JPS61198458A - Method for reproducing magnetooptic information - Google Patents

Method for reproducing magnetooptic information

Info

Publication number
JPS61198458A
JPS61198458A JP3905285A JP3905285A JPS61198458A JP S61198458 A JPS61198458 A JP S61198458A JP 3905285 A JP3905285 A JP 3905285A JP 3905285 A JP3905285 A JP 3905285A JP S61198458 A JPS61198458 A JP S61198458A
Authority
JP
Japan
Prior art keywords
light
polarized
beam splitter
reflected
luminous flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3905285A
Other languages
Japanese (ja)
Other versions
JPH0610887B2 (en
Inventor
Masakuni Yamamoto
昌邦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3905285A priority Critical patent/JPH0610887B2/en
Publication of JPS61198458A publication Critical patent/JPS61198458A/en
Publication of JPH0610887B2 publication Critical patent/JPH0610887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the effect due to fluctuation of the distance between a recording and the detection system by splitting a luminous flux into the 1st luminous flux comprising a polarized component in a prescribed direction and the 2nd luminous flux comporising the polarized component in a direction vertical to the prescribed direction and interferring the 1st and 2nd luminous fluxes to detect information. CONSTITUTION:Light irradiated from a light source 61 is collimated by a collimator lens 62, becomes a luminous flux 20 subject to linear polarization into P polized light through a polizer 3, condensed on an optomagnetic disc 24 and reflected. In this case, the polarized azimuth of the reflected light is rotated to produce an S polarized component, which is reflected by a polarized beam splitter 22, bent by a mirror 27 and becomes a luminous flux 25 without almost any loss of luminous amount. On the other hand, the P polarized light component component transmits through the polarized beam splitter 22, is reflected by the beam splitter 2 and becomes a luminous flux 26. The luminous fluxes 25, 26 are interferred by a beam splitter 30 and propagate in two directions and are condensed on photodetectors 33, 34 by condenser lenses 31, 32 respectively and detected. Thus, the adverse effect due to the change in the distance between the recording medium and the detection system is eliminated.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は磁気光学効果を利用して高密度磁気記録情報を
再生する磁気光学的情報再生方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a magneto-optical information reproducing method for reproducing high-density magnetically recorded information using the magneto-optic effect.

〔従来技術〕[Prior art]

近年、情報の高密度記録の分野において磁気光学効果を
用いた書き換え可能な光磁気方式が有望視されている。
In recent years, rewritable magneto-optical systems using magneto-optic effects have been viewed as promising in the field of high-density recording of information.

従来、上述の如き光磁気記録の再生には、第6図に示す
ような読み取り光学系が使用されていた。ここで、半導
体レーザ等の光源1から出た光は、コリメータレンズ2
によって平行光束3となり、偏光子4を経である方位に
直線偏光した光忙なり、ビームスプリッタ5、対物レン
ズ6を経て光磁気ディスク7上忙スポツト状に入射する
。そして、この入射光は、光磁気ディスクの垂直磁化の
上向き、または下向きの方向の違いに対応し、光束の偏
光面が磁気光学カー効果により互いに反対方向の回転θ
kを受けて反射する。例えば、入射光束をP偏光とし、
その偏光面が上向き磁化に対し+θk、下向き磁化に対
し一〇にの変化を受けS偏光成分をもつようになるとす
ると、反射光は第7図のA、Hの如くなる。
Conventionally, a reading optical system as shown in FIG. 6 has been used to reproduce the above-mentioned magneto-optical recording. Here, the light emitted from a light source 1 such as a semiconductor laser is passed through a collimator lens 2.
The light becomes a parallel light beam 3, which is linearly polarized in a certain direction through a polarizer 4, passes through a beam splitter 5, and an objective lens 6, and is incident on a magneto-optical disk 7 in the form of a bright spot. This incident light corresponds to the difference in the upward or downward direction of the perpendicular magnetization of the magneto-optical disk, and the polarization plane of the light flux is rotated θ in opposite directions due to the magneto-optic Kerr effect.
It receives and reflects k. For example, if the incident light flux is P polarized light,
Assuming that the plane of polarization changes +θk for upward magnetization and 10 for downward magnetization so that it has an S-polarized component, the reflected light will become as shown in A and H in FIG.

前記反射光は再び対物レンズ6、ビームスプリッタを経
て平行光束8の方向に曲けられ、第7図のCの如くその
透過軸の方位が、入射光束の偏光方向に垂直な方向に対
し所定の角度ψをなすように配置された検光子9を通り
、光検出器10にいたる。この時検光子を通過する光の
強度は、第7図のCへの斜影成分に対応し、磁化の上向
きまたは下向きの違いによって強度の強弱として検出さ
れる。
The reflected light passes through the objective lens 6 and the beam splitter again and is bent in the direction of a parallel beam 8, and as shown in FIG. The light passes through an analyzer 9 arranged at an angle ψ and reaches a photodetector 10. The intensity of the light passing through the analyzer at this time corresponds to the diagonal component shown in C in FIG. 7, and is detected as a strength or weakness depending on whether the magnetization is upward or downward.

ところがこの磁気光学カー効果によるカー回転角θには
、0.1度オーダの微小な角度であるうえ、光検出器に
いたる絶対光量が少ないため、レーザ、光磁気ディスク
光検出器等の雑音成分が信号に大きく影響し、8N比の
劣化が問題となっていた。
However, the Kerr rotation angle θ due to the magneto-optical Kerr effect is a minute angle on the order of 0.1 degrees, and the absolute amount of light reaching the photodetector is small, so noise components from lasers, magneto-optical disk photodetectors, etc. had a large effect on the signal, and the deterioration of the 8N ratio had become a problem.

一方、上述した欠点を除去し、磁気光学的再生において
問題となる微小信号読み取シの8N比劣化に対して、従
来の再生方法忙比べて大きなSN比が得られるものとし
て、所謂光混合法を利用した磁気光学的情報再生方法が
提案されているl許出願公開昭59−135646 )
On the other hand, the so-called optical mixing method has been proposed as a method that eliminates the above-mentioned drawbacks and obtains a larger S/N ratio than the conventional reproducing method, which can overcome the 8N ratio deterioration in minute signal reading that is a problem in magneto-optical reproduction. A magneto-optical information reproducing method using the method has been proposed (Publication No. 135646/1982).
.

第8図はこのような光混合法を利用した磁気光学的情報
再生方法の説明図である。
FIG. 8 is an explanatory diagram of a magneto-optical information reproducing method using such an optical mixing method.

所定の方向に直線偏光した光束11Fi、ビームスプリ
ッタ12、対物レンズ13、を経て光磁気ディスク14
上にスポット状に入射する。
A light beam 11Fi linearly polarized in a predetermined direction passes through a beam splitter 12 and an objective lens 13 to a magneto-optical disk 14.
It is incident on the top in the form of a spot.

そして、前述のように光磁気ディスクの上向き、または
下向きの磁化に応じて変調をうけた反射光束は、対物レ
ンズ13を経てビームスプリッタ12により曲げられ光
束15となりビームスプリッタ17により適当な方法で
光源より分割された参照光束16と光混合され検光子1
8を経て光検出器19で検出される。このとき、光束1
5と光束16の周波数が同じものをホモダイン法といい
、周波数が異なるものをヘテロダイン法という。両方と
も、光検出器のショットノイズリミット検出が可能で、
8N比を向上出来るものである。
The reflected light flux, which has been modulated according to the upward or downward magnetization of the magneto-optical disk as described above, passes through the objective lens 13 and is bent by the beam splitter 12 to become a light flux 15, which is sent to the light source by the beam splitter 17 in an appropriate manner. The light is mixed with the divided reference light beam 16 and sent to the analyzer 1.
8 and is detected by a photodetector 19. At this time, the luminous flux 1
A method in which the frequencies of the light flux 5 and the light flux 16 are the same is called a homodyne method, and a method in which the frequencies are different is called a heterodyne method. Both are capable of photodetector shot noise limit detection,
8N ratio can be improved.

しかしながら、このような光磁気ディスクの再生装置に
おいては通常ディスクの反シ等によって検出系に対して
ディスク面が上下してしまう。従って、前述のような光
混合法を用いた従来の方法では、ビームスプリッタ12
と光磁気ディスク14との距離が変化することによシ光
束15と16の光路長が変化し、そのため光磁気ディス
クの信号が読み増れない場合が生じた。
However, in such a magneto-optical disk reproducing apparatus, the disk surface usually moves up and down with respect to the detection system due to the disk being tilted or the like. Therefore, in the conventional method using the light mixing method as described above, the beam splitter 12
As the distance between the magneto-optical disk 14 changes, the optical path lengths of the light beams 15 and 16 change, and as a result, there are cases in which signals from the magneto-optical disk cannot be read.

〔発明の概要〕[Summary of the invention]

本発明の目的は、上述した従来技術の欠点を除去し、信
号読み取りのS/N比を向上させ、しかも記録媒体と検
出系との距離の変動忙よる影響を除去した磁気光学的情
報再生方法を提供することにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above, improve the S/N ratio of signal reading, and eliminate the effects of fluctuations in the distance between the recording medium and the detection system. Our goal is to provide the following.

本発明の上記目的は、所定の方向に偏光した光束を磁気
的に情報が記録された記録媒体に照射し、前記情報に応
じて偏光方向の変化した光束を前記所定方向の偏光成分
から成る第10光束と所定方向と垂直な方向の偏光成分
から成る第2の光束とに分割した後、これら第1の光束
及び第2の光束を干渉させて前記情報を検出することに
よって達成される。
The above-mentioned object of the present invention is to irradiate a recording medium on which information is magnetically recorded with a light beam polarized in a predetermined direction, and to convert the light beam whose polarization direction has changed in accordance with the information into a light beam consisting of a polarization component in the predetermined direction. This is achieved by dividing the light beam into 10 light beams and a second light beam consisting of a polarization component in a direction perpendicular to a predetermined direction, and then interfering with the first light beam and the second light beam to detect the information.

〔実施例〕〔Example〕

以下1図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to one drawing.

第1図は、本発明の方法を用いた検出系の構成例を示す
概略図である。ここで、61は半導体レーザ等の光源、
62けコリメータレンズ、63はP偏光のみ透過する偏
光子、20はP偏光の直線偏光光束である。また、21
は光束を所定の割合で分割するビームスプリッタ、22
けS偏光が反射、P偏光が透過する(例えばS偏光の反
射本99X、P偏光の透過基98N)偏光ビームスプリ
ッタ、23は対物レンズ、24け光磁気ディスク、25
は偏光ビームスプリッタにより分割された反射光束のS
偏光成分の光束、また26は偏光ビームスプリッタ22
によシ分割された反射光束のP偏光がさらにビームスプ
リッタ21により反射された光束、27け反射ミラー、
28は偏光方位をP偏光方向からS偏光方向に変える7
波長板、29は7波長板28を通った光束の位相を調整
する位相板、30は光束25と26を干渉させるための
ビームスプリッタ、31および32け集光レンズ、33
および34は光検出器である。
FIG. 1 is a schematic diagram showing an example of the configuration of a detection system using the method of the present invention. Here, 61 is a light source such as a semiconductor laser,
62 collimator lenses, 63 a polarizer that transmits only P-polarized light, and 20 a linearly polarized light beam of P-polarized light. Also, 21
is a beam splitter that splits the luminous flux at a predetermined ratio, 22
23 is an objective lens, 24 is a magneto-optical disk, 25
is S of the reflected light beam split by the polarizing beam splitter
26 is a polarizing beam splitter 22.
The P-polarized light beam of the reflected light beam split by the beam splitter 21 is further reflected by the beam splitter 21, the reflecting mirror 27,
28 changes the polarization direction from the P polarization direction to the S polarization direction 7
A wavelength plate 29 is a phase plate that adjusts the phase of the light flux that has passed through the seven-wavelength plate 28, 30 is a beam splitter that causes the light fluxes 25 and 26 to interfere, 31 and 32 are condensing lenses, 33
and 34 are photodetectors.

光源61から出射した光は、コリメータレンズ62によ
って平行光となり、偏光子63を通過してP偏光に直線
偏光した光束20となる。
The light emitted from the light source 61 becomes parallel light by the collimator lens 62, passes through the polarizer 63, and becomes a light beam 20 linearly polarized into P-polarized light.

この光束20け、ビームスプリッタ21.[光ビームス
プリッタ22、対物レンズ23を経て光磁気ディスク2
,4上にスポット状に集光され、反射される。この際、
前述の如く磁性膜の垂直磁化の方位によって+θkまた
は一部にだけ反射光の偏光方位が回転することになり、
それによりS偏光成分が生じる。反射光の8偏光酸分は
対物レンズ23を経て偏光ビームスプリッタ22によシ
反射され、さらにミラー27によって曲げられほとんど
光量の損失なく光束25と々る。
This luminous flux of 20, beam splitter 21. [The magneto-optical disk 2 passes through the optical beam splitter 22 and the objective lens 23.
, 4 in the form of a spot and is reflected. On this occasion,
As mentioned above, depending on the direction of perpendicular magnetization of the magnetic film, the polarization direction of the reflected light is rotated by +θk or only partially.
This produces an S-polarized component. The 8 polarized light components of the reflected light pass through the objective lens 23, are reflected by the polarizing beam splitter 22, are further bent by the mirror 27, and reach the luminous flux 25 with almost no loss in light quantity.

一方反射光のP偏光成分は対物レンズ23.偏光ビーム
スプリッタ22を透過して、ビームスプリッタ21によ
り反射され、光束26となる。
On the other hand, the P-polarized component of the reflected light is transmitted through the objective lens 23. The light passes through the polarizing beam splitter 22, is reflected by the beam splitter 21, and becomes a light beam 26.

光束26は、百波長板28によシ、偏光方位をP偏光方
向からS偏光方向に変えたのち、位相板29によシ、位
相が調整される。位相板29け、光束25と干渉させる
際干渉効果が最大になるように設定されている。光束2
5.26はビームスプリッタ30により干渉される。干
渉光は2方向に進み、それぞれ集光レンズ31゜32に
よって光検出器33.34上だ集光され、検出される。
The light beam 26 is passed through a 100-wave plate 28 to change the polarization direction from the P polarization direction to the S polarization direction, and then the phase is adjusted by the phase plate 29. The phase plate 29 is set to maximize the interference effect when interfering with the light beam 25. Luminous flux 2
5.26 is interfered by beam splitter 30. The interference light travels in two directions, and is focused onto photodetectors 33 and 34 by condenser lenses 31 and 32, respectively, and detected.

次に、光束25と26の干渉により、光磁気ディスクの
情報を読み取る原理を第2図で説明する。第2図(A)
を光磁気ディスク24上の垂直磁化のモデルとすると、
(B)は光束25の強度、(C)は光束250位相であ
る。まだ(D)は光束26の強度、(E)は光束25の
位相である。
Next, the principle of reading information on a magneto-optical disk by the interference of the light beams 25 and 26 will be explained with reference to FIG. Figure 2 (A)
Assuming that is a model of perpendicular magnetization on the magneto-optical disk 24,
(B) is the intensity of the light beam 25, and (C) is the phase of the light beam 250. (D) is the intensity of the light beam 26, and (E) is the phase of the light beam 25.

ここで横軸は(A)の光磁気ディスク上の位置に対応す
る。また、O<Is<< 1. IP>1である。図か
ら明らかなように、垂直磁化の上向き下向きの違いによ
り、光束25と26の位相は、同相か逆相(または逆相
か同相)になる。本発明は、ここに着目して干渉により
信号を読み取るものである。
Here, the horizontal axis corresponds to the position on the magneto-optical disk (A). Also, O<Is<<1. IP>1. As is clear from the figure, the phases of the light beams 25 and 26 are in phase or opposite (or opposite or in phase) due to the difference in the upward and downward directions of perpendicular magnetization. The present invention focuses on this point and reads signals by interference.

光束25.26は式であられすとそれぞれ(1)式と(
2)式になる。
The luminous flux 25.26 is expressed by the formula (1) and (
2) It becomes the formula.

、//TF3e 1 (ωt + If)      
     (1)〆恥e’ (a+t・δ)(2) ただし、δ′は垂直磁化が上向き(又は下向き)のとき
、δ、垂直磁化が下向き(又は上向き)のときδ−πで
あり、ωけ光の周波数、tは時間変数である。
, //TF3e 1 (ωt + If)
(1) 〆Shame e' (a+t・δ) (2) However, δ' is δ when the vertical magnetization is upward (or downward), δ - π when the vertical magnetization is downward (or upward), and ω The frequency of dimming, t, is a time variable.

故に、干渉光の強度は(3)式で表わされる。Therefore, the intensity of the interference light is expressed by equation (3).

l、’r’;el(ωt−δ’)+6eI(ωt−JT
= Is+Ip+24 cos (δ−δ’)    
(3)(3)式において、第1項第2項は直流成分であ
る。
l, 'r';el(ωt-δ')+6eI(ωt-JT
= Is+Ip+24 cos (δ-δ')
(3) In equation (3), the first term and the second term are DC components.

また第3項は交流成分で、これが光磁気ディスクの信号
に対応する。つまり第3項は、垂直磁化上向き(又は下
向き)のときδ−δ’=oよ)2/Cnとなシ、垂直磁
化下向き(又は上向き)のときδ−J’=πより−24
となる。
The third term is an alternating current component, which corresponds to the signal of the magneto-optical disk. In other words, the third term is -2/Cn when the perpendicular magnetization is upward (or downward), and -24 from δ-J'=π when the perpendicular magnetization is downward (or upward).
becomes.

このように、干渉光の信号成分け、雑音の影響がほとん
どなく、全体の絶対光量を多くすることにより、S/N
比の向上した信号として検出できる。また、第1図の構
成で、光検出器33゜34により検出された信号を、更
に不図示の差動増幅器により差動検出すれば、より8/
N比が向上する。
In this way, the signal component of the interference light is almost unaffected by noise, and by increasing the overall absolute light amount, the S/N can be improved.
It can be detected as a signal with improved ratio. In addition, in the configuration shown in FIG. 1, if the signals detected by the photodetectors 33 and 34 are further differentially detected by a differential amplifier (not shown), the result will be 8/8.
N ratio improves.

本発明の方法によれば、診照光としてディスクからの反
射光の一部を用いるため、記録媒体と検出系との距離が
変化しても、干渉させる2光束の光路長は同じように変
化して光路差を生じず、安定した信号検出が可能である
According to the method of the present invention, since a part of the reflected light from the disk is used as diagnostic illumination light, even if the distance between the recording medium and the detection system changes, the optical path length of the two light beams to be interfered with will not change in the same way. Therefore, stable signal detection is possible without creating an optical path difference.

第3図は、本発明の方法を用いた検出系の他の構成例を
示す部分概略図である。本例は、第1図の例の偏光子6
3から偏光ビームスプリッタ22までの間及び、ビーム
スプリッタ301C至る光路中の構成を変更したもので
、その他の構成は第1図と同様なので図示していない。
FIG. 3 is a partial schematic diagram showing another example of the configuration of a detection system using the method of the present invention. In this example, the polarizer 6 of the example in FIG.
3 to the polarizing beam splitter 22 and in the optical path up to the beam splitter 301C, the other configurations are the same as those in FIG. 1 and are not shown.

図中、35はP偏光に直線偏光した入射光束、36けS
偏光を反射し、P偏光を透過する(例えば、S偏光反射
率99%、P偏光反射率98%)偏光ビームスプリッタ
、37Fi7アラデイ−効果を有する素子を用いたファ
ラディーローテータ、38は1波長板、39は光磁気デ
ィスりからの反射光束である。第3図の各光学素子での
偏光状態を第4図で示し、その特徴を説明する。
In the figure, 35 is an incident light beam that is linearly polarized to P polarization, and 36 is S
Polarizing beam splitter that reflects polarized light and transmits P-polarized light (for example, S-polarized light reflectance 99%, P-polarized light reflectance 98%), 37Fi7 Faraday rotator using an element with Alladay effect, 38 is a single wavelength plate , 39 is the reflected light flux from the magneto-optical disk. The polarization state of each optical element in FIG. 3 is shown in FIG. 4, and its characteristics will be explained.

入射光束35は第4図(A)のようにP偏光の直線偏光
である。光束35は、偏光ビームスプリッタ36をほと
んど透過し、ファラディーローテータ37により偏光方
位を(B)のように45°回転される。そして1波長板
38によって、(C)のように再びP偏光の直線偏光に
もどされ、fa1図の例と同様に光磁気ディスクに入射
する。
The incident light beam 35 is a linearly polarized P-polarized light as shown in FIG. 4(A). Most of the light beam 35 passes through the polarizing beam splitter 36, and the polarization direction is rotated by 45 degrees by the Faraday rotator 37 as shown in (B). The light is then converted back into linearly polarized P-polarized light by the one-wavelength plate 38 as shown in FIG.

一方、光磁気ディスクによる反射光束のP偏光成分は、
7波長板38を第3図の下から上へ通過しその偏光方位
は(E)のようになる。さらに7アラデイーローテータ
37を通り、(F)のようにS偏光の直線偏光に変光ら
れ、偏光ビームスプリッタ36によりほとんど反射され
光束39となる。
On the other hand, the P-polarized component of the light flux reflected by the magneto-optical disk is
The light passes through the seven-wavelength plate 38 from bottom to top in FIG. 3, and its polarization direction becomes as shown in (E). The light then passes through the 7 Alladey rotator 37 and is changed into S-polarized linearly polarized light as shown in (F), and is almost reflected by the polarizing beam splitter 36 to become a light beam 39.

このように、第3図の構成とするととKよつで、つまり
第1図の検出系でΣ波長板28を取り除き、ビームスプ
リッタ21と偏光ビームスプリッタ36とを置換し、偏
光ビームスプリッタ36とビームスプリッタ22の間に
7アラデ−ローテータ37と7波長板を配置することに
より、光源からの光をほとんど損失々く利用出来ると同
時に、光アイソレータの機能を果して光源への戻り光を
防ぎ、更に87N比の高い検出が可能となる。
In this way, if the configuration shown in FIG. 3 is adopted, it is Kyoto, that is, in the detection system shown in FIG. By arranging the 7Alade rotator 37 and the 7 wavelength plate between the beam splitter 22, the light from the light source can be used with almost no loss, and at the same time it functions as an optical isolator to prevent light from returning to the light source. Detection with a high 87N ratio becomes possible.

第5図は、本発明の方法を用いた検出系の更に他の構成
例を示す概略図である。図中、40け半導体レーザ、4
1はコリメータレンズ、42は偏光子、43はビームス
プリッタ面、44は偏光ビームスプリッタ面、45け対
物レンズ、46は光磁気ディスク、47け1波長板、4
8はミラー面、49はビームスプリッタ面、50゜51
け集光レンズ、52.53は光検出器である。また、5
4.55は光磁気ディスクによる反射光束を示す。
FIG. 5 is a schematic diagram showing still another configuration example of a detection system using the method of the present invention. In the figure, 40 semiconductor lasers, 4
1 is a collimator lens, 42 is a polarizer, 43 is a beam splitter surface, 44 is a polarizing beam splitter surface, 45 objective lenses, 46 is a magneto-optical disk, 47 is a single wavelength plate, 4
8 is a mirror surface, 49 is a beam splitter surface, 50° 51
52 and 53 are photodetectors. Also, 5
4.55 indicates the light flux reflected by the magneto-optical disk.

半導体レーザ40から出射した光はコリメータレンズ4
1により、平行光束にされ、偏光子42によりP偏光の
直線偏光となり、ビーム整形を兼ねたビームスプリッタ
面43を透過する。さらに1偏光ビ一ムスプリツタ面4
4、対物レンズ45を経て、光磁気ディスク46に入射
する。
The light emitted from the semiconductor laser 40 passes through the collimator lens 4
1, the light is made into a parallel light beam, and the polarizer 42 turns the light into a linearly polarized P-polarized light, which is transmitted through a beam splitter surface 43 that also serves as beam shaping. In addition, 1 polarized beam splitter surface 4
4. The light passes through the objective lens 45 and enters the magneto-optical disk 46 .

前述のように光磁気ディスクの信号により変調された反
射光の8偏光成分とP偏光成分は偏光ビームスプリッタ
44によって分けられ、S偏光成分は光束54となり、
P偏光成分はビームスプリッタ43によって反射され、
光束55となる。光束54.55は、P偏光方向及びS
偏光方向に対して45°の角度をなす方位に結晶軸を配
置した1波長板47てよって、それぞれ円偏光となる。
As mentioned above, the 8 polarized light components and the P polarized light component of the reflected light modulated by the signal from the magneto-optical disk are separated by the polarizing beam splitter 44, and the S polarized light component becomes the light beam 54.
The P polarized light component is reflected by the beam splitter 43,
The luminous flux becomes 55. The light flux 54.55 has P polarization direction and S
The one-wavelength plate 47 has its crystal axis arranged at an angle of 45° with respect to the polarization direction, so that each light becomes circularly polarized.

光束54けミラー面47を経てビームスプリッタ49上
で光束55と干渉する。
The light beam 54 passes through the mirror surface 47 and interferes with the light beam 55 on the beam splitter 49 .

干渉光け2方向に進み、それぞれ集光レンズ50゜51
で集光された後光検出器52.53で検出される。
Interference light travels in two directions, each with a condensing lens 50°51
After the light is collected, it is detected by the light detectors 52 and 53.

本実施例においては、製作時忙44の面と49の面を同
一面上だし、この面と43の面および48面とのそれぞ
れの距離を同一にし、偏光ビームスプリッタ44で分け
られた光束が再びビームスプリッタ49で干渉させられ
るまでの2光束の光路差を零にしている。このようにす
れば、光学系の振動による悪影響や、光源として用いる
レーザの周波数のゆらぎによる悪影響を除くことができ
、安定した干渉効果が得られる。
In this embodiment, during manufacturing, the surfaces 44 and 49 are placed on the same plane, and the distances between this surface and the surfaces 43 and 48 are the same, so that the luminous flux divided by the polarizing beam splitter 44 is The optical path difference between the two beams is made zero before they are interfered by the beam splitter 49 again. In this way, it is possible to eliminate the adverse effects of vibrations in the optical system and fluctuations in the frequency of the laser used as a light source, and a stable interference effect can be obtained.

本発明は以上の実施例に限らず、種々の応用が可能であ
る。例えば、前述の実施例は所謂ホそダイン法によるも
のであるが、光磁気ディスクに2つの異なる周波数のレ
ーザ光を入射し。
The present invention is not limited to the above embodiments, but can be applied in various ways. For example, the above embodiment uses the so-called Hosodine method, in which laser beams of two different frequencies are incident on the magneto-optical disk.

光磁気ディスクからの反射光を2光束に分けた後、それ
ぞれの光路で互いに異なる周波数の光のみを選別し、こ
れらを、干渉させることにより、所謂ヘテロダイン法に
よる再生も行なうことが出来る。また、実施例では記録
媒体の反射光による信号読取シを示したが、本発明はフ
ァラデー効果を利用した記録媒体の透過光による光信号
読取りにも適用が可能である。
After dividing the reflected light from the magneto-optical disk into two beams, selecting only the beams of different frequencies in each optical path and interfering with each other, it is also possible to perform reproduction by the so-called heterodyne method. Furthermore, although the embodiments show signal reading using reflected light from a recording medium, the present invention can also be applied to optical signal reading using transmitted light from a recording medium using the Faraday effect.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は情報に応じて偏光方向が
変化した光を、2方向の偏向成分の光に分割し、これら
の光を干渉させて検出することにより、情報読み取りの
高い87N比を保ちつつ、記録媒体と検出系との距離の
変化による悪影響を除去する効果が得られるものである
As explained above, the present invention splits light whose polarization direction has changed according to information into light with polarized components in two directions, and detects these lights by interfering with each other, thereby achieving a high 87N ratio for information reading. It is possible to obtain the effect of eliminating the adverse effects caused by changes in the distance between the recording medium and the detection system while maintaining the same.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を用いた検出系の構成例を示す概略図、
@2図は本発明の再生原理を説明する図、第3図は本発
明を用いた検出系の他の構成例を示す部分概略図、第4
図は第3図の各光学素子における偏光状態を示す図、第
5図は本発明を用いた検出系の更に他の構成例を示す概
略図、第6図は従来の検出系の構成を示す概略図、!7
図は従来の方法による再生原理を説明する図、第8図は
従来の他の検出系の構成を示す概略図である。 21.30・・・ビームスプリッタ、22−偏光ビーム
スプリッタ、23・・・対物し7 X’、24・・・光
磁気ディスク、27・・・ミラー、28・・・1波長板
、29・・・位相板%31.32・・・集光レンズ、3
3.34・・・光検出器、61・・・光源、62・・・
コリメータレンズ%63・・・偏光子。 (A)
FIG. 1 is a schematic diagram showing an example of the configuration of a detection system using the present invention;
@Figure 2 is a diagram explaining the reproduction principle of the present invention, Figure 3 is a partial schematic diagram showing another configuration example of a detection system using the present invention, and Figure 4 is a diagram explaining the reproduction principle of the present invention.
The figure shows the polarization state of each optical element in Fig. 3, Fig. 5 is a schematic diagram showing another example of the configuration of the detection system using the present invention, and Fig. 6 shows the configuration of the conventional detection system. Schematic,! 7
This figure is a diagram explaining the principle of reproduction according to the conventional method, and FIG. 8 is a schematic diagram showing the configuration of another conventional detection system. 21.30...Beam splitter, 22-Polarizing beam splitter, 23...Objective 7X', 24...Magneto-optical disk, 27...Mirror, 28-1 wavelength plate, 29...・Phase plate% 31.32...Condensing lens, 3
3.34...Photodetector, 61...Light source, 62...
Collimator lens %63...Polarizer. (A)

Claims (1)

【特許請求の範囲】[Claims] (1)所定の方向に偏光した光束を磁気的に情報が記録
された記録媒体に照射し、前記情報に応じて偏光方向の
変化した光束を前記所定方向の偏光成分から成る第1の
光束と所定方向と垂直な方向の偏光成分から成る第2の
光束とに分割した後、これら第1の光束及び第2の光束
を干渉させて前記情報を検出する磁気光学的情報再生方
法。
(1) A light flux polarized in a predetermined direction is irradiated onto a recording medium on which information is magnetically recorded, and the light flux whose polarization direction has been changed according to the information is converted into a first light flux consisting of a polarization component in the predetermined direction. A magneto-optical information reproducing method that detects the information by dividing the first light beam into a second light beam consisting of a polarization component in a direction perpendicular to a predetermined direction and then interfering with the first light beam and the second light beam.
JP3905285A 1985-02-28 1985-02-28 Magneto-optical information reproduction method Expired - Lifetime JPH0610887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3905285A JPH0610887B2 (en) 1985-02-28 1985-02-28 Magneto-optical information reproduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3905285A JPH0610887B2 (en) 1985-02-28 1985-02-28 Magneto-optical information reproduction method

Publications (2)

Publication Number Publication Date
JPS61198458A true JPS61198458A (en) 1986-09-02
JPH0610887B2 JPH0610887B2 (en) 1994-02-09

Family

ID=12542355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3905285A Expired - Lifetime JPH0610887B2 (en) 1985-02-28 1985-02-28 Magneto-optical information reproduction method

Country Status (1)

Country Link
JP (1) JPH0610887B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143044A (en) * 1987-11-16 1989-06-05 Internatl Business Mach Corp <Ibm> Information reproducer
US5610897A (en) * 1992-08-31 1997-03-11 Canon Kabushiki Kaisha Optical information reproducing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143044A (en) * 1987-11-16 1989-06-05 Internatl Business Mach Corp <Ibm> Information reproducer
US5610897A (en) * 1992-08-31 1997-03-11 Canon Kabushiki Kaisha Optical information reproducing apparatus

Also Published As

Publication number Publication date
JPH0610887B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
JPH07101523B2 (en) Magneto-optical signal reproducing device
JPH0778916B2 (en) Magneto-optical information reproducing device
JPH0731837B2 (en) Optical pickup device
JPS6145439A (en) Reading method and apparatus of optical signal
KR100282507B1 (en) An optical pickup device for a magneto-optical recording medium
JPS61198458A (en) Method for reproducing magnetooptic information
JPH0556584B2 (en)
JPH07169129A (en) Optical head
JP2790701B2 (en) Optical information reproduction method
JPH0327978B2 (en)
JPH043575B2 (en)
JPS61199252A (en) Photomagnetic recording and reproducing device
JP2862024B2 (en) Magneto-optical signal reproducing device
JP2574915B2 (en) Optical device for reproducing magneto-optical recording media
JP3095194B2 (en) Magneto-optical information reproducing device
JPS61165845A (en) Optical reproducer
JPS62124641A (en) Optical magnetic information recording and reproducing device
JPH06259790A (en) Optical pickup device
JPS63157341A (en) Magneto-optical recording/reproducing head
JPH04178941A (en) Optical information reproducer
JPS6318550A (en) Optical head for magneto-optical disk
JPS63279448A (en) Magneto-optical recording and reproducing device
JPH08221838A (en) Magneto-optical recording and reproducing device
JPH04181537A (en) Optical information reproducer
JPH05174443A (en) Magneto-optical head device