JPH03251736A - Measuring method of degree of bonding of vitrified superabrasive wheel - Google Patents

Measuring method of degree of bonding of vitrified superabrasive wheel

Info

Publication number
JPH03251736A
JPH03251736A JP3226890A JP3226890A JPH03251736A JP H03251736 A JPH03251736 A JP H03251736A JP 3226890 A JP3226890 A JP 3226890A JP 3226890 A JP3226890 A JP 3226890A JP H03251736 A JPH03251736 A JP H03251736A
Authority
JP
Japan
Prior art keywords
bonding
degree
wheel
superabrasive
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3226890A
Other languages
Japanese (ja)
Other versions
JP2831425B2 (en
Inventor
Kenji Gotanda
五反田 健二
Katsuhisa Yamada
勝久 山田
Hajime Bonshihara
盆子原 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kure Norton KK
Original Assignee
Kure Norton KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kure Norton KK filed Critical Kure Norton KK
Priority to JP3226890A priority Critical patent/JP2831425B2/en
Publication of JPH03251736A publication Critical patent/JPH03251736A/en
Application granted granted Critical
Publication of JP2831425B2 publication Critical patent/JP2831425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To obtain correctly a grinding effect as expected in a non-destructive manner before use for grinding, by measuring waveforms of indentations of the outer peripheral surface of a superabrasive wheel, by determining the number of peaks due to a superabrasive at each prescribed depth and by determining the degree of bonding of the wheel from the depth showing the maximum number of peaks. CONSTITUTION:The outer peripheral surface of a vitrified superabrasive wheel which is prepared by bonding a superabrasive in the form of a thin layer on the outer peripheral surface of a wheel is used for cutting. The indentations of the surface thereof are measured all over the outer peripheral surface being used, by a displacement gage, and waveforms showing a change thereof are determined. Then, a cutting edge interval which is an average interval between peaks due to the superabrasive existing in a prescribed depth from the surface is determined. Besides, a depth Di from the surface at which the number of cutting edges is the maximum at which the number of peaks is the maximum is determined. The cutting edge interval and the depth at which the number of cutting edges is the maximum become small as the degree of bonding varies from F to L, and a definite orderly relationship is found between these interval and depth and the degree of bonding. By preparing a graph as to wheels having various degrees of bonding known already, beforehand, by using this relationship, the degree of bonding can be determined as to a wheel of which the degree of bonding is unknown, in a nondestructive manner, before it is used for grinding.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は新規なビトリファイド超砥粒ホイールの結合度
測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a novel method for measuring the degree of bonding of a vitrified superabrasive wheel.

〔従来技術とその問題点〕[Prior art and its problems]

従来金属材料の研削に用いる各種ホイールにあっては結
合度が重要であり、作業中砥粒が脱落することなく期待
どおりの研削効果を発揮しつるよう十分な結合度を有す
ることが要求される。商品名アランダム、カーボランダ
ムとしてしられているアルミナや炭化ケイ素などを用い
る一般砥石の場合と異なり天然又は合成ダイヤモンド或
は六方晶窒化硼素(CBN)等からなる硬くて高価な所
謂超砥粒をビトリファイドボンド等の結合剤で結合せし
めてなる超砥粒ホイールの場合、硬くて本来長時間使用
しうる高価な超砥粒が早期に脱落することのないよう特
に適切な結合度を有することが要求される。
The degree of bonding is important for various types of wheels conventionally used for grinding metal materials, and they are required to have a sufficient degree of bonding so that the abrasive grains do not fall off during operation and exhibit the expected grinding effect. Unlike general whetstones that use alumina or silicon carbide, which are known by the trade names Alundum and Carborundum, we use hard and expensive so-called super-abrasives made of natural or synthetic diamond or hexagonal boron nitride (CBN). In the case of a superabrasive wheel that is bonded with a binder such as vitrified bond, it is required to have a particularly appropriate degree of bonding so that the expensive superabrasive grains, which are hard and can be used for a long time, do not fall off early. be done.

従来一般砥石の結合度の測定に関しては広く入超式結合
度試験機が用いられている。これは二股状のビットを試
料使用面上で120@回転させてえぐりとり、そのとき
のビットのくいこみの深さ(単位am)を測るものであ
り、通常同一試料について3箇所以上測定し、その平均
値をとる。この外ロックウェル硬さ(H「)又はソニッ
クコンパレーターや超音波を用いる動弾性率測定法など
が利用されて一般砥石の結合度が評価されている。
Conventionally, an in-line bonding tester has been widely used to measure the bonding degree of general grindstones. This is a method in which a bifurcated bit is rotated 120 @ on the surface of the sample to be used, and the depth of the bit's penetration (unit: am) is measured. Take the average value. The degree of bonding of general grindstones is evaluated using the outer Rockwell hardness (H'') or the dynamic elastic modulus measurement method using a sonic comparator or ultrasonic waves.

これに対して上記の如き超砥粒ホイールの場合その結合
度を直接測定する適当な測定法がなかった。一般に超砥
粒ホイールの場合その高価なるが故に通常研削に用いる
ホイール外周面に薄く1〜3IIm程度に超砥粒が結合
剤とともに接着されているのみであり、このようなリム
部に対して中心部即ちコア一部は他の材料たとえば金属
で構成されている。このような薄いそして高価な超砥粒
のリム部に対して上記のようにビットでえぐりとってそ
のくいこみ深さを測定する入超式測定機は使用しえず、
またごく硬い超砥粒に対して硬度測定具を使用しても、
破損してしまい硬度を測ることができない。仮に測れて
も信頼性あるデータはえられない。又超音波を用いる測
定法ではある程度の厚さ乃至面積を要するのでごく薄い
超砥粒リム部ではよく測定することはできなかった。又
ある設計の下に製造した超砥粒ホイールを実際の機械に
取着けて研削してそのときに要する動力(研削動力・W
)を測定してその値により設計通りの結合度を有してい
るかどうか判断することはできたが、研削使用せねばな
らず使用前に求めえなかった。
On the other hand, in the case of the above-mentioned superabrasive wheels, there is no suitable measuring method for directly measuring the degree of bonding. Generally, in the case of superabrasive wheels, because they are expensive, superabrasive grains are only bonded to the outer peripheral surface of the wheel used for grinding in a thin layer of 1 to 3 mm along with a binder. A portion of the core is constructed of another material, such as metal. For such a thin and expensive rim of superabrasive grain, it is impossible to use the above-mentioned ultra-thin type measuring machine that measures the depth of penetration by gouging it out with a bit.
Also, even if you use a hardness measuring tool for extremely hard superabrasive grains,
It is damaged and the hardness cannot be measured. Even if it were possible to measure it, reliable data would not be obtained. In addition, since the measurement method using ultrasonic waves requires a certain amount of thickness or area, it has not been possible to measure well on extremely thin superabrasive grain rims. In addition, a superabrasive wheel manufactured according to a certain design is attached to an actual machine for grinding, and the power required at that time (grinding power, W
), and it was possible to judge from the value whether the degree of bonding was as designed, but it was impossible to determine it before use because it had to be ground.

リム部とコア一部の区別のないいわゆる全層タイプのホ
イールの場合ならば動弾性率を測定してそのままホイー
ルの結合度とすることはできるが、薄いリム部と中心の
コア一部とからなる通常の超砥粒のホイールの結合度は
上述のように直接測定することはできず、設計内容から
間接的に推定する方法がとられていた。
In the case of a so-called full-thickness type wheel where there is no distinction between the rim part and the core part, it is possible to measure the dynamic elastic modulus and use it as the wheel's degree of bonding. As mentioned above, the degree of bonding of a normal superabrasive wheel cannot be directly measured, and has been estimated indirectly from the design details.

このため、従来の超砥粒ホイールの製造、使用に当って
、製品であるそのホイールが設計通り正しく製造されて
いるかどうか判断できず、又実際のユーザーにおいても
期待どおりの研削効果を発揮しうるかどうか判断できな
いという問題点があった。
For this reason, when manufacturing and using conventional superabrasive wheels, it is difficult to judge whether the wheel, which is a product, has been manufactured correctly as designed, and whether the actual user will be able to achieve the desired grinding effect. The problem was that it was impossible to judge.

この超砥粒ホイールの場合結合剤としてはレジノイドボ
ンド、メタルボンド、ビトリファイドボンドの3種類が
実用化されているが、この中ではビトリファイドボンド
によるホイールが製造後すぐ使え、使い易いなどのため
他のボンドによる超砥粒ホイールよりも多く製造され、
使用されている。従って、特にビトリファイド超砥粒ホ
イールの結合度を使用前に正しく評価しうる測定法の開
発が望まれていた。
In the case of this superabrasive wheel, three types of bonding agents have been put into practical use: resinoid bond, metal bond, and vitrified bond, but among these, wheels made of vitrified bond can be used immediately after manufacture, and are easier to use than others. Produced more than bonded super abrasive wheels,
It is used. Therefore, it has been desired to develop a measuring method that can accurately evaluate the degree of bonding of a vitrified superabrasive wheel before use.

〔発明の目的及び構成〕[Object and structure of the invention]

従って、本発明は上記の如き現状に鑑み、ビトリファイ
ド超砥粒ホイールが設計通り正しく製造されているかど
うか、又期待どおりの研削効果が発揮しうるかどうか正
しく判断することができるようにその結合度を使用前に
測定しうる方法を開発することを目的とするものである
Therefore, in view of the above-mentioned current situation, the present invention aims to examine the degree of bonding of the vitrified superabrasive wheel so that it can be correctly determined whether it has been manufactured correctly as designed and whether it can exhibit the expected grinding effect. The aim is to develop a method that can be measured before use.

本発明者らはかかる目的を達成するべく鋭意実験を重ね
た結果、ビトリファイド超砥粒ホイールの外周使用面の
断面凹凸波形を測定し、得られるピークの中から一定の
判断基準に従って超砥粒によるピークを求め、更に表面
からの深さの一定間隔毎にその超砥粒によるピークの数
の分布を求めるときは、その数が最大となる、即ち最大
切刃数となる表面からの深さとホイールの結合度の間に
は一定の関係があることを見出し、かくて結合度既知の
各種結合度のホイールにつき、最大切刃数となる表面か
らの深さと結合度との間の関係を事前にグラフに表わし
ておけば、結合度未知のこの種ホイールについて上記の
如くして研削使用面の凹凸波形を測定してそれより最大
切刃数となる表面からの深さを求め、それを上記グラフ
に適用することによって使用前に即ち非破壊で、そのホ
イールの結合度を正しく容易に測定し得ることを見出し
て本発明をなすに至ったのである。
As a result of extensive experiments to achieve this objective, the present inventors measured the cross-sectional unevenness waveform of the outer periphery of the vitrified superabrasive wheel, and based on certain criteria from among the peaks obtained, the superabrasive When calculating the peaks and further calculating the distribution of the number of peaks due to superabrasive grains at regular intervals of depth from the surface, find the depth from the surface and the wheel where the number is maximum, that is, the maximum number of cutting edges. We have found that there is a certain relationship between the degrees of bonding, and therefore, for wheels with various degrees of bonding for which the degree of bonding is known, we have determined in advance the relationship between the depth from the surface that yields the maximum number of cutting edges and the degree of bonding. To represent this in a graph, measure the unevenness waveform of the surface used for grinding as described above for this type of wheel with an unknown degree of bonding, find the depth from the surface at which the maximum number of cutting edges occurs, and calculate it in the graph above. The inventors have discovered that the degree of bonding of the wheel can be accurately and easily measured before use, that is, non-destructively, by applying the method to the present invention.

よって本発明は、ビトリファイド超砥粒ホイールの外周
使用面の凹凸波形を測定して一定深さ毎に超砥粒による
ピークの数を求め、最大のピーク数を示す深さから前記
ホイールの結合度を求めることを特徴とするビトリファ
イド超砥粒ホイールの結合度測定法を提供するものであ
る。
Therefore, the present invention measures the uneven waveform of the outer surface of a vitrified superabrasive wheel, determines the number of peaks caused by the superabrasive grains at each fixed depth, and determines the degree of bonding of the wheel from the depth showing the maximum number of peaks. The present invention provides a method for measuring the degree of bonding of a vitrified superabrasive wheel, which is characterized by determining the degree of bonding of a vitrified superabrasive wheel.

〔発明の詳細な説明〕[Detailed description of the invention]

以下に本発明の詳細な説明する。 The present invention will be explained in detail below.

先ず、ビトリファイド超砥粒ホイールの外周使用面の断
面凹凸波形を測定する。上述のように超砥粒ホイールは
ホイールの外周面に超砥粒が薄く層状に接着されており
、その外周面が研削に使用され、その外周使用面全周に
亘って変位計を走らせてその表面の凹凸を測定してその
変化を示す波形を求める。ビトリファイドボンド超砥粒
ホイールの場合はメタルボンドやレジノイドボンドによ
る場合と異なりその表面層内に気孔が存在しそれにより
表面にこまかい凹凸が形成されているので波形を求める
ことができる。
First, the cross-sectional unevenness waveform of the outer periphery of the vitrified superabrasive wheel is measured. As mentioned above, superabrasive wheels have a thin layer of superabrasive grains adhered to the outer circumferential surface of the wheel, and that outer circumferential surface is used for grinding, and a displacement meter is run over the entire circumference of the outer circumferential surface used. Measure the unevenness of the surface and obtain a waveform that shows the change. In the case of a vitrified bond superabrasive wheel, unlike metal bond or resinoid bond wheels, pores exist in the surface layer and fine irregularities are formed on the surface, so that waveforms can be obtained.

尚この測定に当っては外周使用面は仕上げ機で予めよく
仕上げしておく。又研削盤にこの砥石をとりつけたあと
この砥石を真円になるようにダイヤモンド工具でフレを
とっておく。これは一般にツルーイングと呼ばれる。従
って811定は砥石の研削使用面の仕上げ後又はツルー
イングの後に行うものとする。
In addition, when performing this measurement, the outer periphery surface to be used should be well finished in advance using a finishing machine. After attaching this whetstone to the grinding machine, use a diamond tool to smooth the whetstone so that it becomes a perfect circle. This is generally called truing. Therefore, the 811 determination should be performed after finishing the grinding surface of the grindstone or after truing.

仕上げ機にセットしたままの、又は専用の測定台にセッ
トされた超砥粒ホイールをドライブ用ロールを用いて3
60”回転させながら変位計により外周面上の凹凸を測
定する。変位計としてはダイヤモンド先端子を有する接
触式でもよく、レーザーを利用する非接触式でもよい。
The super abrasive wheel, which is set in the finishing machine or set on a special measuring stand, is measured using a drive roll.
The unevenness on the outer circumferential surface is measured by a displacement meter while rotating by 60 inches.The displacement meter may be a contact type having a diamond tip, or a non-contact type using a laser.

このホイールを回転させるドライブ速度は接触式変位計
を使用する場合は3mm/秒以下が望ましく、10+n
/秒以上ではジャンピング等が生じるので好ましくない
。一方非接触式の変位計の場合は砥石は1〜20■l/
秒と広範囲に応用することができる。直径の大きなホイ
ールの場合は外周を適宜の数分割して、例えば4分割し
て90″づつ測定して計算は合併して一周分として行な
う。
The drive speed for rotating this wheel is preferably 3 mm/sec or less when using a contact displacement meter, and is 10+n
/second or more is not preferable because jumping may occur. On the other hand, in the case of a non-contact type displacement meter, the grinding wheel is 1 to 20 μl/
It can be widely applied in seconds. In the case of a wheel with a large diameter, the outer periphery is divided into an appropriate number of parts, for example, into 4 parts and each part is measured by 90'', and the calculation is performed by combining the parts into one round.

このようにして一定のサンプリングタイム例えばΔ−1
0ミリ秒毎にサンプリングすると例えば第1図の如き波
形が得られる。この波形が上昇した後下降するときのピ
ークが多く形成される。このピークは超砥粒によるもの
とビトリファイドボンドによるものとがあるがこの中で
超砥粒のみのピークを抽出することが重要である。本発
明では超砥粒及びビトリファイドボンドのホイール表面
層での大きさ、及び各々の仕上げ後又はツルーイング後
の表面形状のパターンの違いに注目して超砥粒によるピ
ークを抽出する判断基準を定め、それにより判断した。
In this way, a constant sampling time, e.g. Δ-1
If sampling is performed every 0 milliseconds, a waveform as shown in FIG. 1, for example, can be obtained. Many peaks are formed when this waveform rises and then falls. There are two peaks, one due to the superabrasive and the other due to the vitrified bond, but it is important to extract only the peak due to the superabrasive. In the present invention, we focus on the size of the superabrasive grains and vitrified bond in the wheel surface layer, and the differences in the surface shape patterns after each finishing or truing, and determine the criteria for extracting the peak due to the superabrasive grains. Judgment was based on that.

本発明の場合、サンプリング出力が直前のレベルより大
きい状態が3点連続したのちのピークを超砥粒によるピ
ークと判断するのであり、例えば第1図におけるピーク
Aは3点連続して前よりも大きくなっているので超砥粒
によるピークと判断される。この判断基準はホイール仕
様、特に粒度により変更することがある。この図におい
てδは基準深さを示す 本発明ではこのようにして研削使用面の断面波形から超
砥粒によるピークを求め、これから実用上有益な超砥粒
の平面的、立体的分布を求め、それから当該ホイールの
結合度を測定するのである。
In the case of the present invention, a peak after three consecutive points where the sampling output is higher than the previous level is determined to be a peak due to superabrasive grains.For example, peak A in Fig. 1 is higher than the previous level for three consecutive points. Since it is large, it is judged that the peak is caused by super abrasive grains. This criterion may change depending on the wheel specifications, especially the grain size. In this figure, δ indicates the reference depth. In this way, the peak due to the superabrasive grains is determined from the cross-sectional waveform of the surface used for grinding, and from this, the two-dimensional and three-dimensional distribution of the superabrasive grains, which is useful in practice, is determined. The degree of coupling of the wheel is then measured.

平面的分布とは表面から一定の深さ内(例えば2μm)
に存在する超砥粒によるピーク間の平均的間隔であり、
その深さにおいて存在する超砥粒によるピーク数(N)
と実質測定さL―■からその間隔(μ)が次のようにし
て求められ、この間隔は一般に切刃間隔と呼ばれている
Planar distribution is within a certain depth from the surface (e.g. 2 μm)
is the average interval between peaks due to the superabrasive grains present in
Number of peaks (N) due to superabrasive grains existing at that depth
The distance (μ) is obtained from the actual measurement L-■ as follows, and this distance is generally called the cutting edge distance.

μmL/N 第2図に切刃間隔(μ)を示す。μmL/N Figure 2 shows the cutting edge spacing (μ).

又その立体的分布として上記のような判断基準に基づく
超砥粒によるピークの数を表面から一定深さごと、例え
ば2μmごとに求めてその度数分布からそのピーク数が
最大となる即ち最大切刃数となる表面からの深さDlを
求める。ff13図は最大切刃数(P■aX )となる
深さ(Dl)の求め方を説明するものである。
Also, as a three-dimensional distribution, the number of peaks due to superabrasive grains based on the above-mentioned criteria is determined from the surface at a certain depth, for example, every 2 μm, and from the frequency distribution, the number of peaks is the maximum, that is, the maximum cutting edge. Determine the depth Dl from the surface, which is a number. Figure ff13 explains how to find the depth (Dl) that gives the maximum number of cutting edges (P■aX).

本発明によれば、上記のようにして求められた切刃間隔
と最大切刃数となる表面からの深さは夫々そのホイール
の結合度との間に第4.5図の如きほぼ直線状の関係が
あることが見出されたのである。即ち結合度F、HSJ
、Lのホイールの切刃間隔(μ)と最大切刃数の深さ(
pl)は結合度FからLに向かうにつれて従って即ち漸
次硬くなるにつれて小さくなりそれらと結合度との間に
一定の規則的な関係があることが見出されたのである。
According to the present invention, the distance between the cutting blades determined as described above and the depth from the surface at which the maximum number of cutting blades is obtained are approximately linear as shown in Fig. 4.5. It was found that there is a relationship between That is, the degree of coupling F, HSJ
, L wheel cutting edge spacing (μ) and depth of maximum number of cutting edges (
It has been found that pl) decreases as the degree of bonding increases from F to L, that is, as the bond gradually becomes harder, and that there is a regular relationship between them and the degree of bonding.

従って、これを利用して結合度既知の各種結合度のホイ
ールについて第4.5図の如きグラフを求めておけば、
結合度未知のホイールについて切刃間隔と最大切刃数と
なる表面からの深さを求めることによって、研削使用前
に非破壊的に結合度を知ることができるのである。
Therefore, if we use this to obtain graphs like the one shown in Figure 4.5 for wheels with various degrees of connectivity for which the degrees of connectivity are known,
By determining the cutting edge spacing and the depth from the surface that yields the maximum number of cutting edges for a wheel with unknown bonding degree, it is possible to non-destructively know the bonding degree before use for grinding.

尚、当業界周知のように、砥石の結合度は日本工業規格
に従ってその軟らかいものからアルファベット順にES
F、G、・・・の記号で表わされ、超砥粒による砥石は
通常より硬めの結合度を有している。そしてホイール仕
様は砥粒の種類、粒度、結合度、組織、ボンドの種類な
どが記号によって表示されている。
As is well known in the industry, the degree of bonding of grinding wheels is determined alphabetically from the softest to the ES according to the Japanese Industrial Standards.
It is represented by the symbols F, G, . . . , and a grinding wheel made of super abrasive grains has a degree of bonding that is harder than usual. The wheel specifications are displayed using symbols such as abrasive grain type, grain size, degree of bonding, structure, bond type, etc.

本発明においては特に平面的分布よりも立体的分布を求
め、最大切刃数となる表面からの深さから結合度を求め
るものとする。
In the present invention, a three-dimensional distribution is particularly determined rather than a planar distribution, and the degree of bonding is determined from the depth from the surface where the maximum number of cutting edges is obtained.

このグラフを求めるに当って使用に供したホイールの仕
様の明細を表1、研削条件を表2、使用面の仕上げ条件
を表3に示す。尚、上述のように研削動力から結合度が
設計仕様のとおりのものであることが確認されたホイー
ルについて測定されたものであり、通常このグラフはホ
イールの仕様、特に粒度に応じて作成される。
Table 1 shows the details of the specifications of the wheels used to obtain this graph, Table 2 shows the grinding conditions, and Table 3 shows the finishing conditions of the surfaces used. As mentioned above, this was measured for a wheel whose degree of bonding was confirmed to be in accordance with the design specifications from the grinding power, and this graph is usually created according to the specifications of the wheel, especially the grain size. .

表1 表2 表3 実施例 ボラゾンと呼ばれる六方晶窒化硼素を用いて結合度の異
なる三つのビトリファイド超砥粒ホイールをつくった。
Table 1 Table 2 Table 3 Example Three vitrified superabrasive wheels with different degrees of bonding were made using hexagonal boron nitride called Borazon.

その寸法(ms)と設計仕様は次のとおりであった。Its dimensions (ms) and design specifications were as follows.

イ、11.x 10x 8    B170F200V
C2o、  20x15X6     B170J20
0VC2ハ、 25X10X12.5  8170+1
200VC2これらのホイールを次のような条件で仕上
げした。
I, 11. x 10x 8 B170F200V
C2o, 20x15X6 B170J20
0VC2ha, 25X10X12.5 8170+1
200VC2 These wheels were finished under the following conditions.

ホイール周速    2.970m/分工具ホイール周
速  1.800m/分切込み       5μ 横送りの速度    50μ/ray このように仕上げた後、ダイヤモンド測定端子、先端半
径5μRの変位計を2龍/秒の速度でドライブさせて上
記各ホイールの切削使用面の波形を測定し、上記超砥粒
によるピーク数を2μm深さごとに測定して最大切刃数
となる表面からの深さを求めたところイ、口、ハは夫々
30.0μm11165μm、19.0μmであった。
Wheel circumferential speed: 2.970 m/min Tool wheel circumferential speed: 1.800 m/min Depth of cut: 5 μ Transverse feed speed: 50 μ/ray After finishing in this way, use a diamond measuring terminal and a displacement meter with a tip radius of 5 μR at a speed of 2 dragons/sec. The waveform of the cutting surface of each of the above wheels was measured by driving with The diameter of the opening and the diameter of the hole were 30.0 μm, 11165 μm, and 19.0 μm, respectively.

これを上述のような条件により作成したグラフ(第5図
)に適用したところ第6図に示すように夫々結合度F、
JSHを有すること、即ちいずれも設計仕様のようにで
きていることが明らかとなった。
When this is applied to the graph created under the above conditions (Figure 5), the degree of connectivity F, as shown in Figure 6, is
It became clear that they had JSH, that is, that they were all made according to the design specifications.

〔発明の効果〕〔Effect of the invention〕

本発明によればビトリファイドボンド超砥粒ホイールが
設計仕様の結合度を有するようにつくられているか、又
期待どおりの研削効果を発揮するかを研削使用前に、破
壊せずに正しく知ることができる。
According to the present invention, it is possible to accurately determine whether the vitrified bond superabrasive wheel is made to have the degree of bonding specified by the design specifications and whether it will exhibit the expected grinding effect before using it for grinding without causing damage. can.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図は本発明による超砥粒によるピークを判断す
る基準を説明するためのホイール外周凹凸波形を示す図
、第2図は超砥粒ピーク数の深さ方向分布を説明するた
めの同様な波形図、第3図は最大切刃数となる表面から
の深さを求める手段を説明するための説明図、第4図は
切刃間隔とホイール結合度の関係を示すグラフ、第5図
は本発明によりえられた最大切刃数となる表面からの深
さとホイール結合度の関係を示すグラフ、第6図 は本発明の実施例に係るホイールの結合度の測定法を説
明するためのグラフである。
Figure 1 is a diagram showing a waveform of irregularities on the outer periphery of a wheel to explain the criteria for determining peaks due to superabrasive grains according to the present invention, and Figure 2 is a similar diagram to explain the depth direction distribution of the number of superabrasive grain peaks. Figure 3 is an explanatory diagram for explaining the means for determining the depth from the surface that yields the maximum number of cutting edges, Figure 4 is a graph showing the relationship between cutting edge spacing and degree of wheel coupling, and Figure 5. 6 is a graph showing the relationship between the depth from the surface that gives the maximum number of cutting edges obtained by the present invention and the degree of wheel bonding, and FIG. 6 is a graph for explaining the method for measuring the degree of wheel bonding according to the embodiment of the present invention. It is a graph.

Claims (1)

【特許請求の範囲】[Claims] ビトリファイド超砥粒ホィールの外周使用面の仕上げ後
、該外周使用面の断面凹凸波形を測定して一定深さ毎に
超砥粒によるピークの数を求め最大ピーク数を示す深さ
から前記ホィールの結合度を求めることを特徴とするビ
トリファイド超砥粒ホィールの結合度測定方法。
After finishing the outer circumferential surface of the vitrified superabrasive wheel, measure the cross-sectional unevenness waveform of the outer circumferential surface, calculate the number of peaks caused by the superabrasive grains at each fixed depth, and start from the depth showing the maximum number of peaks. A method for measuring the degree of bonding of a vitrified superabrasive wheel, characterized by determining the degree of bonding.
JP3226890A 1990-02-13 1990-02-13 Method for measuring the degree of bonding of vitrified superabrasive wheels Expired - Fee Related JP2831425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3226890A JP2831425B2 (en) 1990-02-13 1990-02-13 Method for measuring the degree of bonding of vitrified superabrasive wheels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3226890A JP2831425B2 (en) 1990-02-13 1990-02-13 Method for measuring the degree of bonding of vitrified superabrasive wheels

Publications (2)

Publication Number Publication Date
JPH03251736A true JPH03251736A (en) 1991-11-11
JP2831425B2 JP2831425B2 (en) 1998-12-02

Family

ID=12354257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3226890A Expired - Fee Related JP2831425B2 (en) 1990-02-13 1990-02-13 Method for measuring the degree of bonding of vitrified superabrasive wheels

Country Status (1)

Country Link
JP (1) JP2831425B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057959A (en) * 2010-09-06 2012-03-22 Omiya Kogyo Kk Load fluctuation mechanism and grindstone coupling degree testing device using the same
CN109187246A (en) * 2018-10-25 2019-01-11 中国工程物理研究院激光聚变研究中心 A kind of bonded abrasive tool rigidity detection device and its detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057959A (en) * 2010-09-06 2012-03-22 Omiya Kogyo Kk Load fluctuation mechanism and grindstone coupling degree testing device using the same
CN109187246A (en) * 2018-10-25 2019-01-11 中国工程物理研究院激光聚变研究中心 A kind of bonded abrasive tool rigidity detection device and its detection method
CN109187246B (en) * 2018-10-25 2023-09-22 中国工程物理研究院激光聚变研究中心 Hardness detection device and method for bonded abrasive tool

Also Published As

Publication number Publication date
JP2831425B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
JP3363587B2 (en) Method and apparatus for processing brittle material
CN106124262A (en) For the preparation of ring-shaped work pieces surface layer microhardness exemplar and detection method
US20190105752A1 (en) Surface treatment process of CMP Polishing pad
Tonshoff et al. Grinding-and-slicing technique as an advanced technology for silicon wafer slicing
JPH1177532A (en) Grinding device for rolling roll
JPH03251736A (en) Measuring method of degree of bonding of vitrified superabrasive wheel
CN110405627A (en) A kind of diamond cutter circular arc percent ripple control method based on acoustic emission monitor(ing)
Matsuo et al. High-precision surface grinding of ceramics with superfine grain diamond cup wheels
RU2398212C1 (en) Procedure for evaluation of specific wear of grindstone
JP7384634B2 (en) Grinding surface condition evaluation device and grinding processing device
US6866560B1 (en) Method for thinning specimen
JPH09109032A (en) Dry extra-abrasive grain wheel with thermo-seal stuck thereto
JP3690994B2 (en) Electrodeposition tool manufacturing method
Brenner et al. Wheel sharpness measurement for force prediction in grinding
JP2020185626A (en) Measurement system for measuring abrasive grain distribution of grinding wheel surface and grinder provided with the same
JP7413109B2 (en) Grinding process defect prediction device
JP2863339B2 (en) Chamfering polishing tool for inner circumference
JP2020069638A (en) Dressing surface evaluation apparatus, dressing device, and grinding device
JPH081512A (en) Method for evaluating dressing condition of fine grain grinding wheel
SU1196735A1 (en) Method of measuring condition of abrasive tool working surface
Denkena et al. Dressing monitoring by acoustic emission
Tawakoli et al. Ultrasonic assisted dressing of CBN grinding wheels with form rollers
Sakamoto et al. On-machine monitoring of the wheel working surface condition with the fractal dimension analysis of its profile
JP2021146490A (en) Truing completion verification device
Kreischer Lapping and Polishing with Flexible, Bound Diamond Materials

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070925

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees