JPH03253014A - Film capacitor and manufacture thereof - Google Patents

Film capacitor and manufacture thereof

Info

Publication number
JPH03253014A
JPH03253014A JP4929390A JP4929390A JPH03253014A JP H03253014 A JPH03253014 A JP H03253014A JP 4929390 A JP4929390 A JP 4929390A JP 4929390 A JP4929390 A JP 4929390A JP H03253014 A JPH03253014 A JP H03253014A
Authority
JP
Japan
Prior art keywords
film
dielectric constant
ceramic
tantalum
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4929390A
Other languages
Japanese (ja)
Other versions
JP2786298B2 (en
Inventor
Shigeru Tanaka
滋 田中
Tomoji Oishi
知司 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2049293A priority Critical patent/JP2786298B2/en
Publication of JPH03253014A publication Critical patent/JPH03253014A/en
Application granted granted Critical
Publication of JP2786298B2 publication Critical patent/JP2786298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To attain to the higher dielectric constant of film further to the larger capacity of a film and the miniaturization of the title film capacitor using this film by the formation of ceramic in higher dielectric constant directly on a plastic film in low dielectric constant. CONSTITUTION:A polyethylene sheet 9mum thick (dielectric constant:2) is coated with water solution of tantalum ethoxide by the doctor blade process. Next, the whole surface is irradiated with the light in 254nm corresponding to the coupled energy of tantalum-ethoxide radical for about one hour to form a tantalum pentaoxide film. Besides, in order to change the film thickness, the processes of coating metallic alkoxide and said photo radiation are to be repeated. At this time, a metallic aluminum is evaporated (lug width (a) : 0.5mm) on the tantalum pentaoxide film to form a compound film comprising a metallic part 3-a ceramic part 2-a plastic film part 1. Through these procedures, an inorganic ceramic layer in high dielectric constant can be formed on an organic plastic sheet in low dielectric constant in larger capacity in the same size as that of conventional inorganic ceramic layer to be miniaturized in the same capacity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフィルムコンデンサに関し、その誘電部となる
有機高分子フィルムに形成するセラミックス膜、および
、その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a film capacitor, and more particularly to a ceramic film formed on an organic polymer film serving as a dielectric part thereof, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

ポリエチレンやポリプロピレンなどの有機高分子が主成
分であるフィルムを誘電体とし、内部電極として金属箔
や蒸着金属を使い、これらを巻いたり積層したあと、端
子電極を接続した形状をしているフィルムコンデンサは
、特に、誘電損失が小さい、絶縁抵抗が高い、などの点
から、汎用コンデンサとして優れた特徴を持っている。
A film capacitor is a film capacitor in which the dielectric is a film whose main component is an organic polymer such as polyethylene or polypropylene, metal foil or vapor-deposited metal is used as the internal electrode, and after these are rolled or laminated, terminal electrodes are connected. has excellent characteristics as a general-purpose capacitor, especially in terms of low dielectric loss and high insulation resistance.

しかし、その誘電部である有機高分子フィルムの誘電率
は、約2〜3程度と小さいもので、そのためコンデンサ
の大容量化2寸法の小型化を図るには困難があった。コ
ンデンサの大容量化・小型化を図るために、誘電層を薄
くする、という方法が考えられるが、この場合、耐電圧
の低下を招き、また製造工程上て電極の短絡などが生じ
易くなり製造歩留りという点ても有利とはいえない。
However, the dielectric constant of the organic polymer film, which is the dielectric part, is as small as about 2 to 3, which makes it difficult to increase the capacitance of the capacitor and to reduce its size by two dimensions. In order to increase the capacitance and downsize the capacitor, it is possible to make the dielectric layer thinner, but in this case, the withstand voltage decreases, and electrode short-circuits are more likely to occur during the manufacturing process, making it difficult to manufacture. It cannot be said that it is advantageous in terms of yield.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

すなわち、フィルムコンデンサに関しては、従来の技術
では前述の理由により、大容量化・小型化という点に問
題があった。
That is, with regard to film capacitors, conventional techniques have had problems in increasing the capacity and reducing the size for the reasons mentioned above.

発明者らは、フィルムコンデンサの大容量化・小型化を
達成するために、誘電体材料白身の高誘電率化に着眼し
、検討してきた。本発明の目的は、高い誘電率を持つ誘
電体フィルムを使った新規なフィルムコンデンサを提供
することであり、さらに他の目的は、その誘電体フィル
ムを製造する方法を提供することである。
In order to achieve larger capacitance and smaller size of film capacitors, the inventors have focused on and have studied increasing the dielectric constant of the white dielectric material. An object of the present invention is to provide a novel film capacitor using a dielectric film with a high dielectric constant, and a further object is to provide a method for manufacturing the dielectric film.

〔課題を解決するための手段〕[Means to solve the problem]

誘電層に用いる誘電体フィルムを高誘電率化するために
、プラスチック等の有機物に比較して数桁高い誘電率を
示すセラミックスを、誘電部を形成する電極と対向した
面に直接、数の厚さで形成させた複合体を作成した。こ
のような層状構造をしたフィルムの誘電率は、有機部分
とセラミックス部分との層厚さと、各成分の誘電率とて
決まってくるが、典型的に、誘電率が2.0  のポリ
スチレンフィルムと、誘電率2000を有するチタン酸
バリウム系セラミックスを用い、その厚さの比(d有機
物/d無機物)を4とした場合、もともとのポリスチレ
ンに較へで25%程度、誘電率は向上する。従って、こ
の構造を持つフィルムを用いることで、同一容量では2
5%、その寸法の小さいコンデンサを得ることができる
。セラミックス層の形成は、有機フィルムの片面でも両
面でも良い。この複合フィルムは単に異種材料を重ね合
わせたものと違い、セラミックスの前駆体としてアルコ
キシドという官能基を持つ溶液を用いているため、下地
の有機フィルムとの親和性が良く、有機フィルムとセラ
ミックスとが、直接、結合している。その結果、接合部
での気泡の発生などはなく、電気的特性に悪影響を与え
ることは無い。
In order to increase the dielectric constant of the dielectric film used for the dielectric layer, ceramics, which have a dielectric constant several orders of magnitude higher than organic materials such as plastics, are directly deposited several times thicker on the surface facing the electrode forming the dielectric part. A complex was created using The dielectric constant of a film with such a layered structure is determined by the layer thickness of the organic part and the ceramic part and the dielectric constant of each component, but typically a polystyrene film with a dielectric constant of 2.0 is used. When a barium titanate ceramic having a dielectric constant of 2000 is used and the thickness ratio (dorganic material/d inorganic material) is set to 4, the dielectric constant is improved by about 25% compared to the original polystyrene. Therefore, by using a film with this structure, for the same capacity, 2
5% smaller capacitors can be obtained. The ceramic layer may be formed on one or both sides of the organic film. This composite film is different from simply stacking different materials on top of each other, as it uses a solution with a functional group called alkoxide as a ceramic precursor, so it has good affinity with the underlying organic film, and the organic film and ceramics bond together. , are directly connected. As a result, no bubbles are generated at the joint, and the electrical characteristics are not adversely affected.

このようなセラミックスとプラスチック材料とを、直接
、複合させたフィルムを作る場合、技術的な障害は、品
質の良いセラミックスを得るために、通常高温(>10
00’C)の熱処理を要することである。すなわち、プ
ラスチックフィルムを下地として、それにセラミックス
粉末をポリビニルアルコールなどの有機バインダで結合
させたグリーンシートを乗せ、高温で熱処理すると、下
地は完全に分解してしまう。発明者らは鋭意検討した結
果、ゾル・ゲル法により熱処理をせずに、また仮に熱処
理を要したとしてもその温度を下地であるプラスチック
が特に影響を受けない低い温度にさせて、セラミックス
を、直接、プラスチックフィルム上に形成させる方法を
開発した。すなわち、セラミックス前駆体である金属ア
ルコキシド水溶液(Me+OR)n M e :金属元
素、R:アルキル基)をプラスチックフィルム上に塗布
する。この溶液に波長200〜300nmの紫外光を当
て、縮重合反応を起こさせアルコキシド基を分解し、膜
状の金属酸化物にする。必要に応じて、再度、光(18
4nm)を当て、膜内に残留したアルコキシド基を酸化
し、取除く。また本プロセス中で加温(<200’C)
L、化学反応を促進させることも可能である。このよう
にして得られた金Ra化物(セラミックス)は、下地の
プラスチックと一体接合され、高熱処理工程を含まない
ために下地への悪影響は全くみられない。反応に用いる
光の波長は、目的とする酸化物の金属アルコキシド中の
Me−ORの結合エネルギに対応する吸収波長を選ぶの
が最も良いが、多少はずれていても、反応時間が若干遅
くなる程度で特に大きな問題とはならない。また、得ら
れる酸化物(セラミックス)層の厚みは、−回の塗布→
光照射工程で1μm程度であるが、これは用いる金属ア
ルコキシド溶液の粘度、また、多数回この工程を繰返す
ことで調節可能である。
When creating a film that directly combines ceramics and plastic materials, the technical hurdle is that high temperatures (>10
00'C) heat treatment is required. That is, if a green sheet made of ceramic powder bound with an organic binder such as polyvinyl alcohol is placed on a plastic film as a base and then heat-treated at a high temperature, the base will completely decompose. As a result of extensive research, the inventors found that they could produce ceramics using the sol-gel method without heat treatment, and even if heat treatment was required, the temperature was kept at a low temperature that would not particularly affect the underlying plastic. We have developed a method to form it directly on plastic film. That is, a metal alkoxide aqueous solution (Me+OR)nMe: metal element, R: alkyl group), which is a ceramic precursor, is applied onto a plastic film. This solution is exposed to ultraviolet light with a wavelength of 200 to 300 nm to cause a polycondensation reaction, decomposing the alkoxide groups, and forming a film-like metal oxide. If necessary, turn on the light (18
4 nm) to oxidize and remove the alkoxide groups remaining in the film. Also heated during this process (<200'C)
L. It is also possible to promote chemical reactions. The gold-Ra compound (ceramic) thus obtained is integrally bonded to the underlying plastic, and since no high heat treatment process is involved, no adverse effects on the underlying material are observed. It is best to select the wavelength of the light used for the reaction to be the absorption wavelength that corresponds to the binding energy of Me-OR in the metal alkoxide of the target oxide, but even if it is slightly off, the reaction time will be slightly delayed. It's not a particularly big problem. Also, the thickness of the obtained oxide (ceramics) layer is - times of application →
It is about 1 μm in the light irradiation process, but this can be adjusted by adjusting the viscosity of the metal alkoxide solution used and by repeating this process many times.

以上のように、高温熱処理を必要とせずに、プラスチッ
クフィルム面に、直接、セラミックスを結合させるプロ
セスを開発したので、高誘電率の誘電体フィルムが得ら
れ、これを誘電層とする新規なフィルムコンデンサ(巻
回型、積層型)を得ることが可能になる。
As described above, we have developed a process to bond ceramics directly to the surface of a plastic film without requiring high-temperature heat treatment, resulting in a dielectric film with a high dielectric constant, and a new film using this as a dielectric layer. It becomes possible to obtain capacitors (wound type, laminated type).

本発明では、誘電体の材質としてプラスチックを取扱っ
たが、はぼ室温で直接、セラミックスを合成できる点か
ら、紙などでも良くこれは紙コンデンサとして適用可能
である。
In the present invention, plastic is used as the dielectric material, but since ceramics can be directly synthesized at room temperature, paper or the like may also be used, which can be used as a paper capacitor.

〔作用〕[Effect]

母材である低誘電率プラスチックフィルム面に、直接、
高誘電率のセラミックスを形成させることで、フィルム
の高誘電率化が達成され、従って、このフィルムを誘電
層として用いたコンデンサは大容量化・小型化が可能と
なる。このようなフィルムを製造する際、下地(プラス
チック)に塗布した金属アルコキシド溶液に光を当てて
無機セラミックスとするが、光を当てることによって低
温(はぼ室温)で金属アルコキシドの分解・縮重合反応
が促進され、下地であるプラスチックの方には悪影響を
及ぼさない。従って品質の良い誘電層用のフィルムを得
ることが可能となる。
Directly on the surface of the low dielectric constant plastic film that is the base material.
By forming a ceramic with a high dielectric constant, a high dielectric constant of the film can be achieved, and therefore, a capacitor using this film as a dielectric layer can be made larger in capacity and smaller in size. When producing such a film, a metal alkoxide solution coated on a base (plastic) is exposed to light to create inorganic ceramics, but the decomposition and condensation reactions of the metal alkoxide occur at low temperatures (nearly room temperature). is promoted, and the underlying plastic is not adversely affected. Therefore, it is possible to obtain a film for a dielectric layer of good quality.

〔実施例〕〔Example〕

以下、本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.

〈実施例1〉 誘電層の厚みが10μmになるように、下地のプラスチ
ックフィルムの厚さ(dl)とセラミックス部分の厚さ
(d2)との比率を変えた有機−無機シートを用意した
。作成法の例を示す。
<Example 1> Organic-inorganic sheets were prepared in which the ratio of the thickness (dl) of the underlying plastic film to the thickness (d2) of the ceramic portion was changed so that the thickness of the dielectric layer was 10 μm. An example of how to create it is shown below.

厚さ9μmのポリエチレンシート(誘電率:2)に、タ
ンタルエトキシド(Ta+○C2H3L))の水溶液(
粘性: 10000cpsに調節したもの)を公知のド
クタプレート法により塗布した。これにタンタル−エト
キシ基の結合エネルギに対応する254nmの光を約−
時間照射し、均一な厚み(1μm)をもつ五酸化タンタ
ル(Ta205)膜を形成した。膜厚を変えるときは、
金属アルコキシド塗布→光照射工程をくり返す。このフ
ィルムの五酸化タンタル上に金属アルミニウムを蒸着(
耳幅:0.5mn)L、第1図に示す金属−セラミック
ス−プラスチック複合フィルムを得た。このようなフィ
ルムを二枚作成し、これを重ね合せ、巻取った。こうし
て得られた円筒状のものを加圧した後、両端にアルミニ
ウムでメタリコンを施し、リード線をはんだづけした。
An aqueous solution of tantalum ethoxide (Ta+○C2H3L) (
Viscosity: adjusted to 10,000 cps) was coated by a known doctor plate method. To this, light of 254 nm corresponding to the bond energy of the tantalum-ethoxy group is applied to about -
The irradiation was carried out for a period of time to form a tantalum pentoxide (Ta205) film having a uniform thickness (1 μm). When changing the film thickness,
Repeat the metal alkoxide coating → light irradiation process. Metallic aluminum is deposited on the tantalum pentoxide of this film (
A metal-ceramic-plastic composite film shown in FIG. 1 was obtained. Two such films were made, overlapped, and rolled up. After pressurizing the cylindrical object thus obtained, metallized aluminum was applied to both ends, and lead wires were soldered.

この素子部に約80℃で樹脂モールドを行ない、巻回型
のフィルムコンデンサを作成した。同様に、厚さ10μ
mのポリエチレンシートを用い、五酸化タンタルを形成
せずに有機フィルム単独のフィルムコンデンサも比較例
として作成した。得られたコンデンサの緒特性を表1に
示す。
This element portion was resin molded at about 80° C. to produce a wound type film capacitor. Similarly, the thickness is 10μ
A film capacitor using only an organic film without forming tantalum pentoxide was also created as a comparative example using a polyethylene sheet of 1.0 m. Table 1 shows the characteristics of the obtained capacitor.

表に見られるように、ポリエチレンという有機プラスチ
ックに、誘電率の高い五酸化タンタルを、直接、つけた
複合シートを用いることで、同一寸法のコンデンサを作
った場合、その容量をalt/d2比率を変えると二〜
入側向上させることができる。このような複合シートに
より、絶縁破壊電圧も、同時に高くなり製品としては好
ましい傾向を示す。抵抗値や誘電損失は比較例と変わら
ず、高レベルを維持している。
As shown in the table, if a capacitor of the same size is made by using a composite sheet in which tantalum pentoxide, which has a high dielectric constant, is directly attached to an organic plastic called polyethylene, the capacitance will be increased by the alt/d2 ratio. If you change it, it will be two~
Entry side can be improved. With such a composite sheet, the dielectric breakdown voltage also increases, which is a desirable tendency as a product. The resistance value and dielectric loss are unchanged from the comparative example and remain at a high level.

本発明により大容量化が達成されたのは、誘電層として
用いるシートの誘電率が高くなったためであり、従って
、従来と同し容量のコンデンサでもシートを巻く長さを
短くでき、コンデンサ素子を小型化できる。
The large capacitance achieved by the present invention is due to the increased dielectric constant of the sheet used as the dielectric layer.Therefore, even for capacitors with the same capacity as conventional capacitors, the winding length of the sheet can be shortened, and the capacitor element can be Can be made smaller.

〈実施例2〉 厚さ2anのアルミニウム板(3an角)に、n−ヘキ
サンで溶解したポリスチレン融液を使い、スピンコード
法によりポリスチレン膜を形成した。
<Example 2> A polystyrene film was formed on a 2 ann thick aluminum plate (3 ann square) by a spin cord method using a polystyrene melt dissolved in n-hexane.

充分に乾燥させた後、この膜上に、酢酸バリウム(Ba
(○○CCH3)2)とチタンエトキシド(T1(○C
2H3)4)との等量混合エタノール溶液(粘性: 1
00〜1000cps)をスピンコードした。次に、2
54nmの光を一時間照射し、さらに184nmの光を
十分量照射し、アルコキシド基の分解、酸化を促進させ
る。こうして得られたチタン酸バリウム(B a T 
i○3)膜に、アルミニウムを蒸着して電極(3φ)と
した。こうして得られた試料の容量を測定することによ
り誘電率を求めた。また比較例としてチタン酸バリウム
を形成しない、ポリスチレン単独のサンプルも用意した
。ポリスチレンの厚み(dl)、チタン酸バリウムの厚
み(dl)を変えて作成した試料の誘電率を表2に示す
After sufficiently drying, barium acetate (Ba
(○○CCH3)2) and titanium ethoxide (T1(○C
2H3)4) Ethanol solution mixed in equal amounts with 4) (viscosity: 1
00-1000 cps) was spin-coded. Next, 2
Light of 54 nm is irradiated for one hour, and a sufficient amount of light of 184 nm is further irradiated to promote decomposition and oxidation of alkoxide groups. The barium titanate (B a T
i○3) Aluminum was vapor-deposited on the film to form an electrode (3φ). The dielectric constant was determined by measuring the capacitance of the sample thus obtained. In addition, as a comparative example, a sample made of polystyrene alone without forming barium titanate was also prepared. Table 2 shows the dielectric constants of samples prepared by changing the thickness (dl) of polystyrene and the thickness (dl) of barium titanate.

表  2 *誘電率は50Hzで測定 表2に見られるように、ポリスチレン単独の誘電率にく
らへて、本発明によりチタン酸バリウムを形成させた試
料では、誘電率がポリスチレン単体よりも格段に向上し
た。
Table 2 *The dielectric constant was measured at 50 Hz As shown in Table 2, the dielectric constant of the sample formed with barium titanate according to the present invention is much higher than that of polystyrene alone, compared to the dielectric constant of polystyrene alone. did.

〔発明の効果〕〔Effect of the invention〕

本発明では、誘電率の低い有機プラスチックシートに、
直接、高誘電率の無機セラミックス層を形成させること
ができるので、シートの誘電率がニないし入側高くでき
、従って、このような複合シートを用いたフィルムコン
デンサは、従来品と同一寸法では大容量化9等容量では
小型化が達成でき、産業上に及ぼす効果は大なるものが
ある。
In the present invention, an organic plastic sheet with a low dielectric constant,
Since it is possible to directly form an inorganic ceramic layer with a high dielectric constant, the dielectric constant of the sheet can be made high on the dielectric or inlet side.Therefore, a film capacitor using such a composite sheet is larger than conventional products with the same dimensions. If the capacity is increased to 9, it is possible to achieve miniaturization, which has a great industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の金属−セラミック−プラス
チックフィルムの断面図である。 1・・・プラスチックフィルム部(ポリエチレン)、2
・・セラミックス部(五酸化タンタル)、3 金属(蒸
着)部(アルミニウム)。 第1図
FIG. 1 is a cross-sectional view of a metal-ceramic-plastic film according to an embodiment of the present invention. 1...Plastic film part (polyethylene), 2
...Ceramics part (tantalum pentoxide), 3 Metal (evaporation) part (aluminum). Figure 1

Claims (4)

【特許請求の範囲】[Claims] 1.有機高分子材料からなる誘電部を持つフイルコンデ
ンサにおいて、 前記誘電部の有機高分子フィルムの両面又は片面にセラ
ミックス膜が形成されていることを特徴とするフィルム
コンデンサ。
1. 1. A film capacitor having a dielectric part made of an organic polymer material, characterized in that a ceramic film is formed on both sides or one side of the organic polymer film of the dielectric part.
2.第1項記載のフィルムコンデンサは、セラミックス
膜が形成された有機高分子フィルムを巻いて誘電層とし
ているフィルムコンデンサ。
2. The film capacitor described in item 1 is a film capacitor in which an organic polymer film on which a ceramic film is formed is wound as a dielectric layer.
3.第1項記載のフィルムコンデンサは、セラミックス
膜が形成された有機高分子フィルムを積層しているフィ
ルムコンデンサ。
3. The film capacitor described in item 1 is a film capacitor in which organic polymer films on which ceramic films are formed are laminated.
4.請求項1,2または3に記載のフィルムコンデンサ
において誘電部のセラミックス部は、有機高分子フィル
ムに金属アルコキシド溶液をつけ、これに光を当て、金
属アルコキシドの縮重合反応させる工程により得られる
フィルムコンデンサの製造方法。
4. In the film capacitor according to claim 1, 2 or 3, the ceramic part of the dielectric part is a film capacitor obtained by applying a metal alkoxide solution to an organic polymer film and exposing it to light to cause a condensation polymerization reaction of the metal alkoxide. manufacturing method.
JP2049293A 1990-03-02 1990-03-02 Film capacitor and method of manufacturing the same Expired - Fee Related JP2786298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2049293A JP2786298B2 (en) 1990-03-02 1990-03-02 Film capacitor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2049293A JP2786298B2 (en) 1990-03-02 1990-03-02 Film capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03253014A true JPH03253014A (en) 1991-11-12
JP2786298B2 JP2786298B2 (en) 1998-08-13

Family

ID=12826867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2049293A Expired - Fee Related JP2786298B2 (en) 1990-03-02 1990-03-02 Film capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2786298B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9852846B2 (en) 2015-02-26 2017-12-26 Capacitor Sciences Incorporated Self-healing capacitor and methods of production thereof
US9899150B2 (en) 2014-05-12 2018-02-20 Capacitor Sciences Incorporated Energy storage device and method of production thereof
US9916931B2 (en) 2014-11-04 2018-03-13 Capacitor Science Incorporated Energy storage devices and methods of production thereof
US9932358B2 (en) 2015-05-21 2018-04-03 Capacitor Science Incorporated Energy storage molecular material, crystal dielectric layer and capacitor
US9941051B2 (en) 2015-06-26 2018-04-10 Capactor Sciences Incorporated Coiled capacitor
US9978517B2 (en) 2016-04-04 2018-05-22 Capacitor Sciences Incorporated Electro-polarizable compound and capacitor
US10026553B2 (en) 2015-10-21 2018-07-17 Capacitor Sciences Incorporated Organic compound, crystal dielectric layer and capacitor
US10153087B2 (en) 2016-04-04 2018-12-11 Capacitor Sciences Incorporated Electro-polarizable compound and capacitor
US10305295B2 (en) 2016-02-12 2019-05-28 Capacitor Sciences Incorporated Energy storage cell, capacitive energy storage module, and capacitive energy storage system
US10340082B2 (en) 2015-05-12 2019-07-02 Capacitor Sciences Incorporated Capacitor and method of production thereof
US10347423B2 (en) 2014-05-12 2019-07-09 Capacitor Sciences Incorporated Solid multilayer structure as semiproduct for meta-capacitor
US10395841B2 (en) 2016-12-02 2019-08-27 Capacitor Sciences Incorporated Multilayered electrode and film energy storage device
JP2020004743A (en) * 2018-06-25 2020-01-09 マシン・テクノロジー株式会社 Film material for film capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149711A (en) * 1980-04-22 1981-11-19 Unitika Ltd High dielectric composite film
JPS63216323A (en) * 1987-03-05 1988-09-08 松下電器産業株式会社 Metallized plastic film capacitor
JPS63260122A (en) * 1987-04-17 1988-10-27 日本特殊陶業株式会社 Manufacture of laminated ceramic element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149711A (en) * 1980-04-22 1981-11-19 Unitika Ltd High dielectric composite film
JPS63216323A (en) * 1987-03-05 1988-09-08 松下電器産業株式会社 Metallized plastic film capacitor
JPS63260122A (en) * 1987-04-17 1988-10-27 日本特殊陶業株式会社 Manufacture of laminated ceramic element

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899150B2 (en) 2014-05-12 2018-02-20 Capacitor Sciences Incorporated Energy storage device and method of production thereof
US10685782B2 (en) 2014-05-12 2020-06-16 Capacitor Sciences Incorporated Capacitor and method of production thereof
US10347424B2 (en) 2014-05-12 2019-07-09 Capacitor Sciences Incorporated Energy storage device and method of production thereof
US10347423B2 (en) 2014-05-12 2019-07-09 Capacitor Sciences Incorporated Solid multilayer structure as semiproduct for meta-capacitor
US9916931B2 (en) 2014-11-04 2018-03-13 Capacitor Science Incorporated Energy storage devices and methods of production thereof
US9852846B2 (en) 2015-02-26 2017-12-26 Capacitor Sciences Incorporated Self-healing capacitor and methods of production thereof
US10340082B2 (en) 2015-05-12 2019-07-02 Capacitor Sciences Incorporated Capacitor and method of production thereof
US9932358B2 (en) 2015-05-21 2018-04-03 Capacitor Science Incorporated Energy storage molecular material, crystal dielectric layer and capacitor
US10672561B2 (en) 2015-06-26 2020-06-02 Capacitor Sciences Incorporated Coiled capacitor
US9941051B2 (en) 2015-06-26 2018-04-10 Capactor Sciences Incorporated Coiled capacitor
US10854386B2 (en) 2015-06-26 2020-12-01 Capacitor Sciences Incorporated Coiled capacitor
US10026553B2 (en) 2015-10-21 2018-07-17 Capacitor Sciences Incorporated Organic compound, crystal dielectric layer and capacitor
US10305295B2 (en) 2016-02-12 2019-05-28 Capacitor Sciences Incorporated Energy storage cell, capacitive energy storage module, and capacitive energy storage system
US10672560B2 (en) 2016-04-04 2020-06-02 Capacitor Sciences Incorporated Electro-polarizable compound and capacitor
US10153087B2 (en) 2016-04-04 2018-12-11 Capacitor Sciences Incorporated Electro-polarizable compound and capacitor
US10707019B2 (en) 2016-04-04 2020-07-07 Capacitor Science Incorporated Electro-polarizable compound and capacitor
US9978517B2 (en) 2016-04-04 2018-05-22 Capacitor Sciences Incorporated Electro-polarizable compound and capacitor
US10395841B2 (en) 2016-12-02 2019-08-27 Capacitor Sciences Incorporated Multilayered electrode and film energy storage device
JP2020004743A (en) * 2018-06-25 2020-01-09 マシン・テクノロジー株式会社 Film material for film capacitor

Also Published As

Publication number Publication date
JP2786298B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
US5623724A (en) High power capacitor
JPH03253014A (en) Film capacitor and manufacture thereof
KR20050059995A (en) Method for manufacturing multilayered ceramic capacitor by spin coating and multilayered ceramic capacitor
JPH034512A (en) Electrode for capacitor
US4875136A (en) Ceramic capacitor and method of manufacturing the same
JPH03109713A (en) Solid-state capacitor
CN101139201A (en) Composite ferroelectric thin film and preparation method thereof
JPS6159714A (en) Composite dielectric capacitor
Du et al. Formation of Al 2 O 3–BaTiO 3 nanocomposite oxide films on etched aluminum foil by sol–gel coating and anodizing
JPH03280414A (en) Porcelain electronic part
JPH0338008A (en) Thin-film capacitor and manufacture thereof
JP2004259500A (en) Electrode paste, intermediate solution for electrode paste, and manufacturing method of ceramic electronic component
JPH01253113A (en) Thin film-shaped dielectric substance and manufacture thereof
JPH01175217A (en) Dielectric thin-film laminated body for capacitor
JPH08264381A (en) Laminated capacitor and its manufacture
JPH0645183A (en) Palladium paste and manufacture of multilayer chip capacitor
JPS63216323A (en) Metallized plastic film capacitor
JPH0782493A (en) Organic-inorganic fused type dielectric material and its production
JPH08186058A (en) Production of multilayer capacitor
JP2650387B2 (en) Manufacturing method of film capacitor
JPS6097614A (en) Method of producing film condenser
JPS6386413A (en) Manufacture of thin film dielectric material for capacitor
JPS59917A (en) Film condenser
JP2000077274A (en) Capacitor and manufacture thereof
JPH0380512A (en) Laminated type silicon oxide thin film capacitor and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees