JPH03249604A - Multilayered optical interference film - Google Patents

Multilayered optical interference film

Info

Publication number
JPH03249604A
JPH03249604A JP2047514A JP4751490A JPH03249604A JP H03249604 A JPH03249604 A JP H03249604A JP 2047514 A JP2047514 A JP 2047514A JP 4751490 A JP4751490 A JP 4751490A JP H03249604 A JPH03249604 A JP H03249604A
Authority
JP
Japan
Prior art keywords
refractive index
layers
titanium dioxide
sodium fluoride
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2047514A
Other languages
Japanese (ja)
Other versions
JP2778784B2 (en
Inventor
Masahiro Oishi
大石 正浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP2047514A priority Critical patent/JP2778784B2/en
Publication of JPH03249604A publication Critical patent/JPH03249604A/en
Application granted granted Critical
Publication of JP2778784B2 publication Critical patent/JP2778784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To obtain required optical characteristics with a small number of layers and to make improvement in durability by depositing multilayered films alternately laminated with high-refractive index layer consisting of titanium dioxide and low-refractive index layers consisting of sodium fluoride on a sub strate surface. CONSTITUTION:The multilayered films 5 which reflects and projects the light emitted from a light source 3 are deposited on the inside surface on a recessed part 2 side of a light projecting reflector 1 and the multilayered films 5 are formed by adopting the titanium dioxide as a high-refractive index material and the sodium fluoride as a low-refractive index material. The sodium fluoride is low in refractive index and is chemically stable and is, therefore, highly resistant to heat and weather. Since the titanium dioxide is high in refractive index ratio, the required optical characteristics are obtd. with a smaller number of the layers and the adaptability of the lamination to both is good. The required optical characteristics are obtd. with the smaller number of the layers; in addition, the excellent heat resistance and weatherability are obtd.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、投光照明用の多層膜反射鏡などのように−様
な厚さの薄膜を多層重ね各面での反射光の干渉を利用し
て特定の分光透過率を持たせた多層光干渉膜に係り、特
に、少ない層数で必要とする光学特性が得られ、かつ耐
久性を向上した多層光干渉膜に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention is directed to a multi-layered thin film of various thicknesses, such as a multilayer reflector for floodlights. The present invention relates to a multilayer optical interference film that has a specific spectral transmittance by utilizing the interference of reflected light, and particularly relates to a multilayer optical interference film that can obtain the required optical properties with a small number of layers and has improved durability. .

(従来の技術) 近年、ガラス製投光レフレクタの内面に高屈折物質と低
屈折率物質との各薄膜を交互に積層した多層膜で形成さ
れる多層膜反射鏡が、投影器、店舗用照明、医療用照明
などの光源として多く使用されている。
(Prior Art) In recent years, multilayer film reflectors, which are made of a multilayer film in which thin films of high refractive index materials and thin films of low refractive index materials are alternately laminated on the inner surface of a glass flood reflector, have been used for projectors and store lighting. It is often used as a light source for medical lighting, etc.

このような多層膜反射鏡は、可視光線をできるだけ反射
し長波長の赤外領域の熱線を透過させることにより、照
明された物体を熱線によって加熱することを少なくシ、
かつ光源からの熱線が多層膜を透過する際に吸収によっ
て投光レフレクタが加熱されない、いわゆる冷光鏡とし
ての特徴を有している。一般に冷光鏡は鏡面に高屈折物
質と低屈折率物質との薄膜を交互に積層した多層膜で形
成されるが、積層される各物質の屈折率の比が大きいほ
ど高い反射率と広い反射帯を有するものである。冷光鏡
に使用される物質の組合わせと、その屈折率の比を表−
1に示す。この表−1から、広い反射帯域を得るには高
屈折率物質として硫化亜鉛(Z n S)を、また低屈
折率物質として弗化マグネシウム(MgF2)を採用す
るのが有利でしかしながら、表−2に示すように、上記
したZ n S  M g F 2からなる多層膜は、
屈折率比は高いが、耐熱性、耐候性に問題がある。すな
わち、ZnS−MgF2からなる多層膜はハロゲンラン
プなどのように高熱を発生する光源に適用すると、高温
を受けることにより、短時間で剥離し、かつ表層部のZ
nSが酸化されて白濁する。通常、ハロゲンランプを点
灯した場合、反射鏡の熱負荷が350℃のとき30時間
、300℃のとき100時間で使用不能になる。また、
ZnSは吸湿性があるため、温度50℃、湿度90%の
雰囲気に50時間放置すると、膜が剥離してしまう。
By reflecting as much visible light as possible and transmitting long-wavelength infrared heat rays, such multilayer mirrors reduce heating of illuminated objects by heat rays.
Moreover, when the heat rays from the light source are transmitted through the multilayer film, the projection reflector is not heated due to absorption, and has the feature of a so-called cold light mirror. In general, a cold light mirror is formed of a multilayer film in which thin films of high refractive index materials and low refractive index materials are alternately laminated on the mirror surface. It has the following. Table of combinations of materials used in cold light mirrors and their refractive index ratios.
Shown in 1. From Table 1, it is advantageous to use zinc sulfide (ZnS) as a high refractive index material and magnesium fluoride (MgF2) as a low refractive index material in order to obtain a wide reflection band. As shown in 2, the multilayer film made of Z n S M g F 2 described above is
Although it has a high refractive index ratio, it has problems with heat resistance and weather resistance. In other words, when a multilayer film made of ZnS-MgF2 is applied to a light source that generates high heat, such as a halogen lamp, it will peel off in a short time due to the high temperature, and the Zn of the surface layer will be removed.
nS is oxidized and becomes cloudy. Normally, when a halogen lamp is turned on, it becomes unusable after 30 hours when the heat load on the reflector is 350°C and 100 hours when the temperature is 300°C. Also,
Since ZnS is hygroscopic, the film will peel off if left in an atmosphere of 50° C. and 90% humidity for 50 hours.

これに対し、TiO2−5i02からなる多層膜は、耐
熱性および耐候性には優れているが、ZnS−MgF2
からなる多層膜と同程度の光学特性を得ようとすれば、
ZnS−MgF2多層膜は25層の積層であるのに対し
TiO2−5iOダ多層膜は膜の積層数を50%近く多
い35層とする必要があり、高価になるので、経済的な
面から実用性に問題がある。
On the other hand, multilayer films made of TiO2-5i02 have excellent heat resistance and weather resistance, but ZnS-MgF2
If you want to obtain the same optical properties as a multilayer film consisting of
While the ZnS-MgF2 multilayer film has 25 layers, the TiO2-5iO multilayer film requires nearly 50% more layers to 35 layers, making it more expensive, so it is not practical from an economic standpoint. I have a sexual problem.

本発明は、上記事情に鑑みてなされたもので、少ない層
数で必要とする光学特性が得られ、かつ耐熱性および耐
候性に優れた多層光干渉膜を提供することを目的とする
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a multilayer optical interference film that can obtain necessary optical properties with a small number of layers and has excellent heat resistance and weather resistance.

(以下余白) ここで、 H物質・・・・・・高屈折率物質 り物質・・・・・・低屈折率物質 NH・・・・・・高屈折率物質の屈折率NL ・・・・
・・低屈折率物質の屈折率〔発明の構成コ (課題を解決するための手段と作用) 本発明は、上記目的を達成するために、基体面に二酸化
チタンからなる高屈折率層と弗化ナトリウムからなる低
屈折率層とを交互に積層した多層膜を被着してなる構成
としたので、少ない層数で必要とする光学特性が得られ
、かつ優れた耐熱性および耐候性を得ることができる。
(Left below) Here, H substance...High refractive index material...Low refractive index material NH...Refractive index NL of high refractive index material...
...Refractive index of low refractive index substance [Constitution of the invention (Means and effects for solving the problem) In order to achieve the above object, the present invention includes a high refractive index layer made of titanium dioxide and a fluorine film on the substrate surface. The structure is made up of a multilayer film in which low refractive index layers made of sodium chloride are laminated alternately, so the required optical properties can be obtained with a small number of layers, and excellent heat resistance and weather resistance can be obtained. be able to.

(実施例) 以下、図面を参照して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の多層膜反射鏡の断面図、第
2図は本発明の一実施例の多層膜の分光透過率特性を示
した図である。
FIG. 1 is a sectional view of a multilayer film reflecting mirror according to an embodiment of the present invention, and FIG. 2 is a diagram showing spectral transmittance characteristics of the multilayer film according to an embodiment of the present invention.

第1図に示すように、基体となる硬質ガラス製投光レフ
レクタlはその一面を拡開させた回転放物状の凹部2を
有して形成され、この凹部2の中心には、例えばハロゲ
ンランプからなる光源3が装着される。この投光レフレ
クタ1の前面には安全のため前面ガラス4が取付けられ
る。
As shown in FIG. 1, a hard glass floodlight reflector l serving as a base is formed with a recess 2 in the shape of a paraboloid of revolution expanded on one side. A light source 3 consisting of a lamp is attached. A front glass 4 is attached to the front of the light projecting reflector 1 for safety.

また、投光レフレクタ1の凹部2側の内面上には光源3
から発せられる光を反射投光する多層膜5が被着されて
いる。この多層膜5は、高屈折率物質として屈折率2.
3の二酸化チタン(T i02 ) 、低屈折率物質と
して屈折率1.3の弗化ナトリウム(NaF)を採用し
、表−3に示す膜構成、膜厚で形成される。すなわち、
第1層から第9層までの光学膜厚が1/4λa (λa
 −800nm )および第10層から第17層までの
光学膜厚対膜5bが1/4λb (λb −450nm
 )である各物質の薄膜が、第1層を二酸化チタンから
なる層とし第2層から交互に積層された交互層である。
Furthermore, a light source 3 is provided on the inner surface of the light emitting reflector 1 on the concave portion 2 side.
A multilayer film 5 is deposited to reflect and project light emitted from the surface. This multilayer film 5 is made of a high refractive index material with a refractive index of 2.
Titanium dioxide (T i02 ) of No. 3 and sodium fluoride (NaF) with a refractive index of 1.3 are used as the low refractive index substance, and are formed with the film structure and film thickness shown in Table 3. That is,
The optical film thickness from the first layer to the ninth layer is 1/4λa (λa
-800nm) and the optical film thickness from the 10th layer to the 17th layer is 1/4λb (λb -450nm)
) are alternate layers in which the first layer is a layer made of titanium dioxide and the second layer is alternately laminated.

従って、第17層は二酸化チタン層となる。Therefore, the 17th layer becomes a titanium dioxide layer.

この多層膜5の形成方法は、例えば、真空蒸着法によっ
て行なわれる。二酸化チタン層は、酸素およびアルゴン
を導入した、8×10づ〜1×10−’ Torrの低
真空雰囲気内で、反射鏡温度を100〜300℃とし、
蒸着母材を電子ビームで衝撃することによって、投光レ
フレクタlあるいは弗化ナトリウム層上に蒸着される。
The method for forming this multilayer film 5 is, for example, a vacuum evaporation method. The titanium dioxide layer was formed in a low vacuum atmosphere of 8 x 10 - 1 x 10 -' Torr with oxygen and argon introduced, with a reflector temperature of 100 - 300 °C.
It is deposited on the projection reflector l or the sodium fluoride layer by bombarding the deposition base material with an electron beam.

また、弗化ナトリウム層は、アルゴンを導入した上記圧
力の低真空雰囲気内で、反射鏡温度を100〜300℃
とし、蒸着母材を抵抗加熱することによって、二酸化チ
タン層上に蒸着される。
In addition, the sodium fluoride layer was formed in a low vacuum atmosphere at the above pressure with argon introduced, and the reflector temperature was adjusted to 100 to 300°C.
The titanium dioxide layer is then deposited on the titanium dioxide layer by resistance heating the deposition base material.

上記方法により表−3に示す膜構成、膜厚で形成された
Ti02−NaFからなる多層膜5は、両層の屈折率比
がNH/NL−1,77で、第2図に示す分光透過特性
を有しており、これは第3図に示す従来のTiO2−5
i02多層膜の分光透過特性とほぼ同等である。このよ
うに両多層膜はほぼ同等の光学特性を有しているが、こ
の光学特性を得るために、T i 02  S i 0
2多層膜は35層の積層を必要とするのに対し、TiO
2−NaF多層膜5は17層の積層で済む。
The multilayer film 5 made of Ti02-NaF formed by the above method with the film structure and film thickness shown in Table 3 has a refractive index ratio of both layers of NH/NL-1,77, and a spectral transmission shown in FIG. The conventional TiO2-5 shown in Figure 3 has the following characteristics.
The spectral transmission characteristics are almost the same as those of the i02 multilayer film. In this way, both multilayer films have almost the same optical properties, but in order to obtain these optical properties, T i 02 S i 0
2 multilayer film requires a stack of 35 layers, whereas TiO
The 2-NaF multilayer film 5 only needs to be laminated with 17 layers.

また、弗化ナトリウムは化学的に安定で二酸化チタンと
の積層の際の適合性が従来の積層に比較して極めて良好
であり、TiO2−NaF多層膜5は熱負荷に対して剥
離しにくく、また高温高湿の環境に耐えられる。従って
、TiO2−NaF多層膜5を被着した多層膜反射鏡は
高出力ランプにも耐え、長寿命で耐候性も良い。このT
i02−NaF多層膜5の耐熱性と耐候性について行な
った試験の結果を表−4に示す。ここで、耐熱性はラン
プ点灯時の反射部の温度である300℃と350℃とに
おける剥離開始までの時間で示し、耐候性は温度50℃
、湿度90%の雰囲気中における剥離開始までの時間で
示している。表−2におけるTiO2−5i02多層膜
の耐熱性と耐候性と比較し、実施例のTi02−NaF
多層膜5が耐熱性と耐候性に優れ、長寿命で苛酷な使用
条件にも耐えられることが明らかである。
In addition, sodium fluoride is chemically stable and has extremely good compatibility with titanium dioxide when laminated compared to conventional lamination, and the TiO2-NaF multilayer film 5 is difficult to peel off under heat load. It can also withstand high temperature and high humidity environments. Therefore, the multilayer reflector coated with the TiO2-NaF multilayer film 5 can withstand high-power lamps, has a long life, and has good weather resistance. This T
Table 4 shows the results of tests conducted on the heat resistance and weather resistance of the i02-NaF multilayer film 5. Here, heat resistance is expressed as the time until peeling starts at 300°C and 350°C, which are the temperatures of the reflective part when the lamp is lit, and weather resistance is measured at a temperature of 50°C.
, is shown as the time until the start of peeling in an atmosphere with a humidity of 90%. Comparing the heat resistance and weather resistance of the TiO2-5i02 multilayer film in Table 2, the Ti02-NaF
It is clear that the multilayer film 5 has excellent heat resistance and weather resistance, has a long life, and can withstand harsh usage conditions.

上記したように、弗化ナトリウムは屈折率が1゜3と小
さく、かつ化学的に安定しているので耐熱性と耐候性に
優れている。さらに二酸化チタンと弗化ナトリウムとは
屈折率比が大きいので少ない層数で必要とする光学特性
が得られ、また両者の積層の適合性が良いので剥離し難
く、耐熱性と耐候性に優れた膜が得られる。
As mentioned above, sodium fluoride has a small refractive index of 1°3 and is chemically stable, so it has excellent heat resistance and weather resistance. Furthermore, titanium dioxide and sodium fluoride have a large refractive index ratio, so the required optical properties can be obtained with a small number of layers, and because the compatibility of the two layers is good, it is difficult to peel off and has excellent heat resistance and weather resistance. A membrane is obtained.

なお、上記実施例では、多層光干渉膜を多層膜反射鏡へ
適用した例について説明したが、これに限らず、例えば
色フィルタ膜、あるいは紫外線遮断膜などに適用しても
よい。
In the above embodiment, an example in which the multilayer optical interference film is applied to a multilayer film reflecting mirror has been described, but the present invention is not limited to this, and may be applied to, for example, a color filter film or an ultraviolet blocking film.

また、上記実施例では、膜の形成方法を真空蒸着法とし
たが、これに限らず、イオンブレーティング法、イオン
アシスト法、CV D (ChemicalVapor
 Deposition )法など他の形成方法でもよ
い。
Furthermore, in the above embodiments, the method of forming the film was a vacuum evaporation method, but the method is not limited to this, and may be an ion blating method, an ion assist method, or a CVD (Chemical Vapor Deposition method).
Other forming methods such as a deposition method may also be used.

また、上記実施例では、基体としてガラス製投光レフレ
クタについて説明したが、これに限らず、例えばフィル
タ基板など用途に適したものであればよく、またその形
状や材質は適宜選択すればよい。
Further, in the above embodiments, a glass floodlight reflector is used as the base body, but the base body is not limited to this, and any base body suitable for the purpose may be used, such as a filter substrate, and the shape and material thereof may be appropriately selected.

また、二酸化チタン層および弗化ナトリウム層の少なく
とも一方にガラス質強化剤や散光性微粒子などを含有さ
せることは適宜実施してもよい。
Further, at least one of the titanium dioxide layer and the sodium fluoride layer may contain a vitreous reinforcing agent, light-diffusing fine particles, etc. as appropriate.

また、本発明は上記実施例に限定されることなく、本発
明の要旨を逸脱しない範囲において、種々変形可能なこ
とは勿論である。
Furthermore, it goes without saying that the present invention is not limited to the above embodiments, and can be modified in various ways without departing from the gist of the present invention.

(以下余白) λam 600sc λb纏450■謳 [発明の効果コ 以上詳述したように、本発明の多層光干渉膜によれば、
基体面に二酸化チタンからなる高屈折率層と弗化ナトリ
ウムからなる低屈折率層とを交互積層する構成としたこ
とにより、大きな屈折率比が得られ、かつ各成分が化学
的に安定で積層時における適合性がよいので、少ない層
数でも必要とする光学特性を得ることができ、かつ優れ
た耐熱性と耐候性が得られ長寿命で苛酷な使用条件に耐
えることができる。
(Space below) λam 600sc λb 450 ■ Effects of the Invention As detailed above, according to the multilayer optical interference film of the present invention,
By adopting a structure in which high refractive index layers made of titanium dioxide and low refractive index layers made of sodium fluoride are alternately laminated on the substrate surface, a large refractive index ratio can be obtained, and each component is chemically stable and laminated. Since it has good compatibility with various times, it is possible to obtain the required optical properties even with a small number of layers, and it also has excellent heat resistance and weather resistance, and can withstand harsh usage conditions with a long life.

また、積層する層数が少ないので、経済的な面でもコス
トダウンが図かれるなど実用的な効果を奏する。
Furthermore, since the number of layers to be laminated is small, there are practical effects such as economical cost reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の多層膜反射鏡の断面図、第
2図は本発明の一実施例の多層膜の分光透過率特性を示
す曲線図、第3図は従来の多層膜の分光透過率特性を示
す曲線図である。 l・・・投光レフレクタ(基体)、5・・・多層反射膜
FIG. 1 is a cross-sectional view of a multilayer film reflecting mirror according to an embodiment of the present invention, FIG. 2 is a curve diagram showing the spectral transmittance characteristics of a multilayer film according to an embodiment of the present invention, and FIG. 3 is a diagram showing a conventional multilayer film. It is a curve diagram showing the spectral transmittance characteristics of. 1...Light projection reflector (substrate), 5...Multilayer reflective film.

Claims (1)

【特許請求の範囲】[Claims] 基体面に二酸化チタンからなる高屈折率層と弗化ナトリ
ウムからなる低屈折率層とを交互に積層した多層膜を被
着してなることを特徴とする多層光干渉膜。
A multilayer optical interference film comprising a multilayer film in which a high refractive index layer made of titanium dioxide and a low refractive index layer made of sodium fluoride are alternately laminated on a substrate surface.
JP2047514A 1990-02-28 1990-02-28 Multilayer reflector for light source Expired - Fee Related JP2778784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2047514A JP2778784B2 (en) 1990-02-28 1990-02-28 Multilayer reflector for light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2047514A JP2778784B2 (en) 1990-02-28 1990-02-28 Multilayer reflector for light source

Publications (2)

Publication Number Publication Date
JPH03249604A true JPH03249604A (en) 1991-11-07
JP2778784B2 JP2778784B2 (en) 1998-07-23

Family

ID=12777222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2047514A Expired - Fee Related JP2778784B2 (en) 1990-02-28 1990-02-28 Multilayer reflector for light source

Country Status (1)

Country Link
JP (1) JP2778784B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188203A (en) * 1984-10-06 1986-05-06 Nec Corp Band-pass light interference film filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188203A (en) * 1984-10-06 1986-05-06 Nec Corp Band-pass light interference film filter

Also Published As

Publication number Publication date
JP2778784B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
US5143445A (en) Glass reflectors lpcvd coated with optical interference film
US5177396A (en) Mirror with dichroic coating lamp housing
US4839553A (en) Reflector lamp having complementary dichroic filters on the reflector and lens for emitting colored light
JPH02120801A (en) Surface reflecting mirror made of multilayered film
US6441541B1 (en) Optical interference coatings and lamps using same
US3528725A (en) Color temperature correction light transmitting filter
US6471376B1 (en) Increased life reflector lamps
JPH03249604A (en) Multilayered optical interference film
JP2002042526A (en) Lighting device and filter for improving color- representation
US5142197A (en) Light interference film and lamp
JP2842721B2 (en) Neodymium color floodlight multilayer reflector
JP3031625B2 (en) Heat ray absorbing reflector
JP3054663B2 (en) Multilayer reflector
JP2687243B2 (en) Multilayer optical interference film
JP2002006123A (en) Light reflecting body and reflective lighting apparatus
JP2005266211A (en) Multilayer film reflecting mirror
JP2928784B2 (en) Multilayer reflector
JPH04240803A (en) Reflection mirror made of multilayered films
JPH0629882B2 (en) Multilayer film mirror
JP3102959B2 (en) High durability thin film
JP3266335B2 (en) Back reflector
JP3054664B2 (en) Multilayer reflector
JPH0434501A (en) Multilayered optical interference film
JP3110131B2 (en) High durability thin film
JPH02120802A (en) Surface reflecting mirror made of multilayered film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees