publication of JP2574915B2 publication Critical patent/JP2574915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the S/N of practical use with a simple device by leading S- polarized light converted with a 1/4 wavelength plate and circularly polarized light of P-polarized light to a recording medium simultaneously and applying differential amplification to each regenerative signal obtained in response to the intensity change of a reflected light resulting from each circularly polarized light in the recording medium. CONSTITUTION:This device is a reproduction optical device reading information recorded on a magneto-optical recording medium 9 depending on the difference from the magnetization direction of a reflected light and provided with a 1st light source 1 with an S-polarized light L1S outgoing therefrom, a 2nd light source 2 with a P- polarized light L2P outgoing therefrom, and a 1/4 wavelength plate 6 converting the S-polarized light L1S and the P-polarized light L2P into a circularly polarized light. Then both circularly polarized beams converted by the 1/4 wavelength plate 6 are led simultaneously to the magneto-optical recording medium 9 and regenerative signals S1, S2 outputted from photodetecting means 11, 12 are differentially amplified corre sponding to the intensity change in the reflected light from each circularly polarized light in the recording medium 9. Thus, noise is cancelled by the differential amplifica tion and the S/N of practical use is attained with the simple device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光磁気記録媒体の再生用光学装置に関し、特
に、磁性体の円二色性効果を利用して光磁気信号を差動
検出する再生用光学装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an optical device for reproducing magneto-optical recording media, and in particular, to differential detection of magneto-optical signals using the circular dichroism effect of a magnetic material. This invention relates to a reproducing optical device.

〔従来の技術〕[Conventional technology]

記録媒体として希土類遷移金属合金薄膜を用いた光ディ
スクは、デジタルメモリとして実用化段階に入ってきて
いる。光ディスクに記録された情報の再生には、通常、
半導体レーザが発する直線偏光を記録媒体に照射し、そ
の反射光の偏波面の回転を検光子で光強度に変換する方
法が採られている。
Optical disks using rare earth transition metal alloy thin films as recording media are entering the stage of practical use as digital memories. To reproduce information recorded on an optical disc, it is usually necessary to
A method has been adopted in which a recording medium is irradiated with linearly polarized light emitted by a semiconductor laser, and the rotation of the plane of polarization of the reflected light is converted into light intensity using an analyzer.

上記のいわゆるカー効果を利用した再生方法の原理を説
明すると、第5図に示すよ・うに、半導体レーザが発す
る直線偏光の記録媒体における反則光R1は、検光子3
1に導かれる。検光子31において、記録媒体の垂直磁
化方向の違いに対応する偏波面の傾きの違いによって分
離された検出光Dllと検出光DI2とが、それぞれ光
検出器32・33によって電気信号に変換され、再生信
号S。
To explain the principle of the reproduction method using the so-called Kerr effect described above, as shown in FIG.
I am guided by 1. In the analyzer 31, the detection light Dll and the detection light DI2, which are separated by the difference in the slope of the polarization plane corresponding to the difference in the perpendicular magnetization direction of the recording medium, are converted into electric signals by the photodetectors 32 and 33, respectively. Playback signal S.

および再生信号StZが得られる。and a reproduced signal StZ is obtained.

記録媒体の垂直磁化方向の特定方向を(+)、その逆方
向を(=)とし、(+)方向に磁化された記録ビットに
おける反射光ベクトルをα、(−)方向に磁化された記
録ビットにおける反射光ベクトルをβ、入射光ベクトル
をγとする。第6図に示すように、反射光ベクトルαの
偏波面は入射光ベクトルγに対してカー回転角子θアだ
け回転している。また、反射光ヘクトルβの偏波面は入
射光ベクトルγに対してカー回転角−θ、だけ回転して
いる。
The specific direction of the perpendicular magnetization direction of the recording medium is (+), the opposite direction is (=), the reflected light vector in the recording bit magnetized in the (+) direction is α, and the recording bit magnetized in the (-) direction. Let β be the reflected light vector and γ be the incident light vector. As shown in FIG. 6, the plane of polarization of the reflected light vector α is rotated by the Kerr rotation angle θa with respect to the incident light vector γ. Further, the plane of polarization of the reflected light vector β is rotated by the Kerr rotation angle −θ with respect to the incident light vector γ.

反射光ベクトルα・βは、検光子31の互いに直交する
2つの偏光方向X・Yに検波される。偏光方向Xに対し
ては、反射光ベクトルβの成分β8に対応する信号が光
検出器32によってハイレベルで出力され、反射光ベク
トルαの成分α8に対応する信号が光検出器32によっ
てローレベルで出力される。これによって、ハイレベル
が(−)方向に磁化された記録に対応する再生信号Sl
+が光検出器32から出力される。
The reflected light vectors α and β are detected by the analyzer 31 in two mutually orthogonal polarization directions X and Y. With respect to the polarization direction is output. As a result, the reproduction signal Sl corresponding to the recording in which the high level is magnetized in the (-) direction
+ is output from the photodetector 32.

一方、偏光方向Yに対しては、成分α、が光検出器32
からローレベルとして出力されるとき、反射光ベクトル
αの成分α、に対応する信号が光検出器33によってハ
イレベルで出力される。また、成分β8が光検出器32
からハイレベルとして出力されるとき、反射光くクトル
βの成分βYに対応する信号が光検出器33によってロ
ーレベルで出力される。これによって、光検出器32か
ら出力され、ハイレベルが(=)方向に磁化された記録
に対応する再生信号S工、と、光検出器33から出力さ
れ、ハイレベルが(+)方向に磁化された記録に対応す
る再生信号S 12とは、位相が互いに半周期ずれ、極
性が互いに反転した信号となる。
On the other hand, for the polarization direction Y, the component α is detected by the photodetector 32.
When the component α of the reflected light vector α is output as a low level, the photodetector 33 outputs a signal corresponding to the component α as a high level. In addition, component β8 is detected by the photodetector 32.
When the signal corresponding to the component βY of the reflected light vector β is output as a high level, the photodetector 33 outputs a signal as a low level. As a result, a reproduction signal S corresponding to the recording is outputted from the photodetector 32 and the high level is magnetized in the (=) direction, and a reproduction signal S is outputted from the photodetector 33 and the high level is magnetized in the (+) direction. The reproduced signals S12 corresponding to the recorded data are signals whose phases are shifted by half a cycle and whose polarities are reversed.

このようにして得られた再生信号Sllおよび再生信号
S12は、反射光の偏波面の回転に基づいて得られた信
号なので、光ディスクに付着したほこり等の影響が少な
くディスクノイズが含まれにくい。さらに、S/N比を
向上させるためこれらは差動増幅器に入力され、その出
力信号に基づいて情報の再生が行われる。
The reproduced signal Sll and the reproduced signal S12 obtained in this way are signals obtained based on the rotation of the plane of polarization of the reflected light, so they are less affected by dust attached to the optical disc and are less likely to contain disc noise. Further, in order to improve the S/N ratio, these signals are input to a differential amplifier, and information is reproduced based on the output signal thereof.

ところが、上記のように光磁気記録に対して通常行われ
るカー効果を利用した再生方法では、検光子31の設定
に高精度が要求され、また、再生装置の価格上昇を招く
という問題点を有している。
However, as described above, the reproducing method using the Kerr effect, which is normally performed for magneto-optical recording, requires high precision in the setting of the analyzer 31, and also has the problem of causing an increase in the price of the reproducing device. are doing.

そこで、検光子を用いずに再生用光学装置を簡略化して
再生装置のコストダウンを図ることができる方法として
、記録媒体に円偏光を照射し、記録媒体の垂直磁化方向
の違いに対応して反射光の強度と位相に異方性が生じる
ことを利用する、いわゆる円二色性効果を利用する再生
方法も理論的には考えられている。
Therefore, as a method that can simplify the optical device for reproduction without using an analyzer and reduce the cost of the reproduction device, it is possible to irradiate the recording medium with circularly polarized light and to correspond to the difference in the perpendicular magnetization direction of the recording medium. A reproduction method that utilizes the so-called circular dichroism effect, which takes advantage of the anisotropy that occurs in the intensity and phase of reflected light, has also been theoretically considered.

第7図に示すように、記録媒体34の入射光側の媒質の
屈折率をno、記録媒体34の上向き磁化方向の記録ビ
ン)34aの屈折率をn。、複素反射率をr9、下向き
磁化方向の記録ビット34bの屈折率をn−1複素反射
率をr−とする。このような記録媒体34に、例えば光
の進行方向に正対して右回りの円偏光り、を照射したと
き、記録ビン)34aにおける反射光は左回りの円偏光
L 12となり、記録ビット34bにおける反射光は強
度の小さい左回りの円偏光LI3となって、(r。)2
−(rJ”  ・・・・・・(1)の式で表される反射
光強度差が得られる(記録媒体34に左回りの円偏光を
照射゛したときは、反射光は右回りとなり、記録ビット
34aおよび記録ピッ)34bにおける反射光強度の関
係は上記と逆になる)。なお、r。およびr−は、no
、n。
As shown in FIG. 7, the refractive index of the medium on the incident light side of the recording medium 34 is no, and the refractive index of the recording bin 34a in the upward magnetization direction of the recording medium 34 is n. , the complex reflectance is r9, the refractive index of the recording bit 34b in the downward magnetization direction is n-1, and the complex reflectance is r-. When such a recording medium 34 is irradiated with clockwise circularly polarized light, for example, directly facing the direction of travel of the light, the reflected light at the recording bin 34a becomes counterclockwise circularly polarized light L12, and the reflected light at the recording bit 34b becomes a counterclockwise circularly polarized light L12. The reflected light becomes counterclockwise circularly polarized light LI3 with low intensity, (r.)2
−(rJ”...The reflected light intensity difference expressed by the formula (1) is obtained. (When the recording medium 34 is irradiated with counterclockwise circularly polarized light, the reflected light becomes clockwise, The relationship between the reflected light intensity at the recording bit 34a and the recording pitch 34b is opposite to the above). Note that r. and r- are no.
, n.

、n−を用いて、 r −= (no  n−)/(no +n、−)・・
・・・・(2)r−= (no  n−)/(no +
n−)・・・・・・(3)のように表される。
, n-, r −= (no n-)/(no +n, −)...
...(2) r-= (no n-)/(no +
n-)...It is expressed as (3).

[発明が解決しようとする課B] ところが、円二色性効果を利用した再生方法では、記録
媒体の磁化方向を反射光強度差で検出しようとするため
、光ディスクに付着したほこり等の異物が反射光強度に
影響を与え、再生信号にノイズが含まれることになる。
[Problem B to be solved by the invention] However, in the reproduction method using the circular dichroism effect, since the magnetization direction of the recording medium is detected by the difference in the intensity of reflected light, foreign matter such as dust attached to the optical disk may be detected. This will affect the intensity of the reflected light, and the reproduced signal will contain noise.

その結果、従来のカ−効果を利用した再生方法よりも、
信号品質が劣化し易いという問題点を有している。
As a result, compared to the conventional reproduction method using the Kerr effect,
This has the problem that signal quality tends to deteriorate.

本発明の目的は、光磁気記録媒体の情報再生にカー効果
を利用せず、円二色性効果を利用して光学系を簡略化し
、しかも従来のように再生信号を差動増幅できるように
した光磁気記録媒体の再生用光学装置を提供することに
ある。
The purpose of the present invention is to simplify the optical system by using the circular dichroism effect without using the Kerr effect for information reproduction from a magneto-optical recording medium, and to enable differential amplification of the reproduced signal as in the conventional method. An object of the present invention is to provide an optical device for reproducing a magneto-optical recording medium.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る光磁気記録媒体の再生用光学装置は、上記
の課題を解決するために、光ビームをたとえば希土類遷
移金属合金薄膜から威る光磁気記録媒体に照射し、その
反射光を光検出手段によって検出することにより、磁化
方向の違いによって光磁気記録媒体に記録された情報を
読み取る光磁気記録媒体の再生用光学装置において、S
偏光を出射する第1の光源たとえば半導体レーザと、上
記S偏光とは波長の異なるP偏光を出射する第2の光源
たとえば半導体レーザと、上記S偏光およびP偏光を円
偏光に変換する17′4波長板とを備え、上記1/4波
長板で変換されたS偏光の円偏光およびP偏光の円偏光
が光磁気記録媒体に同時に導かれ、各円偏光の光磁気記
録媒体における反射光の強度変化に対応して光検出手段
から出力される各再生信号が差動増幅されることを特徴
としている。
In order to solve the above-mentioned problems, an optical device for reproducing a magneto-optical recording medium according to the present invention irradiates a light beam onto a magneto-optical recording medium, for example, from a rare earth transition metal alloy thin film, and optically detects the reflected light. In an optical device for reproducing a magneto-optical recording medium, which reads information recorded on the magneto-optical recording medium based on the difference in magnetization direction by detecting the difference in magnetization direction,
A first light source that emits polarized light, such as a semiconductor laser; a second light source, such as a semiconductor laser, that emits P-polarized light that has a different wavelength from the S-polarized light; and 17'4 that converts the S-polarized light and P-polarized light into circularly polarized light. The S-polarized circularly polarized light and the P-polarized circularly polarized light converted by the quarter-wave plate are simultaneously guided to the magneto-optical recording medium, and the intensity of the reflected light on the magneto-optical recording medium of each circularly polarized light is adjusted. It is characterized in that each reproduction signal output from the photodetection means in response to the change is differentially amplified.

〔作 用〕[For production]

上記の構成によれば、第1の・光源が出射するS偏光は
、1/4波長板(互いに垂直な方向に振動する直線偏光
間の光路差が174波長±20%以内であれば使用でき
る)でたとえば右円偏光に変換され光磁気記録媒体に照
射される。それと同時に、第2の光源が出射するP偏光
は、1/4波長板でたとえば左円偏光に変換され光磁気
記録媒体に照射される。たとえば希土類遷移金属合金薄
膜から成る光磁気記録媒体は、円二色性を有しているの
で、光磁気記録媒体の磁化方向が垂直下向きになってい
る磁区に照射された右円偏光は、強度の大きく減衰した
左円偏光となって反射される。
According to the above configuration, the S-polarized light emitted by the first light source can be used with a quarter-wave plate (if the optical path difference between linearly polarized lights vibrating in directions perpendicular to each other is within 174 wavelengths ±20%) ), the light is converted into, for example, right-handed circularly polarized light and irradiated onto a magneto-optical recording medium. At the same time, the P-polarized light emitted by the second light source is converted into, for example, left-handed circularly polarized light by a quarter-wave plate and irradiated onto the magneto-optical recording medium. For example, a magneto-optical recording medium made of a rare earth transition metal alloy thin film has circular dichroism, so right-handed circularly polarized light irradiated onto a magnetic domain whose magnetization direction is vertically downward will have an intensity of It is reflected as highly attenuated left-handed circularly polarized light.

一方、照射された左円偏光は、強度の減衰が小さい右円
偏光となって反射される。
On the other hand, the irradiated left-handed circularly polarized light is reflected as right-handed circularly polarized light whose intensity is less attenuated.

また、磁化方向が垂直上向きになっている磁区に照射さ
れた左円偏光は、強度の大きく減衰した右円偏光となっ
て反射される。一方、照射された右円偏光は、強度の減
衰が小さい左円偏光となって反射される。この結果、光
磁気記録媒体に照射された右円偏光の反射光強度変化と
、照射された左円偏光の反射光強度変化とは位相が半周
期ずれて極性が逆向きになる。
Furthermore, left-handed circularly polarized light irradiated onto a magnetic domain whose magnetization direction is vertically upward is reflected as right-handed circularly polarized light with greatly attenuated intensity. On the other hand, the irradiated right-handed circularly polarized light is reflected as left-handed circularly polarized light whose intensity is less attenuated. As a result, the change in the intensity of the reflected light of the right-handed circularly polarized light irradiated onto the magneto-optical recording medium and the change in the intensity of the reflected light of the left-handed circularly polarized light irradiated with the recording medium are out of phase by half a cycle and have opposite polarities.

光検出手段は、各円偏光の光磁気記録媒体における反射
光をそれぞれ検出し、再生信号として出力する。従って
、各再生信号は、記録媒体の磁化方向に対応して極性が
互いに逆向きとなるので、差動増幅が可能になる。反射
光強度に基づく各再生信号にほこり等の影響によるノイ
ズが含まれていたとしても、差動増幅されることによっ
てノイズが相殺されるので、実用レベルのS/N比が得
られる。
The light detection means detects each circularly polarized light beam reflected on the magneto-optical recording medium and outputs it as a reproduction signal. Therefore, the polarities of the reproduced signals are opposite to each other in accordance with the magnetization direction of the recording medium, so differential amplification is possible. Even if each reproduced signal based on the reflected light intensity contains noise due to the influence of dust, etc., the noise is canceled out by differential amplification, so that a practical level S/N ratio can be obtained.

〔実施例1) 本発明の一実施例を第1図ないし第3図に基づいて説明
すれば、以下の通りである。
[Embodiment 1] An embodiment of the present invention will be described below based on FIGS. 1 to 3.

本発明の再生用光学装置の要部は、第1図に概略的に示
すように、異なる波長を有すると共に偏光方向が互いに
直交するレーザ光を発射する第1の光源および第2の光
源としての半導体レーザト2、偏光ビームスプリッタ3
、ハーフミラ−4、平行光線束を作るコリメートレンズ
5、直線偏光を円偏光に変える1/4波長板6、対物レ
ンズ7、特定波長の光のみを透過させる波長フィルタ1
0、および光検出手段としての光検出器11・12から
構成されている。
As schematically shown in FIG. 1, the main parts of the reproduction optical device of the present invention include a first light source and a second light source that emit laser beams having different wavelengths and whose polarization directions are orthogonal to each other. Semiconductor laser 2, polarizing beam splitter 3
, a half mirror 4, a collimating lens 5 that creates a parallel beam of light, a quarter-wave plate 6 that changes linearly polarized light into circularly polarized light, an objective lens 7, and a wavelength filter 1 that transmits only light of a specific wavelength.
0, and photodetectors 11 and 12 as photodetecting means.

偏光ビームスプリッタ3は、電場ヘクトルが入射面に対
して垂直なS偏光を全反射し、電場ヘクトルが入射面に
対して平行なP偏光を全透過させる機能を有している。
The polarizing beam splitter 3 has a function of totally reflecting S-polarized light whose electric field Hector is perpendicular to the plane of incidence, and totally transmitting P-polarized light whose electric field Hector is parallel to the plane of incidence.

半導体レーザ1が発射する直線偏光LISは、偏光ビー
ムスプリッタ3に対してS偏光となり、半導体レーザ2
が発射する直線偏光I−zpは、偏光ビームスプリッタ
3に対してP偏光となるようになっている(従って、直
線偏光LISと直線偏光L2Pとは、偏光方向が互いに
直交している)。
The linearly polarized light LIS emitted by the semiconductor laser 1 becomes S-polarized light with respect to the polarization beam splitter 3, and the semiconductor laser 2
The linearly polarized light I-zp emitted by the polarizing beam splitter 3 becomes P-polarized light (therefore, the polarization directions of the linearly polarized light LIS and the linearly polarized light L2P are orthogonal to each other).

1/4波長板6は、入射光の電場ベクトルの主軸M方向
成分の位相を1/4波長遅らせる機能を有している。主
軸Mの配設方向は、第2図に示すように、入射する直線
偏光L+sの偏光方向Nsが主軸Mに対してθ−左45
°の傾きを持ち、また、直線偏光LZPの偏光方向N2
がθ=右45°の傾きを持つようになっている。このよ
うな直線偏光L Isは、1/4波長板6によって主軸
M方向成分の位相が1/4波長遅れると、右円偏光に変
わる。一方、上記のような直線偏光LZFは、主軸M方
向成分の位相が1/4波長遅れると、左円偏光に変わる
The 1/4 wavelength plate 6 has a function of delaying the phase of the component in the direction of the principal axis M of the electric field vector of the incident light by 1/4 wavelength. As shown in FIG.
The polarization direction N2 of the linearly polarized light LZP is
has an inclination of θ=45° to the right. Such linearly polarized light L Is changes into right-handed circularly polarized light when the phase of the component in the direction of the principal axis M is delayed by 1/4 wavelength by the 1/4 wavelength plate 6 . On the other hand, the linearly polarized light LZF as described above changes to left-handed circularly polarized light when the phase of the component in the direction of the principal axis M is delayed by 1/4 wavelength.

なお、光ディスク8の記録媒体9は、対物レンズ7の光
軸に垂直に設けられ、希土類遷移金属合金薄膜より戒っ
ている。情報は記録媒体9の垂直磁化方向の違いによっ
て記録されている。
Note that the recording medium 9 of the optical disk 8 is provided perpendicularly to the optical axis of the objective lens 7, and is made of a rare earth transition metal alloy thin film. Information is recorded by the difference in the perpendicular magnetization direction of the recording medium 9.

上記の構成において、半導体レーザ1から発射された直
線偏光L Isは、S偏光となっているので、偏光ビー
ムスプリッタ3によって対物レンズ7の光軸方向に全反
射される。そして、直線偏光LISはハーフミラ−4を
透過しコリメートレンズ5で平行光線束にされたのち、
既に説明したように、1/4波長板6によって右円偏光
に変わる。右円偏光は対物レンズ7によってビームスポ
ットに集光され、光ディスク8の記録媒体9に照射され
る。この右円偏光は、従来例の第6図で説明したように
、記録媒体9において左円偏光(記録媒体9から見て)
となって反射され、対物レンズ7で平行光線束となり、
再び1/4波長板6に右円偏光(1/4波長板6から見
て)となって戻る。1/4波長板6では、右円偏光の透
過光は主軸M方向成分の位相が1/4波長遅れると、P
偏光の直線偏光LIFとなる。直線偏光LIFは、コリ
メートレンズ5を介してハーフミラ−4で波長フィルタ
10の方向へ反射され、波長フィルタlOで選択透過さ
れ、光検出器11に検出される。
In the above configuration, since the linearly polarized light L Is emitted from the semiconductor laser 1 is S-polarized light, it is totally reflected by the polarizing beam splitter 3 in the optical axis direction of the objective lens 7 . Then, the linearly polarized light LIS passes through the half mirror 4 and is converted into a parallel beam by the collimating lens 5.
As already explained, the quarter-wave plate 6 converts the light into right-handed circularly polarized light. The right-handed circularly polarized light is focused into a beam spot by an objective lens 7, and is irradiated onto a recording medium 9 of an optical disc 8. As explained in FIG. 6 of the conventional example, this right-handed circularly polarized light becomes left-handed circularly polarized light (as seen from the recording medium 9) in the recording medium 9.
It is reflected and becomes a parallel ray bundle by the objective lens 7,
The light returns to the quarter-wave plate 6 again as right-handed circularly polarized light (as viewed from the quarter-wave plate 6). In the 1/4 wavelength plate 6, when the transmitted light of the right circularly polarized light has a phase delay of 1/4 wavelength of the component in the direction of the principal axis M, P
The polarized light becomes linearly polarized light LIF. The linearly polarized light LIF is reflected by the half mirror 4 in the direction of the wavelength filter 10 via the collimating lens 5, selectively transmitted by the wavelength filter IO, and detected by the photodetector 11.

他方、半導体レーザ2から発射された直線偏光LAFは
(半導体レーザlから発射された直線偏光L+sとは波
長が異なっている)、P偏光となっているので、偏光ビ
ームスプリッタ3を全透過する。そして、直線偏光L2
Fは、直線偏光LI5と同様に、ハーフミラ−4、コリ
メートレンズ5を介して1/4波長板6によって左円偏
光に変わる。対物レンズ7を介して記録媒体9に照射さ
れた上記の左円偏光は、記録媒体9において右円偏光(
記録媒体9から見て)となって反射され、対物レンズ7
を通り、再び1/4波長板6に左円偏光(l/4波長板
6から見て)となって戻る。1/4波長板6では、左円
偏光の透過光はS偏光の直線偏光L ZSとなる。直線
偏光L 2gは、コリメートレンズ5を介してハーフミ
ラ−4で波長フィルタlOの方向へ反射され、波長フィ
ルタ10で全反射され、光検出器12に検出される。
On the other hand, since the linearly polarized light LAF emitted from the semiconductor laser 2 (which has a different wavelength from the linearly polarized light L+s emitted from the semiconductor laser 1) is P-polarized light, it completely passes through the polarization beam splitter 3. And linearly polarized light L2
Similarly to the linearly polarized light LI5, F is converted into left-handed circularly polarized light by a quarter-wave plate 6 via a half mirror 4 and a collimating lens 5. The above-mentioned left-handed circularly polarized light irradiated onto the recording medium 9 through the objective lens 7 is transmitted to the recording medium 9 by right-handed circularly polarized light (
(as seen from the recording medium 9) and is reflected by the objective lens 7.
The light returns to the quarter-wave plate 6 as left-handed circularly polarized light (as viewed from the quarter-wave plate 6). In the quarter-wave plate 6, the transmitted left-handed circularly polarized light becomes S-polarized linearly polarized light LZS. The linearly polarized light L 2g is reflected by the half mirror 4 in the direction of the wavelength filter 1O via the collimating lens 5, totally reflected by the wavelength filter 10, and detected by the photodetector 12.

光検出器11が出力する再生信号S1の信号強度変化は
2記録媒体9における反射を経た直線偏光LIFの光強
度変化に対応する。第3図に示すように、記録媒体9の
垂直下向きに磁化された磁区9bでは、従来例の第6図
で説明したように円二色性効果によって、照射された右
円偏光の反射光強度は減衰するから、再生信号S1のロ
ーレベルは磁区9bに対応する。従って、再生信号S1
のハイレベルは磁区9aに対応する。
The change in the signal intensity of the reproduced signal S1 output by the photodetector 11 corresponds to the change in the light intensity of the linearly polarized light LIF that has been reflected on the two recording media 9. As shown in FIG. 3, in the vertically downwardly magnetized magnetic domain 9b of the recording medium 9, the reflected light intensity of the irradiated right-handed circularly polarized light is caused by the circular dichroism effect as explained in FIG. 6 of the conventional example. Attenuates, so the low level of the reproduced signal S1 corresponds to the magnetic domain 9b. Therefore, the reproduced signal S1
The high level corresponds to the magnetic domain 9a.

また、光検出器12が出力する再生信号S2の信号強度
変化は、記録媒体9における反射を経た直線偏光Lzs
の光強度変化に対応する。記録媒体9の垂直下向きに磁
化された磁区9bでは、照射された左円偏光の反射光強
度は右円偏光のときとは逆に、磁区9aにおいて減衰す
るから、再生信号S2のローレベルは磁区9aに対応す
る。従って、再生信号S2のハイレベルは磁区9aに対
応する。
Further, the change in signal intensity of the reproduced signal S2 outputted by the photodetector 12 is caused by linearly polarized light Lzs after reflection on the recording medium 9.
corresponds to changes in light intensity. In the vertically downwardly magnetized magnetic domain 9b of the recording medium 9, the reflected light intensity of the irradiated left-handed circularly polarized light is attenuated in the magnetic domain 9a, contrary to the case of right-handed circularly polarized light, so the low level of the reproduced signal S2 is caused by the magnetic domain. Corresponds to 9a. Therefore, the high level of the reproduced signal S2 corresponds to the magnetic domain 9a.

これによって、磁区9aおよび磁区9bに対応する再生
信号S1および再生信号S2の信号強度は、互いに極性
が反対になる。従って、このような再生信号S、および
再生信号S2を差動増幅器に入力すれば、実用可能なS
/N比を有する再生信号が得られる。さらに、光デイス
ク80基板上に付着したほこり等の異物によって反射光
強度が影響を受け、たとえば再生信号S1の信号強度が
本来の値よりΔS小さくなったとしても、半導体レーザ
1および半導体レーザ2は記録媒体9に同時に照射を行
うため、同じ異物の影響によって、再生信号S2の信号
強度もΔS小さくなる。従って、再生信号S1および再
生信号S2が差動増幅器に入力されれば、ΔSは相殺さ
れてしまう。この結果、記録情報の再生信号以外のディ
スクノイズが低減されることになる。
As a result, the signal intensities of the reproduced signal S1 and the reproduced signal S2 corresponding to the magnetic domains 9a and 9b have opposite polarities. Therefore, if such reproduced signal S and reproduced signal S2 are input to a differential amplifier, a practical S
A reproduced signal having a /N ratio is obtained. Furthermore, even if the reflected light intensity is affected by foreign matter such as dust attached to the optical disk 80 substrate, and the signal intensity of the reproduced signal S1 becomes ΔS smaller than the original value, the semiconductor laser 1 and the semiconductor laser 2 Since the recording medium 9 is irradiated at the same time, the signal intensity of the reproduced signal S2 is also reduced by ΔS due to the influence of the same foreign matter. Therefore, if the reproduced signal S1 and the reproduced signal S2 are input to the differential amplifier, ΔS will be canceled out. As a result, disc noise other than the reproduction signal of recorded information is reduced.

〔実施例2〕 本発明の他の実施例を第4図に基づいて説明すれば、以
下の通りである。尚、説明の便宜上、前記の実施例1の
図面に示した部材と同一の機能を有する部材には、同一
の符号を付記して、その説明を省略する。
[Embodiment 2] Another embodiment of the present invention will be described below based on FIG. For convenience of explanation, members having the same functions as those shown in the drawings of the first embodiment will be denoted by the same reference numerals, and the explanation thereof will be omitted.

実施例1では、記録媒体9における2つの反射光が、波
長の違いを利用して波長フィルタ10によって分離され
る場合を示した。本実施例では、反射光が偏光方向の違
いを利用して偏光ビームスプリッタ3によって分離され
る場合を示す。
In the first embodiment, a case was shown in which two reflected lights on the recording medium 9 are separated by the wavelength filter 10 using the difference in wavelength. This embodiment shows a case where reflected light is separated by a polarizing beam splitter 3 using a difference in polarization direction.

本実施例の再生用光学装置は、第4図に示すように、半
導体レーザ1と偏光ビームスプリッタ3との間にハーフ
ミラ−13が配設され、半導体レーザ2と偏光ビームス
プリンタ3との間にハーフミラ−14が配設されている
。対物レンズ7の光軸上には、第3図と同様に、コリメ
ートレンズ51/4波長板6、光ディスク8およびその
記録媒体9が設けられている。また、後述するように、
記録媒体9における各反射光・は、偏光ビームスプリッ
タ3によって分離されたのち、一方はハーフミラ−13
によって光検出器12に導かれ、同時に他方はハーフミ
ラ−14によって光検出器11に導かれるようになって
いる。
As shown in FIG. 4, the reproducing optical device of this embodiment includes a half mirror 13 disposed between the semiconductor laser 1 and the polarizing beam splitter 3, and a half mirror 13 between the semiconductor laser 2 and the polarizing beam splitter 3. A half mirror 14 is provided. On the optical axis of the objective lens 7, a collimating lens 51/4 wavelength plate 6, an optical disk 8 and its recording medium 9 are provided, as in FIG. In addition, as described later,
After each reflected light beam on the recording medium 9 is separated by a polarizing beam splitter 3, one side is separated by a half mirror 13.
is guided to the photodetector 12 by a half mirror 14, and at the same time, the other one is guided to the photodetector 11 by a half mirror 14.

上記の構成において、半導体レーザ1が発射する直線偏
光LISはS偏光であるから、ハーフミラ−13を透過
したのち、偏光ビームスプリンタ3で全反射され、コリ
メートレンズ5.1/4波長板6、および対物レンズ7
を介し7て、右円偏光となって光ディスク8の記録媒体
9に照射される。
In the above configuration, since the linearly polarized light LIS emitted by the semiconductor laser 1 is S-polarized light, it is transmitted through the half mirror 13 and then totally reflected by the polarized beam splinter 3, and is then passed through the collimating lens 5, quarter-wave plate 6, and Objective lens 7
7, the light becomes right-handed circularly polarized light and is irradiated onto the recording medium 9 of the optical disc 8.

そして、その反射光は実施例1と同様に、1/4波長板
6でP偏光の直線偏光LIFとなるから、偏光ビームス
プリンタ3を全透過し、ハーフビラ−14で全反射され
たのち光検出器11に導かれる。
Then, as in the first embodiment, the reflected light becomes P-polarized linearly polarized light LIF at the 1/4 wavelength plate 6, so it is completely transmitted through the polarizing beam splinter 3, completely reflected at the half-biller 14, and then optically detected. Guided to vessel 11.

半導体レーザ2から発射され、直線偏光LISとは波長
が異なるP偏光の直線偏光LAFも、実施例1と同様に
、1/4波長板6の作用によってS偏光の直線偏光LZ
Sとなって戻ってくるから、偏光ビームスプリッタ3で
全反射され、ハーフミラ−13で全反射されたのち光検
出器12に導かれる。
Similarly to the first embodiment, the P-polarized linearly polarized light LAF emitted from the semiconductor laser 2 and having a different wavelength from the linearly polarized light LIS is converted into the S-polarized linearly polarized light LZ by the action of the quarter-wave plate 6.
Since the light returns as S, it is totally reflected by the polarizing beam splitter 3, totally reflected by the half mirror 13, and then guided to the photodetector 12.

以下、光検出器11が出力する再生信号S0、光検出器
12が出力する再生信号S2、および差動増幅によって
得られる再生信号の説明は実施例1と同しであるから省
略する。
Hereinafter, descriptions of the reproduced signal S0 outputted by the photodetector 11, the reproduced signal S2 outputted by the photodetector 12, and the reproduced signal obtained by differential amplification are the same as in the first embodiment, and will therefore be omitted.

〔発明の効果〕〔Effect of the invention〕

本発明に係る光磁気記録媒体の再生用光学装置は、以上
のように、S偏光を出射する第1の光源と、上記S偏光
とは波長の異なるP偏光を出射する第2の光源と、上記
S偏光およびP偏光を円偏光に変換する1/4波長板と
を備え、上記1/4波長板で変換されたS偏光の円偏光
およびP偏光の円偏光が光磁気記録媒体に同時に導かれ
、各円偏光の光磁気記録媒体における反射光の強度変化
に対応して光検出手段から出力される各再生信号が差動
増幅される構成である。
As described above, the optical device for reproducing a magneto-optical recording medium according to the present invention includes: a first light source that emits S-polarized light; a second light source that emits P-polarized light having a different wavelength from the S-polarized light; a quarter-wave plate for converting the S-polarized light and the P-polarized light into circularly polarized light; the S-polarized circularly polarized light and the P-polarized circularly polarized light converted by the quarter-wave plate are simultaneously guided to the magneto-optical recording medium; This configuration is such that each reproduction signal output from the photodetecting means is differentially amplified in response to a change in the intensity of each circularly polarized beam reflected on the magneto-optical recording medium.

従って、記録媒体に同時に導かれた各円偏光は円二色性
効果により、記録媒体の磁化方向に対応して反射光強度
の極性が互いに逆向きになるように変化するので、それ
に応して光検出手段から出力される各再生信号を差動増
幅、することが可能となる。この結果、差動増幅によっ
てディスクノイズが相殺されることにもなり、実用レヘ
ルのS/N比を従来のように高価な検光子を用いずに簡
便な光学装置によって得ることができるという効果を奏
する。
Therefore, due to the circular dichroism effect, the polarities of the reflected light intensities of the circularly polarized lights simultaneously guided to the recording medium change so that they become opposite to each other in accordance with the magnetization direction of the recording medium. It becomes possible to differentially amplify each reproduced signal output from the optical detection means. As a result, the disc noise is canceled out by the differential amplification, making it possible to obtain a practical level S/N ratio with a simple optical device without using an expensive analyzer as in the past. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の一実施例を示すものであ
る。 第1図は光磁気記録媒体の再生用光学装置の要部の構成
図である。 第2図は1/4波長板の作用に関する説明図である。 第3図は記録媒体の磁化方向に対応する再生信号の波形
図である。 第4図は本発明の他の実施例を示すものであって、光磁
気記録媒体の再生用光学装置の要部の構成国である。 第5図ないし第7図は従来例を示すものである。 第5図は光磁気記録媒体の再生用光学装置の要部の構成
国である。 第6図はカー効果と再生信号の極性との関係を示す説明
図である。 第7図は光磁気記録媒体における円二色性効果に関する
説明図である。 1は半導体レーザ(第1の光源)、2は半導体レーザ(
第2の光源)、6は1/4波長板、9は記録媒体(光磁
気記録媒体)、11・12は光検出器(光検出手段)1
.L、sは直線偏光(S偏光)、L2Fは直線偏光(P
偏光)、SI −32は再生信号である。
1 to 3 show one embodiment of the present invention. FIG. 1 is a block diagram of the main parts of an optical device for reproducing a magneto-optical recording medium. FIG. 2 is an explanatory diagram regarding the action of the quarter-wave plate. FIG. 3 is a waveform diagram of a reproduction signal corresponding to the magnetization direction of the recording medium. FIG. 4 shows another embodiment of the present invention, showing the components of the main parts of an optical device for reproducing a magneto-optical recording medium. 5 to 7 show conventional examples. FIG. 5 shows the constituent countries of the main parts of an optical device for reproducing magneto-optical recording media. FIG. 6 is an explanatory diagram showing the relationship between the Kerr effect and the polarity of the reproduced signal. FIG. 7 is an explanatory diagram regarding the circular dichroism effect in a magneto-optical recording medium. 1 is a semiconductor laser (first light source), 2 is a semiconductor laser (
6 is a quarter wavelength plate, 9 is a recording medium (magneto-optical recording medium), 11 and 12 are photodetectors (photodetection means) 1
.. L, s are linearly polarized light (S polarized light), L2F is linear polarized light (P
polarization), SI-32 is a reproduced signal.

Claims (1)

【特許請求の範囲】 光ビームを光磁気記録媒体に照射し、その反射光を光検
出手段によって検出することにより、磁化方向の違いに
よって光磁気記録媒体に記録された情報を読み取る光磁
気記録媒体の再生用光学装置において、 S偏光を出射する第1の光源と、上記S偏光とは波長の
異なるP偏光を出射する第2の光源と、上記S偏光およ
びP偏光を円偏光に変換する1/4波長板とを備え、上
記1/4波長板で変換されたS偏光の円偏光およびP偏
光の円偏光が光磁気記録媒体に同時に導かれ、各円偏光
の光磁気記録媒体における反射光の強度変化に対応して
光検出手段から出力される各再生信号が差動増幅される
ことを特徴とする光磁気記録媒体の再生用光学装置。
[Claims] A magneto-optical recording medium that reads information recorded on the magneto-optical recording medium based on the difference in magnetization direction by irradiating the magneto-optical recording medium with a light beam and detecting the reflected light using a photodetector. A reproduction optical device comprising: a first light source that emits S-polarized light; a second light source that emits P-polarized light having a different wavelength from the S-polarized light; and a first light source that converts the S-polarized light and the P-polarized light into circularly polarized light. /4 wavelength plate, the S-polarized circularly polarized light and the P-polarized circularly polarized light converted by the above-mentioned 1/4 wavelength plate are simultaneously guided to the magneto-optical recording medium, and the reflected light on the magneto-optical recording medium of each circularly polarized light is 1. An optical device for reproducing a magneto-optical recording medium, characterized in that each reproduction signal output from a photodetecting means is differentially amplified in response to a change in the intensity of a magneto-optical recording medium.
JP2053978A 1990-03-05 1990-03-05 Optical device for reproducing magneto-optical recording media Expired - Lifetime JP2574915B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2053978A JP2574915B2 (en) 1990-03-05 1990-03-05 Optical device for reproducing magneto-optical recording media
CA002037428A CA2037428C (en) 1990-03-05 1991-03-01 Reproducing optical device for a magneto-optical recording medium
US07/664,183 US5202860A (en) 1990-03-05 1991-03-04 Magneto-optic reproducing device using right and left circularly polarized light
EP91301830A EP0446021B1 (en) 1990-03-05 1991-03-05 Reproducing optical device for a magneto-optical recording medium
DE69121744T DE69121744T2 (en) 1990-03-05 1991-03-05 Optical reproduction device for a magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2053978A JP2574915B2 (en) 1990-03-05 1990-03-05 Optical device for reproducing magneto-optical recording media

Publications (2)

Publication Number Publication Date
JPH03254450A true JPH03254450A (en) 1991-11-13
JP2574915B2 JP2574915B2 (en) 1997-01-22

Family

ID=12957725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2053978A Expired - Lifetime JP2574915B2 (en) 1990-03-05 1990-03-05 Optical device for reproducing magneto-optical recording media

Country Status (1)

Country Link
JP (1) JP2574915B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118122U (en) * 1984-12-28 1986-07-25
JPS6459656A (en) * 1987-08-31 1989-03-07 Matsushita Electric Ind Co Ltd Optical head for magneto-optical recording carrier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118122U (en) * 1984-12-28 1986-07-25
JPS6459656A (en) * 1987-08-31 1989-03-07 Matsushita Electric Ind Co Ltd Optical head for magneto-optical recording carrier

Also Published As

Publication number Publication date
JP2574915B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
JPH07118105B2 (en) Optical fiber type magneto-optical head
JPH0520725A (en) Optical pickup device
JP3626003B2 (en) Optical information storage device
JPS63161541A (en) Optical pickup device
US5202860A (en) Magneto-optic reproducing device using right and left circularly polarized light
JPS5829155A (en) Information reproducer by photomagnetic system
JPS6220149A (en) Optical head
JPH03254450A (en) Reproduction optical device for magneto-optical recording medium
JP2751899B2 (en) Optical pickup device
JPH0327978B2 (en)
JP3211483B2 (en) Optical pickup device
JP2574916B2 (en) Optical device for reproducing magneto-optical recording media
JP2578796B2 (en) Magneto-optical disk device
JP3095194B2 (en) Magneto-optical information reproducing device
JPH01294236A (en) Optical head
JPS62226454A (en) Photomagnetic recording and reproducing device
JPS63157341A (en) Magneto-optical recording/reproducing head
JPS60157745A (en) Photomagnetic recorder
JPS61233444A (en) Optical reproducing device
JPS6063749A (en) Photoelectro-magnetic pickup device
JPS6318551A (en) Optical pickup device
JPH03104041A (en) Magneto-optical disk device
JPS60223044A (en) Photomagnetic reproducer
JPH04286745A (en) Optical pickup device
JPS61198458A (en) Method for reproducing magnetooptic information

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 14