US20190105752A1 - Surface treatment process of CMP Polishing pad - Google Patents

Surface treatment process of CMP Polishing pad Download PDF

Info

Publication number
US20190105752A1
US20190105752A1 US16/211,236 US201816211236A US2019105752A1 US 20190105752 A1 US20190105752 A1 US 20190105752A1 US 201816211236 A US201816211236 A US 201816211236A US 2019105752 A1 US2019105752 A1 US 2019105752A1
Authority
US
United States
Prior art keywords
substrate
abrasive belt
height
mesh
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/211,236
Inventor
Xueyan Zhang
Lijuan Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Times Live Science And Technology CoLtd
Original Assignee
Chengdu Times Live Science And Technology CoLtd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Times Live Science And Technology CoLtd filed Critical Chengdu Times Live Science And Technology CoLtd
Publication of US20190105752A1 publication Critical patent/US20190105752A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B21/00Machines or devices using grinding or polishing belts; Accessories therefor
    • B24B21/006Machines or devices using grinding or polishing belts; Accessories therefor for special purposes, e.g. for television tubes, car bumpers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B21/00Machines or devices using grinding or polishing belts; Accessories therefor
    • B24B21/04Machines or devices using grinding or polishing belts; Accessories therefor for grinding plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B51/00Arrangements for automatic control of a series of individual steps in grinding a workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for

Definitions

  • the present invention relates to the processing and manufacturing field of CMP (chemical mechanical polishing) polishing pads, and more particularly to a surface treatment process of a CMP polishing pad.
  • CMP chemical mechanical polishing
  • CMP Chemical mechanical polishing
  • the surface of the machined workpieces is ultra-flat and ultra-smooth through the CMP process, so that the CMP process is mainly used in the field of IC and MEMS manufacturing.
  • the polishing procedure combines chemical corrosion with mechanical friction, the machined workpiece is fixed to a face-down grinding head and fixed to a rotary machine station.
  • the surface of the rotary machine station is covered with a polishing pad, and the abrasive slurry with small abrasive particles flows onto the surface of the rotary machine station.
  • the surface material of the machined workpiece is invaded by the grinding particles, and is gradually ground, and then washed away by the abrasive slurry. Due to the combined action of the rotational friction of two rails and the abrasive slurry, the surface of the workpiece is polished.
  • the polishing pad plays a very important role in the CMP process. Therefore, people have carried out a lot of researches on the characteristics of the polishing pad and its action on the CMP process.
  • Polyurethane polishing pads are widely used in the field of chemical mechanical polishing due to their excellent properties.
  • the main parameter for evaluating the polishing effect is the grinding rate.
  • the main factors affecting mechanical polishing are the surface roughness of the polishing pad, the concentration and flow rate of slurry, and the rotation speed of the rotary machine station.
  • the polishing pad In the polishing process, in addition to the contact with the wafer surface, the polishing pad needs a diamond grinding disc to continuously polish the surface of the polishing pad at a certain speed, so as to maintain a certain surface roughness of the polishing pad while scraping off excess slurry.
  • the mainstream production process of the polyurethane polishing pad comprises shaping the raw material by a casting process, slicing the shaped raw material, and then performing the subsequent processes. Due to the strict requirements of the thickness of the product after being sliced, the current research on the slicing process mainly focuses on the thickness control, and the surface roughness of the product after being sliced is not monitored and controlled. Due to different initial surface roughness of the polishing pad, the contact areas of the product to be polished are different, resulting in different initial grinding rates, so that the initial grinding rate of most polishing pads is unstable during use.
  • an object of the present invention is to provide a surface treatment process of a CMP (chemical mechanical polishing) polishing pad, so as to solve the problem that the initial grinding rate is unstable in the chemical mechanical grinding process, thus improving the stability of the polishing pad in the whole polishing process.
  • CMP chemical mechanical polishing
  • a surface treatment process of a CMP (chemical mechanical polishing) polishing pad comprises steps of:
  • (S2) rough-machining the substrate which comprises selecting a first abrasive belt with a particle size of 120-mesh, placing the substrate in a sanding machine, sanding the substrate in an alternating manner of a front surface and a reverse surface of the substrate, adjusting a height of the first abrasive belt for several times while changing the front surface and the reverse surface of the substrate till the thickness of the substrate is D+(0.08-0.10) mm;
  • (S3) fine-machining the substrate which comprises selecting a second abrasive belt with a particle size of 240-mesh, placing the substrate below the second abrasive belt, sanding the substrate in the alternating manner of the front surface and the reverse surface of the substrate, adjusting a height of the second abrasive belt for several times while changing the front surface and the reverse surface of the substrate till the thickness of the substrate is D+(0.01-0.02) mm; and
  • (S4) finish-machining the substrate which comprises selecting a third abrasive belt with a particle size of 400-mesh, placing the substrate below the third abrasive belt, sanding the substrate in the alternating manner of the front surface and the reverse surface of the substrate, adjusting a height of the third abrasive belt for several times while changing the front surface and the reverse surface of the substrate till the thickness of the substrate reaches the final target thickness of D mm.
  • the alternating manner of the front surface and the reverse surface of the substrate means that the front surface of the substrate is firstly sanded, and then the height of the corresponding abrasive belt is adjusted, and then the reverse surface of the substrate is sanded.
  • the substrate is sanded in the alternating manner of the front surface and the reverse surface of the substrate for many times, preferably, for twice.
  • the height of the corresponding abrasive belt is adjusted through adjusting a gap width between an upper roller and a lower roller of a sanding machine; the corresponding abrasive belt is installed on the upper roller and the lower roller; the substrate is placed between the upper roller and the lower roller for being sanded.
  • an adjusted height of the first abrasive belt every time is not more than 0.09 mm.
  • an adjusted height of the second abrasive belt every time is not more than 0.04 mm.
  • an adjusted height of the third abrasive belt every time is not more than 0.02 mm.
  • every abrasive belt is measured and adjusted through an operational panel of the sanding machine.
  • the present invention has some beneficial effects as follows.
  • the surface of the substrate is sanded by sanding belts with different meshes to control the surface roughness of the substrate, so that the initial surface roughness of the substrate is consistent with the surface roughness of the substrate during use, thereby solving the problem of unstable initial grinding rate.
  • the surface treatment process of the substrate provided by the present invention significantly improves the stability of the polishing process of the substrate.
  • the present invention has characteristics of simple operation, easy monitoring of performance indexes after being processed, and strong process implementation.
  • FIG. 1 shows a contrast result of a surface roughness of a substrate before and after being sanded by an abrasive belt with a particle size of 120-mesh provided by the present invention.
  • FIG. 2 shows a contrast result of a surface roughness of a substrate before and after being sanded by an abrasive belt with a particle size of 240-mesh provided by the present invention.
  • FIG. 3 shows a contrast result of a surface roughness of a substrate before and after being sanded by an abrasive belt with a particle size of 400-mesh provided by the present invention.
  • FIG. 4 shows a contrast result of a grinding rate of unsanded products and sanded substrates.
  • a sanding machine is available through market purchase.
  • a model of the sanding machine is Buffing machine TS100D.
  • a method for detecting a thickness of a substrate comprises steps of: measuring four different positions of the substrate by a vernier caliper, respectively recording four thickness values of the four different positions, and finally taking an average value of the four thickness values as a final thickness value.
  • a first abrasive belt with a particle size of 120-mesh and a substrate with a thickness of 2.65 mm are used, the substrate is placed in a sanding machine, a height of the first abrasive belt is adjusted to 2.56 mm, a front side of the substrate is sanded for a period of time and then the height of the first abrasive belt is adjusted to 2.47 mm, and then a reverse side of the substrate is sanded, and the thickness of the substrate is 2.47 mm measured by a vernier caliper.
  • a second abrasive belt with a particle size of 240-mesh is used, the above substrate is placed in the sanding machine, a height of the second abrasive belt is adjusted to 2.43 mm, the front side of the substrate is sanded for a period of time and then the height of the second abrasive belt is adjusted to 2.39 mm, and then the reverse side of the substrate is sanded, and the thickness of the substrate is 2.39 mm measured by the vernier caliper.
  • a third abrasive belt with a particle size of 400-mesh is used, the above substrate is placed in the sanding machine, a height of the third abrasive belt is adjusted to 2.37 mm, the front side of the substrate is sanded for a period of time and then the height of the third abrasive belt is adjusted to 2.35 mm, and then the reverse side of the substrate is sanded, and then the substrate is sanded in accordance with above mentioned procedures in following stages, wherein an adjusted height of the corresponding abrasive belt every time is not more than 0.02 mm till the thickness of the substrate is 2.30 mm.
  • a first abrasive belt with a particle size of 120-mesh and a substrate with a thickness of 2.65 mm are used, the substrate is placed in a sanding machine, a height of the first abrasive belt is adjusted to 2.56 mm, a front side of the substrate is sanded for a period of time and then the height of the first abrasive belt is adjusted to 2.47 mm, and then a reverse side of the substrate is sanded, and then the height of the first abrasive belt is adjusted to 2.39 mm, and then the front side of the substrate is sanded, and the thickness of the substrate is 2.39 mm measured by a vernier caliper.
  • a second abrasive belt with a particle size of 240-mesh is used, the above substrate is placed in a sanding machine, a height of the second abrasive belt is adjusted to 2.36 mm, the front side of the substrate is sanded for a period of time and then the height of the second abrasive belt is adjusted to 2.33 mm, and then the reverse side of the substrate is sanded, and the thickness of the substrate is 2.33 mm measured by the vernier caliper.
  • a third abrasive belt with a particle size of 400-mesh is used, the above substrate is placed in the sanding machine, a height of the third abrasive belt is adjusted to 2.32 mm, the front side of the substrate is sanded for a period of time and then the height of the abrasive belt is adjusted to 2.31 mm, and then the reverse side of the substrate is sanded for a period of time, and then the height of the third abrasive belt is adjusted to 2.30 mm, and then the front side of the substrate is sanded again till the thickness of the substrate is 2.30 mm.
  • a method for measuring a roughness comprises steps of:
  • Products according to the first embodiment of the present invention are selected randomly and divided into four groups, the roughness of the substrate at each stage of the sanding treatment are respectively measured to obtain specific results of the roughness, which are shown in FIGS. 1 to 3 .
  • a polishing pad made from a substrate that has not been sanded has a large difference between an initial grinding rate and a later grinding rate during the grinding process, so that the stability of the polishing pad is poor during the overall grinding process.
  • a polishing pad made from a substrate that has been sanded has an initial grinding rate basically consistent with a later grinding rate during the grinding process, and has high stability.
  • the stability of the product during the polishing process can be improved by controlling the stability of the surface roughness of the product, especially the stability of the initial grinding rate.

Abstract

A surface treatment process of a CMP (chemical mechanical polishing) polishing pad includes steps of rough-machining, fine-machining and finish-machining a substrate in sequence with an abrasive belt with a particle size of 120-mesh, an abrasive belt with a particle size of 240-mesh and an abrasive belt with a particle size of 400-mesh, respectively till a target thickness of the substrate is obtained. In each processing stage, the surface of the substrate is sanded through effectively adjusting the height of the corresponding abrasive belt so as to effectively control a surface roughness of the substrate. Moreover, through the surface treatment process provided by the present invention, the initial surface roughness is consistent with the surface roughness in the usage process of the substrate, so as to solve the problem that the initial grinding rate is unstable, thereby significantly improving the stability of the substrate in the CMP process.

Description

    CROSS REFERENCE OF RELATED APPLICATION
  • The present invention claims priority under 35 U.S.C. 119(a-d) to CN 201810971728.7, filed Aug. 24, 2018.
  • BACKGROUND OF THE PRESENT INVENTION Field of Invention
  • The present invention relates to the processing and manufacturing field of CMP (chemical mechanical polishing) polishing pads, and more particularly to a surface treatment process of a CMP polishing pad.
  • Description of Related Arts
  • Chemical mechanical polishing (CMP) is a micro-nano processing technology that combines mechanical grinding with chemical oxidation to remove the surface material of machined workpieces. The surface of the machined workpieces is ultra-flat and ultra-smooth through the CMP process, so that the CMP process is mainly used in the field of IC and MEMS manufacturing. The polishing procedure combines chemical corrosion with mechanical friction, the machined workpiece is fixed to a face-down grinding head and fixed to a rotary machine station. The surface of the rotary machine station is covered with a polishing pad, and the abrasive slurry with small abrasive particles flows onto the surface of the rotary machine station. The surface material of the machined workpiece is invaded by the grinding particles, and is gradually ground, and then washed away by the abrasive slurry. Due to the combined action of the rotational friction of two rails and the abrasive slurry, the surface of the workpiece is polished. The polishing pad plays a very important role in the CMP process. Therefore, people have carried out a lot of researches on the characteristics of the polishing pad and its action on the CMP process. Polyurethane polishing pads are widely used in the field of chemical mechanical polishing due to their excellent properties.
  • The main parameter for evaluating the polishing effect is the grinding rate. The main factors affecting mechanical polishing are the surface roughness of the polishing pad, the concentration and flow rate of slurry, and the rotation speed of the rotary machine station. In the polishing process, in addition to the contact with the wafer surface, the polishing pad needs a diamond grinding disc to continuously polish the surface of the polishing pad at a certain speed, so as to maintain a certain surface roughness of the polishing pad while scraping off excess slurry.
  • At present, the mainstream production process of the polyurethane polishing pad comprises shaping the raw material by a casting process, slicing the shaped raw material, and then performing the subsequent processes. Due to the strict requirements of the thickness of the product after being sliced, the current research on the slicing process mainly focuses on the thickness control, and the surface roughness of the product after being sliced is not monitored and controlled. Due to different initial surface roughness of the polishing pad, the contact areas of the product to be polished are different, resulting in different initial grinding rates, so that the initial grinding rate of most polishing pads is unstable during use.
  • SUMMARY OF THE PRESENT INVENTION
  • Aiming at deficiencies mentioned above, an object of the present invention is to provide a surface treatment process of a CMP (chemical mechanical polishing) polishing pad, so as to solve the problem that the initial grinding rate is unstable in the chemical mechanical grinding process, thus improving the stability of the polishing pad in the whole polishing process.
  • A surface treatment process of a CMP (chemical mechanical polishing) polishing pad comprises steps of:
  • (S1) determining a final target thickness of a substrate to be D mm;
  • (S2) rough-machining the substrate, which comprises selecting a first abrasive belt with a particle size of 120-mesh, placing the substrate in a sanding machine, sanding the substrate in an alternating manner of a front surface and a reverse surface of the substrate, adjusting a height of the first abrasive belt for several times while changing the front surface and the reverse surface of the substrate till the thickness of the substrate is D+(0.08-0.10) mm;
  • (S3) fine-machining the substrate, which comprises selecting a second abrasive belt with a particle size of 240-mesh, placing the substrate below the second abrasive belt, sanding the substrate in the alternating manner of the front surface and the reverse surface of the substrate, adjusting a height of the second abrasive belt for several times while changing the front surface and the reverse surface of the substrate till the thickness of the substrate is D+(0.01-0.02) mm; and
  • (S4) finish-machining the substrate, which comprises selecting a third abrasive belt with a particle size of 400-mesh, placing the substrate below the third abrasive belt, sanding the substrate in the alternating manner of the front surface and the reverse surface of the substrate, adjusting a height of the third abrasive belt for several times while changing the front surface and the reverse surface of the substrate till the thickness of the substrate reaches the final target thickness of D mm.
  • It should be noted that, the alternating manner of the front surface and the reverse surface of the substrate means that the front surface of the substrate is firstly sanded, and then the height of the corresponding abrasive belt is adjusted, and then the reverse surface of the substrate is sanded. Here, the substrate is sanded in the alternating manner of the front surface and the reverse surface of the substrate for many times, preferably, for twice. In addition, the height of the corresponding abrasive belt is adjusted through adjusting a gap width between an upper roller and a lower roller of a sanding machine; the corresponding abrasive belt is installed on the upper roller and the lower roller; the substrate is placed between the upper roller and the lower roller for being sanded.
  • Preferably, in the step of (S2), an adjusted height of the first abrasive belt every time is not more than 0.09 mm.
  • Preferably, in the step of (S3), an adjusted height of the second abrasive belt every time is not more than 0.04 mm.
  • Preferably, in the step of (S4), an adjusted height of the third abrasive belt every time is not more than 0.02 mm.
  • It should be noted that the height of every abrasive belt is measured and adjusted through an operational panel of the sanding machine.
  • Compared with the prior art, the present invention has some beneficial effects as follows. The surface of the substrate is sanded by sanding belts with different meshes to control the surface roughness of the substrate, so that the initial surface roughness of the substrate is consistent with the surface roughness of the substrate during use, thereby solving the problem of unstable initial grinding rate. The surface treatment process of the substrate provided by the present invention significantly improves the stability of the polishing process of the substrate. In addition, the present invention has characteristics of simple operation, easy monitoring of performance indexes after being processed, and strong process implementation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a contrast result of a surface roughness of a substrate before and after being sanded by an abrasive belt with a particle size of 120-mesh provided by the present invention.
  • FIG. 2 shows a contrast result of a surface roughness of a substrate before and after being sanded by an abrasive belt with a particle size of 240-mesh provided by the present invention.
  • FIG. 3 shows a contrast result of a surface roughness of a substrate before and after being sanded by an abrasive belt with a particle size of 400-mesh provided by the present invention.
  • FIG. 4 shows a contrast result of a grinding rate of unsanded products and sanded substrates.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • To further understand the present invention, the method and effect provided by the present invention are described with reference to embodiments in detail as follows.
  • A sanding machine is available through market purchase. In the present invention, a model of the sanding machine is Buffing machine TS100D.
  • A method for detecting a thickness of a substrate comprises steps of: measuring four different positions of the substrate by a vernier caliper, respectively recording four thickness values of the four different positions, and finally taking an average value of the four thickness values as a final thickness value.
  • First Embodiment
  • In the roughing process, a first abrasive belt with a particle size of 120-mesh and a substrate with a thickness of 2.65 mm are used, the substrate is placed in a sanding machine, a height of the first abrasive belt is adjusted to 2.56 mm, a front side of the substrate is sanded for a period of time and then the height of the first abrasive belt is adjusted to 2.47 mm, and then a reverse side of the substrate is sanded, and the thickness of the substrate is 2.47 mm measured by a vernier caliper.
  • In the fine process, a second abrasive belt with a particle size of 240-mesh is used, the above substrate is placed in the sanding machine, a height of the second abrasive belt is adjusted to 2.43 mm, the front side of the substrate is sanded for a period of time and then the height of the second abrasive belt is adjusted to 2.39 mm, and then the reverse side of the substrate is sanded, and the thickness of the substrate is 2.39 mm measured by the vernier caliper.
  • In the finishing process, a third abrasive belt with a particle size of 400-mesh is used, the above substrate is placed in the sanding machine, a height of the third abrasive belt is adjusted to 2.37 mm, the front side of the substrate is sanded for a period of time and then the height of the third abrasive belt is adjusted to 2.35 mm, and then the reverse side of the substrate is sanded, and then the substrate is sanded in accordance with above mentioned procedures in following stages, wherein an adjusted height of the corresponding abrasive belt every time is not more than 0.02 mm till the thickness of the substrate is 2.30 mm.
  • Second Embodiment
  • In the roughing process, a first abrasive belt with a particle size of 120-mesh and a substrate with a thickness of 2.65 mm are used, the substrate is placed in a sanding machine, a height of the first abrasive belt is adjusted to 2.56 mm, a front side of the substrate is sanded for a period of time and then the height of the first abrasive belt is adjusted to 2.47 mm, and then a reverse side of the substrate is sanded, and then the height of the first abrasive belt is adjusted to 2.39 mm, and then the front side of the substrate is sanded, and the thickness of the substrate is 2.39 mm measured by a vernier caliper.
  • In the fine process, a second abrasive belt with a particle size of 240-mesh is used, the above substrate is placed in a sanding machine, a height of the second abrasive belt is adjusted to 2.36 mm, the front side of the substrate is sanded for a period of time and then the height of the second abrasive belt is adjusted to 2.33 mm, and then the reverse side of the substrate is sanded, and the thickness of the substrate is 2.33 mm measured by the vernier caliper.
  • In the finishing process, a third abrasive belt with a particle size of 400-mesh is used, the above substrate is placed in the sanding machine, a height of the third abrasive belt is adjusted to 2.32 mm, the front side of the substrate is sanded for a period of time and then the height of the abrasive belt is adjusted to 2.31 mm, and then the reverse side of the substrate is sanded for a period of time, and then the height of the third abrasive belt is adjusted to 2.30 mm, and then the front side of the substrate is sanded again till the thickness of the substrate is 2.30 mm.
  • In order to verify the effect of the surface treatment process provided by the present invention, relevant parameters of some of the products of the above two embodiments are measured.
  • (1) A method for measuring a roughness comprises steps of:
  • measuring four different positions of a product by a roughness instrument, respectively recording four roughness magnitudes of the four different positions, and finally taking an average value of the four roughness magnitudes as a final roughness magnitude. Products according to the first embodiment of the present invention are selected randomly and divided into four groups, the roughness of the substrate at each stage of the sanding treatment are respectively measured to obtain specific results of the roughness, which are shown in FIGS. 1 to 3.
  • It can be seen from FIGS. 1 to 3, after the front surface of the substrate is processed by the abrasive belts with 100-mesh, 240-mesh and 400-mesh, respectively, the roughness of the substrate is kept within a range of 2000-3000 Ra, thereby effectively controlling the roughness of the product.
  • (2) Stability test of the initial grinding rate:
  • Experimental procedures are as follows. The product in the first embodiment and the unsanded product are respectively made into a polishing pad in the same manner, and then the polishing pad is mounted on the polishing machine for actual machine testing. The polishing machine is a fully automatic machine. During the polishing process, the grinding rate is monitored in different time periods, and the result is directly fed back to a computer, which is shown in FIG. 4.
  • It can be seen from FIG. 4 that a polishing pad made from a substrate that has not been sanded has a large difference between an initial grinding rate and a later grinding rate during the grinding process, so that the stability of the polishing pad is poor during the overall grinding process. However, a polishing pad made from a substrate that has been sanded has an initial grinding rate basically consistent with a later grinding rate during the grinding process, and has high stability. In summary, the stability of the product during the polishing process can be improved by controlling the stability of the surface roughness of the product, especially the stability of the initial grinding rate.
  • The above is only the preferred embodiment of the present invention, and is not intended to limit the protective scope of the present invention. The protective scope of the present invention is defined by the appended claims. Equivalent structural changes made by using the contents of the specification of the present invention should be included in the protective scope of the present invention.

Claims (4)

What is claimed is:
1. A surface treatment process of a CMP (chemical mechanical polishing) polishing pad, comprising steps of:
(S1) determining a final target thickness of a substrate to be D mm;
(S2) rough-machining the substrate, which comprises selecting a first abrasive belt with a particle size of 120-mesh, placing the substrate in a sanding machine, sanding the substrate in an alternating manner of a front surface and a reverse surface of the substrate, adjusting a height of the first abrasive belt for several times while changing the front surface and the reverse surface of the substrate till the thickness of the substrate is D+(0.08-0.10) mm;
(S3) fine-machining the substrate, which comprises selecting a second abrasive belt with a particle size of 240-mesh, placing the substrate below the second abrasive belt, sanding the substrate in the alternating manner of the front surface and the reverse surface of the substrate, adjusting a height of the second abrasive belt for several times while changing the front surface and the reverse surface of the substrate till the thickness of the substrate is D+(0.01-0.02) mm; and
(S4) finish-machining the substrate, which comprises selecting a third abrasive belt with a particle size of 400-mesh, placing the substrate below the third abrasive belt, sanding the substrate in the alternating manner of the front surface and the reverse surface of the substrate, adjusting a height of the third abrasive belt for several times while changing the front surface and the reverse surface of the substrate till the thickness of the substrate reaches the final target thickness of D mm.
2. The surface treatment process, as recited in claim 1, wherein in the step of (S2), an adjusted height of the first abrasive belt every time is not more than 0.09 mm.
3. The surface treatment process, as recited in claim 1, wherein in the step of (S3), an adjusted height of the second abrasive belt every time is not more than 0.04 mm.
4. The surface treatment process, as recited in claim 1, wherein in the step of (S4), an adjusted height of the third abrasive belt every time is not more than 0.02 mm.
US16/211,236 2018-08-24 2018-12-06 Surface treatment process of CMP Polishing pad Abandoned US20190105752A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810971728.7A CN109093538A (en) 2018-08-24 2018-08-24 A kind of CMP pad treatment process
CN201810971728.7 2018-08-24

Publications (1)

Publication Number Publication Date
US20190105752A1 true US20190105752A1 (en) 2019-04-11

Family

ID=64851257

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/211,236 Abandoned US20190105752A1 (en) 2018-08-24 2018-12-06 Surface treatment process of CMP Polishing pad

Country Status (2)

Country Link
US (1) US20190105752A1 (en)
CN (1) CN109093538A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113182941A (en) * 2021-04-29 2021-07-30 合肥江丰电子材料有限公司 Automatic polishing process method of copper-containing target material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110744404A (en) * 2019-09-10 2020-02-04 西北稀有金属材料研究院宁夏有限公司 Beryllium plate surface treatment method
CN112975593A (en) * 2021-04-29 2021-06-18 合肥江丰电子材料有限公司 Automatic polishing process method of molybdenum-containing target material
CN113084674A (en) * 2021-04-29 2021-07-09 合肥江丰电子材料有限公司 Automatic polishing process method of aluminum-containing target material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101791779A (en) * 2009-12-03 2010-08-04 北京有色金属研究总院 Semiconductor silicon wafer manufacture process
KR101417274B1 (en) * 2012-05-23 2014-07-09 삼성전자주식회사 Polishing pad and manufacturing method thereof
TWI663018B (en) * 2012-09-24 2019-06-21 日商荏原製作所股份有限公司 Grinding method and grinding device
CN104227511A (en) * 2013-06-21 2014-12-24 镇江德隆机电设备有限公司 Tool polishing method
CN107225439A (en) * 2017-07-20 2017-10-03 繁昌县华特机械制造有限公司 A kind of stainless steel pipe surface glossing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113182941A (en) * 2021-04-29 2021-07-30 合肥江丰电子材料有限公司 Automatic polishing process method of copper-containing target material

Also Published As

Publication number Publication date
CN109093538A (en) 2018-12-28

Similar Documents

Publication Publication Date Title
US20190105752A1 (en) Surface treatment process of CMP Polishing pad
US5569062A (en) Polishing pad conditioning
TWI565562B (en) Method for monitoring a polishing surface of a polishing pad used in polishing apparatus, and polishing apparatus
Heinzel et al. Engineered wheels for grinding of optical glass
KR101624151B1 (en) Machining process of semiconductor wafer
KR20080007165A (en) Method for the simultaneous double-side grinding of a plurality of semiconductor wafers, and semiconductor wafer having outstanding flatness
US20130217306A1 (en) CMP Groove Depth and Conditioning Disk Monitoring
Sanchez et al. Surface finishing of flat pieces when submitted to lapping kinematics on abrasive disc dressed under several overlap factors
WO2019146336A1 (en) Seed crystal for 4h-sic single-crystal growth, and method for processing said seed crystal
CN101733697B (en) Silicon chip polishing method
Fiocchi et al. Ultra-precision face grinding with constant pressure, lapping kinematics, and SiC grinding wheels dressed with overlap factor
Jeong et al. CMP pad break-in time reduction in silicon wafer polishing
Johnson et al. New approach for pre-polish grinding with low subsurface damage
Barylski et al. Finishing of ceramics in a single-disk lapping machine configuration
JP2000094303A (en) Grinding method and grinding device
WO2016196216A1 (en) Methods for processing semiconductor wafers having a polycrystalline finish
CN113231921B (en) Metal plate fatigue sample polishing device and method
JP2003103460A (en) Method and device for grinding workpiece surface into superfinished surface having oil retaining part
CN104551961A (en) Double-side polishing method of 12-inch silicon wafer
Tawakoli et al. T-dress, A novel approach in dressing and structuring of grinding wheels
JP4154522B2 (en) Lapping machine control device
Barylski et al. Microgrinding of flat surfaces on single-disc lapping machine
Yu et al. Spectral analysis of surface roughness features of a lapped ultraprecision single-point diamond machined surface
Kimura et al. Dressing of coarse-grained diamond wheels for ductile machining of brittle materials
Tsai et al. Development of Combined Diamond Impregnated Lapping Plates

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION