JPH03109713A - Solid-state capacitor - Google Patents

Solid-state capacitor

Info

Publication number
JPH03109713A
JPH03109713A JP24836089A JP24836089A JPH03109713A JP H03109713 A JPH03109713 A JP H03109713A JP 24836089 A JP24836089 A JP 24836089A JP 24836089 A JP24836089 A JP 24836089A JP H03109713 A JPH03109713 A JP H03109713A
Authority
JP
Japan
Prior art keywords
capacitor
polypyrrole
base material
solid
capacitor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24836089A
Other languages
Japanese (ja)
Inventor
Masaharu Sato
正春 佐藤
Yukiomi Tanaka
征臣 田中
Kunihiko Imanishi
邦彦 今西
Yutaka Yasuda
裕 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP24836089A priority Critical patent/JPH03109713A/en
Publication of JPH03109713A publication Critical patent/JPH03109713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To improve high temperature durability by specifying a ratio of oxygen permeability of a sheathing base material for sheathing a capacitor element in which part of electrodes for holding a dielectric material is polypyrrole to an average thickness. CONSTITUTION:A capacitor element 1 in which at least part of electrodes for holding a dielectric material is polypyrrole, and a sheathing base material 2 for sheathing the element 1 are provided. In this case, the material 2 has 0.2 or less of P/t, where P (unit, 10<-10>cm<3>.cm/cm<2>.sec.cmHg) is oxygen permeability at 105 deg.C of the base material and t (unit, cm) is average thickness from the surface of the sheath to the element 1. Thus, the permeability of the material and the thickness of the material are controlled to suppress influence of oxygen to the polypyrrole for forming at least part of the electrodes. Accordingly, excellent high frequency characteristic and high temperature durability are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリピロールを電極の少なくとも一部とする固
体コンデンサに利用され、特に、低酸素透過性の外装を
具備した高周波特性に優れ、かつ高温耐久性に優れた固
体コンデンサに関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is applicable to a solid capacitor having polypyrrole as at least a part of the electrode, and is particularly applicable to a solid capacitor having a low oxygen permeability exterior, excellent high frequency characteristics, and high temperature resistance. Concerning solid capacitors with excellent durability.

〔概要〕〔overview〕

本発明は、誘電体をはさむ電極の少なくとも一部がポリ
ピロールであるコンデンサ素子を、外装基材で外装した
固体コンデンサにふいて、前記外装基材は、その105
℃での酸素透過率をP(単位、10−”cm3・cm/
 cm2・sec−cmllg)、平均の厚さをt (
単位、cm)として、P/tが1.2以下である特性を
有するようにすることにより、高温耐久性の向上を図っ
たものである。
The present invention provides a solid capacitor in which a capacitor element in which at least a portion of electrodes sandwiching a dielectric material is made of polypyrrole is packaged with an exterior base material, and the exterior base material is
The oxygen permeability at °C is P (unit, 10-”cm3・cm/
cm2・sec-cmllg), and the average thickness is t (
The high temperature durability is improved by having a characteristic that P/t (unit: cm) is 1.2 or less.

〔従来の技術〕[Conventional technology]

従来、固体コンデンサにはタンタルやアルミニウム等の
皮膜形成金属の酸化皮膜を誘電体とし、二酸化マンガン
や7.7.8.8−テトラシアノキノジメタン(TCN
Q)錯塩等を電極の一部とするものが開発されているが
、二酸化マンガンを電極の一部とするものでは、その電
気伝導度が小さいためにコンデンサのESR(等個直列
抵抗)が大きく、高周波特性が不十分であり、また、T
CNQ錯塩を電極の一部とするものでは高温で融解する
ために使用できないなどの欠点があった。そこで、これ
らの改善を目的として、ポリピロール等の導電性高分子
を電極の一部として使用することが提案されている(例
えば、特開昭60−37114号公報)。
Conventionally, solid capacitors use oxide films of film-forming metals such as tantalum and aluminum as dielectrics, and use manganese dioxide and 7.7.8.8-tetracyanoquinodimethane (TCN) as dielectrics.
Q) Capacitors that use complex salts as part of the electrode have been developed, but those that use manganese dioxide as part of the electrode have a low electrical conductivity, so the ESR (equal series resistance) of the capacitor is large. , the high frequency characteristics are insufficient, and T
Electrodes in which CNQ complex salt is part of the electrode have drawbacks such as being unusable because they melt at high temperatures. Therefore, for the purpose of improving these, it has been proposed to use a conductive polymer such as polypyrrole as a part of the electrode (for example, Japanese Patent Laid-Open No. 60-37114).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記のポリピロールを電極の一部とする固体コンデンサ
は、しかしながら、100℃以上の空気中に保持した場
合に、ESRが時間の経過とともに徐々に増大し、それ
に伴って高周波特性が低下する問題点があった。
However, the above-mentioned solid capacitor that uses polypyrrole as part of its electrodes has the problem that when kept in air at a temperature of 100°C or higher, the ESR gradually increases over time and the high frequency characteristics deteriorate accordingly. there were.

本発明の目的は、前記の課題を解消することにより、1
00℃以上の空気中に保持した場合でも、ESRが増大
することのない高温耐久性に優れた固体コンデンサを提
供することにある。
The purpose of the present invention is to solve the above-mentioned problems by:
It is an object of the present invention to provide a solid capacitor that has excellent high-temperature durability and does not have an increased ESR even when kept in air at a temperature of 00° C. or higher.

〔課題を解決するための手段〕 本発明者らは、前記の課題を解決するために種々の検討
を行った。その結果、特定の外装を具備したコンデンサ
が高周波特性に優れ、かつ高温耐久性にも優れているこ
とを見いだし、本発明に至った。
[Means for Solving the Problems] The present inventors have conducted various studies in order to solve the above problems. As a result, it was discovered that a capacitor equipped with a specific exterior has excellent high frequency characteristics and excellent high temperature durability, leading to the present invention.

すなわち、本発明は、誘電体をはさむ電極の少なくとも
一部がポリピロールであるコンデンサ素子と、このコン
デンサ素子を外装する外装基材とを備えた固体コンデン
サにおいて、前記外装基材は、この外装基材の105℃
での酸素透過率をP(単位、IQ−”c+++3・cm
/ cm’  ・sec−cmHg)とし、外装表面か
ら前記コンデンサ素子までの平均の厚さをt (単位、
cm)として、P/tが1.2以下である特性を有する
ことを特徴とする。
That is, the present invention provides a solid capacitor comprising a capacitor element in which at least a portion of electrodes sandwiching a dielectric material is made of polypyrrole, and an exterior base material that exteriorizes this capacitor element, wherein the exterior base material is 105℃
The oxygen permeability at
/ cm' ・sec-cmHg), and the average thickness from the exterior surface to the capacitor element is t (unit,
cm), P/t is 1.2 or less.

第1図は本発明の固体コンデンサの一例の構成を示す模
式的断面図である。誘電体をはさむ電極の一部が少なく
ともポリピロールであるコンデンサ素子1と、外装基材
2と、リード3および4とを含んでいる。
FIG. 1 is a schematic cross-sectional view showing the structure of an example of a solid capacitor of the present invention. The capacitor element 1 includes a capacitor element 1 in which at least a portion of electrodes sandwiching a dielectric material is made of polypyrrole, an exterior base material 2, and leads 3 and 4.

本発明において、誘電体とは電気絶縁性の材料であり、
例えば、タンタル、アルミニウム、ニオブ、チタン、ジ
ルコニウム、マグネシウム、亜鉛、ビスマス、ケイ素、
およびハフニウム等の皮膜形成金属の酸化物、ポリスチ
レンテレフタレート、ポリエチレンおよびポリカーボネ
ート等の高分子化合物、チタン酸バリウム、チタン酸ス
トロンチウムおよびチタン酸マグネシウム等のセラミッ
クス、ガラスおよびマイカ等が挙げられる。
In the present invention, a dielectric is an electrically insulating material,
For example, tantalum, aluminum, niobium, titanium, zirconium, magnesium, zinc, bismuth, silicon,
and oxides of film-forming metals such as hafnium, polymer compounds such as polystyrene terephthalate, polyethylene and polycarbonate, ceramics such as barium titanate, strontium titanate and magnesium titanate, glass and mica.

本発明においてポリピロールとは、ピロールまたはビロ
ール誘導体を繰り返し単位とする重合体で、ドーパント
として電子吸引性の化合物を含有してなる電気伝導度I
 Xl0−’S/cm以上のものである。
In the present invention, polypyrrole is a polymer having repeating units of pyrrole or pyrrole derivatives, and contains an electron-withdrawing compound as a dopant.
Xl0-'S/cm or more.

本発明における誘電体をはさむ電極の少なくとも一部が
ポリピロールであるコンデンサ素子1とは、前記の誘電
体に接触または近接する電極の少なくとも一部がポリピ
ロールであるものであり、その構成としては、ポリピロ
ールをそのまま電極リードとしたもの、ポリピロール電
極の外面に導電性カーボン層を形成したもの、さらに銀
ペーストおよびハンダ等を用いてリードを接続したもの
などがある。
In the present invention, the capacitor element 1 in which at least a part of the electrodes sandwiching a dielectric material is made of polypyrrole is one in which at least a part of the electrodes in contact with or close to the dielectric material is made of polypyrrole. There are some types in which the polypyrrole electrode is used as an electrode lead as is, one in which a conductive carbon layer is formed on the outer surface of the polypyrrole electrode, and one in which the lead is connected using silver paste, solder, etc.

本発明者らは、前記のコンデンサ素子を種々の温度に加
熱し、経時的な特性の変化、およびその電極を構成する
ポリピロール自体の物性変化を検討した。その結果、ポ
リピロールの電気伝導度が100℃以上に加熱すると徐
々に低下し、それに伴ってコンデンサ素子のESRが増
大して高周波特性が低下すること、およびポリピロール
の電気伝導度が加熱雰囲気中の酸素濃度1vol、%を
境に、それ以下の濃度では長時間にわたって変化せず、
それ以上の濃度では徐々に低下することを見出した。
The present inventors heated the capacitor element described above to various temperatures and examined changes in characteristics over time and changes in physical properties of the polypyrrole itself constituting the electrode. As a result, the electrical conductivity of polypyrrole gradually decreases when heated above 100°C, and the ESR of the capacitor element increases accordingly, resulting in a decrease in high frequency characteristics. With a concentration of 1 vol, %, it does not change for a long time at lower concentrations,
It was found that the concentration gradually decreases at higher concentrations.

そこで、次に、ポリピロールを電極の一部とするコンデ
ンサ素子を種々の酸素透過率を有する外装基材で外装し
、105℃でのESRの変化を測定した。この場合、E
SRの変化は外装基材の105℃での酸素透過率Pと平
均の厚さtとに依存し、特に、酸素透過率を平均の膜厚
で除した値、すなわちP/tをパラメータとすると、外
装基材の種類によらず一定時間後のESRが一義的に決
まることが判明した。
Therefore, next, capacitor elements having polypyrrole as part of the electrode were packaged with exterior base materials having various oxygen permeability, and changes in ESR at 105° C. were measured. In this case, E
The change in SR depends on the oxygen permeability P at 105°C and the average thickness t of the exterior base material, and in particular, when the value obtained by dividing the oxygen permeability by the average film thickness, that is, P/t, is taken as a parameter. It was found that the ESR after a certain period of time is uniquely determined regardless of the type of exterior base material.

以下、図面に従って本発明のコンデンサ素子を外装した
固定コンデンサを説明する。第2図はタンタル微粉焼結
体の電解酸化皮膜を誘電体とし、ドデシルベンゼンスル
ホン酸をドーパントに含むポリピロールを陽極とする静
電容量2μFのコンデンサ素子を、外装基材として種々
の有機高分子化合物で外装し、空気中105℃で100
時間加熱処理した後のP/tと共振周波数でのESRの
関係である。第2図から明らかな通り、外装基材のP/
tが小さい場合はすべての外装基材でESRは変化しな
いが、P/tが特定の値を越えるとこれに依存してES
Rが増大する。この値は酸素透過率Pの単位を10−1
0−1O・cm/cm2・sec−cInHgテ、また
外装表面からコンデンサ素子1までの平均の厚さtの単
位をcmで表示すと1.2となる。
Hereinafter, a fixed capacitor equipped with a capacitor element according to the present invention will be explained according to the drawings. Figure 2 shows a capacitor element with a capacitance of 2 μF using an electrolytic oxidation film of tantalum fine powder sintered body as a dielectric and a polypyrrole containing dodecylbenzenesulfonic acid as a dopant as an anode, and various organic polymer compounds as an exterior base material. 100℃ at 105℃ in air.
This is the relationship between P/t and ESR at the resonant frequency after time heat treatment. As is clear from Figure 2, the P/
When t is small, ESR does not change for all exterior base materials, but when P/t exceeds a certain value, ESR changes depending on this.
R increases. This value has the unit of oxygen permeability P as 10-1
0-1 O.cm/cm.sup.2.sec-cInHg, and the average thickness t from the exterior surface to the capacitor element 1 is 1.2 when expressed in cm.

従って、外装基材の105℃での酸素透過率をP(単位
、IQ−10cm3・cm/ cm2・sec  −c
mHg) とし、外装表面からコンデンサ素子lまでの
外装基材の平均の厚さをt〈単、cm)としてP/tが
1.2以下となるように形成された本発明の固体コンデ
ンサは、加熱によるF、SRの変化がないために高温耐
久性が優れている。
Therefore, the oxygen permeability of the exterior base material at 105°C is P (unit, IQ-10cm3・cm/cm2・sec -c
mHg), and the average thickness of the exterior base material from the exterior surface to the capacitor element l is t (cm), and the solid capacitor of the present invention is formed so that P/t is 1.2 or less: It has excellent high-temperature durability because there is no change in F and SR due to heating.

本発明において、酸素透過率は圧力法および同圧酸素電
極法等の通常のガス透過率測定法によって測定される。
In the present invention, oxygen permeability is measured by conventional gas permeability measurement methods such as pressure method and isobaric oxygen electrode method.

また、前述のように本発明の固体コンデンサはP/tが
1.2以下であるように形成されることを特徴とするの
で、外装基材としては通常のコンデンサの外装に使用さ
れるエポキシ樹脂、シリコン樹脂等を始め、ポリエチレ
ンテレフタレート、ポリスチレンおよびポリ塩化ビニリ
デン等の汎用高分子、ポリフェニレンサルファイド、ポ
リエーテルエーテルケトン等のエンジニアリングプラス
チック等の耐熱性に優れた有機高分子化合物や、ガラス
およびマイカ等の無機高分子化合物ならびに金属等が単
独または組み合わせて使用でき、各々の酸素透過率に応
じて、前記条件を満足するように外装基材の平均厚さを
制御すればよい。前記の中でも、有機高分子化合物を用
いるのが成形性等の点から好ましい。
Furthermore, as mentioned above, since the solid capacitor of the present invention is characterized in that it is formed so that P/t is 1.2 or less, the exterior base material is an epoxy resin used for the exterior of ordinary capacitors. , silicone resins, general-purpose polymers such as polyethylene terephthalate, polystyrene, and polyvinylidene chloride, organic polymer compounds with excellent heat resistance such as engineering plastics such as polyphenylene sulfide, polyether ether ketone, and glass and mica. Inorganic polymer compounds, metals, etc. can be used alone or in combination, and the average thickness of the exterior base material may be controlled according to the oxygen permeability of each so as to satisfy the above conditions. Among the above, it is preferable to use organic polymer compounds from the viewpoint of moldability and the like.

〔作用〕[Effect]

本発明によれば、外装基材の酸素透過率と外装基材の平
均厚さを制御して、電極の少なくとも一部を構成するポ
リピロールに対する酸素の影響を抑えるので、高周波特
性に優れた固体コンデンサであって、しかも高温耐久性
にも優れた固体コンデンサを提供できる。
According to the present invention, the oxygen permeability of the exterior base material and the average thickness of the exterior base material are controlled to suppress the influence of oxygen on the polypyrrole that constitutes at least a portion of the electrode, so the solid capacitor has excellent high frequency characteristics. Moreover, it is possible to provide a solid capacitor with excellent high-temperature durability.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を具体的に説明するが、本
発明はこれら実施例にのみ限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited only to these Examples.

実施例1 直径5mm、厚さ0.8mmの円板状のタンタル微粉焼
結体ペレット(空隙率50%)を硝酸水溶液中で100
vで陽極酸化し、洗浄および乾燥して、微粉表面が酸化
タンタル誘電体で被覆されたペレットを得た。このペレ
ットの硝酸水溶液中で測定した静電容量は2μFであっ
た。次に、このペレットを25wt%ドデシルベルベン
ゼンスルホン酸−鉄(I)塩−1,5wt%ピロール混
合メタノール溶液に一75℃で浸漬した後、空気中25
℃で1時間ピロールの重合を行い、表面から銀ペースト
を用いてリードを引き出し、ポリピロールを電極の一部
とする固体コンデンサ素子を得た。このコンデンサ素子
のI MHzでのESRは90mΩであった。
Example 1 Disc-shaped fine tantalum powder sintered pellets (porosity 50%) with a diameter of 5 mm and a thickness of 0.8 mm were dissolved in a nitric acid aqueous solution at a temperature of 100%.
The pellets were anodized with V, washed and dried to obtain pellets whose fine powder surface was coated with a tantalum oxide dielectric. The capacitance of this pellet measured in a nitric acid aqueous solution was 2 μF. Next, the pellets were immersed in a 25 wt% dodecylberbenzenesulfonic acid-iron(I) salt-1,5 wt% pyrrole mixed methanol solution at -75°C, and then 25 wt% in air.
Pyrrole was polymerized at ℃ for 1 hour, and leads were drawn out from the surface using silver paste to obtain a solid capacitor element having polypyrrole as part of the electrode. The ESR of this capacitor element at I MHz was 90 mΩ.

前記のコンデンサ素子を、ポリ塩化ビニリデンエマルジ
ョンに繰り返し浸漬、乾燥エージングして、平均厚さ1
mm、1.5舗および2mmのポリ塩化ビニリデンで外
装されたコンデンサを得た。外装基材であるポリ塩化ビ
ニリデンの105℃での酸素透過率を圧力法で測定した
ところ、0.11 Xl0−”cm3  °cm/ c
m”  −5ec  −cmt(gであった。そして、
P/tはそれぞれ1.10.0.73および0.55で
あった。
The capacitor element described above was repeatedly immersed in polyvinylidene chloride emulsion, dried and aged to an average thickness of 1
Capacitors packaged with polyvinylidene chloride of 1.5 mm, 1.5 mm and 2 mm were obtained. When the oxygen permeability of polyvinylidene chloride, which is the exterior base material, at 105°C was measured using a pressure method, it was 0.11 Xl0-”cm3 °cm/c.
m"-5ec-cmt (g. And,
P/t was 1.10.0.73 and 0.55, respectively.

得られた固体コンデンサを空気中、105℃で100時
間加熱処理し、I MHzでのESRを測定した。
The obtained solid capacitor was heat-treated in air at 105° C. for 100 hours, and the ESR at I MHz was measured.

結果を表1にまとめて示したが、試料のESRはすべて
加熱処理前と同レベルであり1.高温耐久性に優れた固
体コンデンサであった。
The results are summarized in Table 1, and the ESR of all samples was at the same level as before heat treatment. It was a solid capacitor with excellent high-temperature durability.

比較例1 実施例1のコンデンサ素子を用いて、実施例1のポリ塩
化ビニリデンエマルジョンに繰り返し浸漬、乾Hエージ
ングして、平均厚さ0.4mm、  0.6[[1mお
よびQ、3mmのポリ塩化ビニリデンで外装したコンデ
ンサを得た。これら外装基材のP/tはそれぞれ2.7
5.1.83および1.38  であった。
Comparative Example 1 Using the capacitor element of Example 1, it was repeatedly dipped in the polyvinylidene chloride emulsion of Example 1 and dried H-aged to obtain a polyurethane material with an average thickness of 0.4 mm and 0.6 [1 m and Q, 3 mm. A capacitor coated with vinylidene chloride was obtained. The P/t of each of these exterior base materials is 2.7
5.1.83 and 1.38.

実施例1と同様に、得られた固体コンデンサを加熱処理
し、I MHzでのESRを測定した。結果を表1に実
施例1と併せて示したが、試料のESRはすべて加熱処
理前より増大し、高温耐久性の劣った固体コンデンサで
あった。
In the same manner as in Example 1, the obtained solid capacitor was heat treated and the ESR at I MHz was measured. The results are shown in Table 1 together with Example 1, and the ESR of all the samples increased compared to before the heat treatment, indicating that the solid capacitors had poor high-temperature durability.

(以下本頁余白) 表1 実施例2 実施例1のコンデンサ素子をイミダゾール系化合物を硬
化剤とするエポキシ樹脂を用いて、平均厚さ2.5mm
、 4mmおよび6肥となるように外装しコンデンサを
得た。この外装基材であるエポキシ樹脂の105℃での
酸素透過率を圧力法で測定したところ、0.21X10
−10cm36 cm/ Cm2・sec  −cml
(gであり、P/tはそれぞれ0.84.0.53およ
び0.35であった。
(Hereinafter, the margins of this page) Table 1 Example 2 The capacitor element of Example 1 was manufactured using an epoxy resin with an imidazole compound as a hardening agent, with an average thickness of 2.5 mm.
, 4 mm and 6 mm to obtain capacitors. When the oxygen permeability of the epoxy resin used as the exterior base material at 105°C was measured using a pressure method, it was found to be 0.21X10
-10cm36 cm/ Cm2・sec -cml
(g, and P/t were 0.84, 0.53 and 0.35, respectively.

得られた固体コンデンサを、空気中、105℃で100
時間加熱処理し、I Ml(zでのESRを測定した。
The obtained solid capacitor was heated at 105°C in air for 100°C.
The sample was heat-treated for a period of time, and the ESR at I Ml (z) was measured.

結果を表2にまとめて示したが、試料のESRはすべて
加熱処理前と同レベルであり、高温耐久性に優れた固体
コンデンサであった。
The results are summarized in Table 2, and the ESR of all the samples was at the same level as before the heat treatment, indicating that the solid capacitors had excellent high-temperature durability.

比較例2 実施例1のコンデンサ素子を用いて、実施例2と同様に
エポキシ樹脂を用いて、平均厚さ0.8+++m、1f
iおよび1.5mmとなるように外装したコンデンサを
得た。これら外装基材のP/tはそれぞれ2,63.2
.10および1.40であった。
Comparative Example 2 Using the capacitor element of Example 1, using epoxy resin in the same manner as Example 2, the average thickness was 0.8 +++ m, 1 f.
A capacitor was obtained which was packaged so that the diameter of the capacitor was 1.5 mm. The P/t of these exterior base materials is 2 and 63.2, respectively.
.. 10 and 1.40.

実施例1と同様に、得られた固体コンデンサを加熱処理
し、l MHzでのESRを測定した。結果を表2に実
施例2と併せて示したが、試料のESRはすべて加熱処
理前より増大し、高温耐久性の劣った固体コンデンサで
あった。
As in Example 1, the obtained solid capacitor was heat treated and the ESR at 1 MHz was measured. The results are shown in Table 2 together with Example 2, and the ESR of all the samples increased compared to before the heat treatment, indicating that the solid capacitors had poor high-temperature durability.

(以下本頁余白) 表2 実施例3 実施例1のコンデンサ素子をクロロシラン誘導体から得
られるシリコーン樹脂を用いて、平均厚さ12mm、 
18mmふよび25mmとなるようにトランスファーモ
ールドしコンデンサを得た。この外装基材であるシリコ
ーン樹脂の105℃での酸素透過率を圧力法で測定した
ところ、1.23 X 10− ” cm’ ・cm 
/cm’  ・sec  −cmHgであり、P/tは
それぞれ1.03.0.68および0.49であった。
(Hereinafter, the margin of this page) Table 2 Example 3 The capacitor element of Example 1 was manufactured using a silicone resin obtained from a chlorosilane derivative, with an average thickness of 12 mm,
Transfer molding was performed to obtain a capacitor with a width of 18 mm and 25 mm. When the oxygen permeability of the silicone resin that is the exterior base material at 105°C was measured using a pressure method, it was 1.23
/cm' sec -cmHg, and P/t were 1.03, 0.68 and 0.49, respectively.

得られた固体コンデンサを、空気中、105℃で100
時間加熱し、I MHzでのESRを測定した。
The obtained solid capacitor was heated at 105°C in air for 100°C.
The sample was heated for a period of time and the ESR at I MHz was measured.

結果を表3にまとめて示したが、試料のESRはずべて
加熱処理前と同レベルであり、高温耐久性に優れた固体
コンデンサであった。
The results are summarized in Table 3, and the ESR of the samples were all at the same level as before the heat treatment, indicating that the solid capacitors had excellent high-temperature durability.

比較例3 実施例1のコンデンサ素子を用いて、実施例3と同様に
シリコーン樹脂を用いて、平均厚さ4f[ll1115
mmおよびgm+nとなるように外装したコンデンサを
得た。これら外装基材のP/tはそれぞれ3.08.2
.05および1.54であった。
Comparative Example 3 Using the capacitor element of Example 1 and using silicone resin in the same manner as Example 3, the average thickness was 4f[ll1115
A capacitor which was packaged so as to have mm and gm+n was obtained. The P/t of these exterior base materials is 3.08.2, respectively.
.. 05 and 1.54.

実施例1と同様に、得られた固体コンデンサを加熱処理
し、I MHzでのESRを測定した。結果を表3に実
施例3と併せて示したが、試料のESRはすべて加熱処
理前より増大し、高温耐久性の劣った固体コンデンサで
あった。
In the same manner as in Example 1, the obtained solid capacitor was heat treated and the ESR at I MHz was measured. The results are shown in Table 3 together with Example 3, and the ESR of all the samples increased compared to before the heat treatment, indicating that the solid capacitors had poor high-temperature durability.

〈以下本頁余白〉 表3 実施例4 実施例1のタンクルペレットに代えて、エツチングによ
って表面積を12倍に拡大した膜厚50μm11辺1 
cmの正方形のアルミニウム箔を使用して実施例1と同
様の方法で酸化アルミニウム誘電体層、および導電性ポ
リピロール層を形成し、表面から銀ペーストを用いてリ
ードを引き出してポリピロールを電極の一部とする固体
コンデンサ素子を得た。このコンデンサ素子のI MH
zでのESRは40mΩであった。
<The following is the margin of this page> Table 3 Example 4 Instead of the tankle pellets of Example 1, a film with a thickness of 50 μm, 11 sides, and 12 times the surface area by etching was used.
An aluminum oxide dielectric layer and a conductive polypyrrole layer were formed using a cm square aluminum foil in the same manner as in Example 1, and leads were drawn out from the surface using silver paste to form a part of the electrode using the polypyrrole. A solid capacitor element was obtained. I MH of this capacitor element
The ESR at z was 40 mΩ.

前記のコンデンサ素子を実施例2のエポキシ樹脂を用い
て、平均厚さ2mm、3n+mおよび5mmとなるよう
に外装しコンデンサを得た。
The above capacitor element was packaged with the epoxy resin of Example 2 so that the average thicknesses were 2 mm, 3n+m, and 5 mm to obtain capacitors.

得られた固体コンデンサを、空気中、105℃で100
時間加熱処理し、I MHzでのESRを測定した。結
果を表4にまとめて示したが、試料のESRはすべて加
熱処理前と同レベルであり、高温耐久性に優れた固体コ
ンデンサであった。
The obtained solid capacitor was heated at 105°C in air for 100°C.
The sample was heat-treated for a period of time, and the ESR at I MHz was measured. The results are summarized in Table 4, and the ESR of all the samples was at the same level as before the heat treatment, indicating that the solid capacitors had excellent high-temperature durability.

比較例4 実施例4のコンデンサ素子を用いて、実施例2と同様に
エポキシ樹脂を用いて、平均厚さ0.5mm、l mm
および1.5mmとなるように外装したコンデンサを得
た。
Comparative Example 4 Using the capacitor element of Example 4, epoxy resin was used in the same manner as in Example 2, and the average thickness was 0.5 mm, 1 mm.
A capacitor was obtained which was packaged so as to have a thickness of 1.5 mm.

実施例1と同様に、得られた固体コンデンサを加熱処理
し、I MHzでのESRを測定した。結果を表4に実
施例4と併せて示したが、試料のESRはすべて加熱処
理前より増大し、高温耐久性の劣った固体コンデンサで
あった。
In the same manner as in Example 1, the obtained solid capacitor was heat treated and the ESR at I MHz was measured. The results are shown in Table 4 together with Example 4, and the ESR of all the samples increased compared to before the heat treatment, indicating that the solid capacitors had poor high-temperature durability.

(以下本頁余白) 表4 〔発明の効果〕 以上説明したように、本発明によれば、ポリピロールを
電極の少なくとも一部とする低ESRで高周波特性の優
れた、しかも高温耐久性に優れた固体コンデンサを提供
でき、その効果は大である。
(Hereinafter, the margin of this page) Table 4 [Effects of the Invention] As explained above, according to the present invention, an electrode made of polypyrrole at least in part has low ESR, excellent high-frequency characteristics, and excellent high-temperature durability. Solid capacitors can be provided, and the effect is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の固体コンデンサの一例の構成を示す模
式的断面図。 第2図はコンデンサのESRと外装基材のP/tとの関
係を示す特性図。 ■・・・コンデンサ素子、2・・・外装基材、3.4・
・・リード。
FIG. 1 is a schematic cross-sectional view showing the structure of an example of a solid capacitor of the present invention. FIG. 2 is a characteristic diagram showing the relationship between the ESR of the capacitor and the P/t of the exterior base material. ■... Capacitor element, 2... Exterior base material, 3.4.
...Lead.

Claims (2)

【特許請求の範囲】[Claims] 1.誘電体をはさむ電極の少なくとも一部がポリピロー
ルであるコンデンサ素子と、このコンデンサ素子を外装
する外装基材とを備えた固体コンデンサにおいて、 前記外装基材は、この外装基材の105℃での酸素透過
率をP(単位、10^−1^0cm^3・cm/cm^
2・sec・cmHg)とし、外装表面から前記コンデ
ンサ素子までの平均の厚さをt(単位、cm)として、
P/tが1.2以下である特性を有する ことを特徴とする固定コンデンサ。
1. A solid capacitor comprising a capacitor element in which at least a portion of the electrodes sandwiching a dielectric material is made of polypyrrole, and an exterior base material that exteriorizes this capacitor element, wherein the exterior base material Transmittance is P (unit, 10^-1^0cm^3 cm/cm^
2・sec・cmHg), and the average thickness from the exterior surface to the capacitor element is t (unit, cm),
A fixed capacitor characterized in that P/t is 1.2 or less.
2.外装基材が、有機高分子化合物である請求項1記載
の固体コンデンサ。
2. The solid capacitor according to claim 1, wherein the exterior base material is an organic polymer compound.
JP24836089A 1989-09-25 1989-09-25 Solid-state capacitor Pending JPH03109713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24836089A JPH03109713A (en) 1989-09-25 1989-09-25 Solid-state capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24836089A JPH03109713A (en) 1989-09-25 1989-09-25 Solid-state capacitor

Publications (1)

Publication Number Publication Date
JPH03109713A true JPH03109713A (en) 1991-05-09

Family

ID=17176942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24836089A Pending JPH03109713A (en) 1989-09-25 1989-09-25 Solid-state capacitor

Country Status (1)

Country Link
JP (1) JPH03109713A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579937U (en) * 1992-04-01 1993-10-29 日立エーアイシー株式会社 Solid electrolytic capacitor
EP0607781A1 (en) * 1993-01-05 1994-07-27 Nec Corporation Solid electrolytic capacitor
US5586000A (en) * 1993-12-28 1996-12-17 Nec Corporation Solid electrolytic capacitor and process for production thereof
US8221921B2 (en) 2007-03-26 2012-07-17 Sony Corporation Non-aqueous electrolyte battery
CN111292962A (en) * 2015-04-30 2020-06-16 王子控股株式会社 Film for capacitor and method for producing same
US11081288B1 (en) 2018-08-10 2021-08-03 Avx Corporation Solid electrolytic capacitor having a reduced anomalous charging characteristic
US11380492B1 (en) 2018-12-11 2022-07-05 KYOCERA AVX Components Corporation Solid electrolytic capacitor
US11756742B1 (en) 2019-12-10 2023-09-12 KYOCERA AVX Components Corporation Tantalum capacitor with improved leakage current stability at high temperatures
US11763998B1 (en) 2020-06-03 2023-09-19 KYOCERA AVX Components Corporation Solid electrolytic capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579937U (en) * 1992-04-01 1993-10-29 日立エーアイシー株式会社 Solid electrolytic capacitor
EP0607781A1 (en) * 1993-01-05 1994-07-27 Nec Corporation Solid electrolytic capacitor
US5586000A (en) * 1993-12-28 1996-12-17 Nec Corporation Solid electrolytic capacitor and process for production thereof
US8221921B2 (en) 2007-03-26 2012-07-17 Sony Corporation Non-aqueous electrolyte battery
CN111292962A (en) * 2015-04-30 2020-06-16 王子控股株式会社 Film for capacitor and method for producing same
US11081288B1 (en) 2018-08-10 2021-08-03 Avx Corporation Solid electrolytic capacitor having a reduced anomalous charging characteristic
US11380492B1 (en) 2018-12-11 2022-07-05 KYOCERA AVX Components Corporation Solid electrolytic capacitor
US11756742B1 (en) 2019-12-10 2023-09-12 KYOCERA AVX Components Corporation Tantalum capacitor with improved leakage current stability at high temperatures
US11763998B1 (en) 2020-06-03 2023-09-19 KYOCERA AVX Components Corporation Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US5790368A (en) Capacitor and manufacturing method thereof
JP3070408B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US9287055B2 (en) Solid electrolytic capacitor and method for manufacturing same
JP2937716B2 (en) Tantalum solid electrolytic capacitor and method of manufacturing the same
JPH03127813A (en) Manufacture of solid electrolytic capacitor
JP3296727B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03109713A (en) Solid-state capacitor
JP3245567B2 (en) Method for manufacturing solid electrolytic capacitor
JPH1187177A (en) Solid electrolytic capacitor and its manufacture
JPH1060234A (en) Electroconductive polymer and its production and solid electrolytic capacitor using the same
JP3486113B2 (en) Method of manufacturing Ta solid electrolytic capacitor
JPH0785461B2 (en) Capacitor
JPH0475645B2 (en)
JP2696982B2 (en) Solid electrolytic capacitors
JP2006096689A (en) Manufacturing method of sulfonic acid derivative ferric salt and conductive polymer manufactured using ferric salt, and solid electrolytic capacitor
JPS596501B2 (en) Manufacturing method of solid electrolytic capacitor
JPH1050559A (en) Manufacture of solid state electrolytic capacitor
JPH0645195A (en) Manufacture of solid-state electrolytic capacitor
JPH05159979A (en) Manufacture of solid electrolytic capacitor
JPH0917686A (en) Capacitor
JPH0722080B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0266922A (en) Manufacture of solid electrolytic capacitor
JPH0494107A (en) Manufacture of solid electrolytic capacitor
JPH07118436B2 (en) Solid electrolytic capacitor
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor