JPH03249565A - Magneto-optical film for magnetic field sensor - Google Patents
Magneto-optical film for magnetic field sensorInfo
- Publication number
- JPH03249565A JPH03249565A JP2045543A JP4554390A JPH03249565A JP H03249565 A JPH03249565 A JP H03249565A JP 2045543 A JP2045543 A JP 2045543A JP 4554390 A JP4554390 A JP 4554390A JP H03249565 A JPH03249565 A JP H03249565A
- Authority
- JP
- Japan
- Prior art keywords
- film
- magnetic field
- magneto
- magnetic
- film thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012788 optical film Substances 0.000 title claims abstract description 14
- 239000010408 film Substances 0.000 claims abstract description 64
- 239000002223 garnet Substances 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000013078 crystal Substances 0.000 claims abstract description 7
- 230000000694 effects Effects 0.000 claims abstract description 7
- ZPDRQAVGXHVGTB-UHFFFAOYSA-N gallium;gadolinium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Gd+3] ZPDRQAVGXHVGTB-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000007791 liquid phase Substances 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 23
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 238000002834 transmittance Methods 0.000 abstract description 3
- 238000009738 saturating Methods 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- RUDATBOHQWOJDD-BSWAIDMHSA-N chenodeoxycholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 RUDATBOHQWOJDD-BSWAIDMHSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、磁気光学効果を利用した磁界センサ、特に微
弱な磁界及びミクロな磁界の不均一さを検出するのに好
適な高感度の磁界センサーの検出部に用いられる磁気光
学膜に関する。Detailed Description of the Invention [Industrial Application Field] The present invention relates to a magnetic field sensor that utilizes the magneto-optical effect, particularly a highly sensitive magnetic field suitable for detecting weak magnetic fields and microscopic non-uniformity of magnetic fields. The present invention relates to a magneto-optical film used in a detection section of a sensor.
従来、磁性ガーネット膜の有する磁気光学効果を利用し
た磁界センサーは電力分野で多く用いられている。これ
は主に送電線の電流検出を目的としているため、環境の
変化に対して磁気光学特性が安定であることが望まれ、
そのために感度係数の温度変化による変化が小さい材料
を用いることが要求されていた。尚、一般に磁界センサ
ーの感度は、磁気ガーネット膜の飽和に要する磁界をH
s、ファラデー回転角をθ、光の透過率をηとすると、
下式に示す感度係数で表わされる。Conventionally, magnetic field sensors that utilize the magneto-optical effect of magnetic garnet films have been widely used in the power field. Since this is mainly intended for detecting current in power transmission lines, it is desirable that the magneto-optical properties be stable against changes in the environment.
Therefore, it has been required to use a material whose sensitivity coefficient changes little due to temperature changes. Generally, the sensitivity of a magnetic field sensor is determined by the magnetic field required to saturate the magnetic garnet film.
s, Faraday rotation angle is θ, and light transmittance is η, then
It is expressed by the sensitivity coefficient shown in the formula below.
感度係数=θ・η/ Hs
但し、
θ=θ、・d、η=exp (−α・d)θF :フ
ァラデー回転係数(deg/cm)d ニガーネット膜
の膜厚
α :吸収係数(印−1)
である。Sensitivity coefficient = θ・η/Hs However, θ=θ,・d, η=exp (−α・d) θF: Faraday rotation coefficient (deg/cm) d Thickness of nigernet film α: Absorption coefficient (marked − 1).
最近では磁界センサーの用途の多様化に伴い、温度変化
に対する安定性よりも、微弱な磁界を検出できる高感度
の(感度係数の大きい)材料を用いた磁界センサーが求
められるようになってきた。Recently, as the applications of magnetic field sensors have diversified, there has been a demand for magnetic field sensors that use materials with high sensitivity (large sensitivity coefficient) that can detect weak magnetic fields, rather than stability against temperature changes.
即ち、微弱な磁界を検出できること、僅かな磁界の不均
一さを検出できることなどが要求されるようになってき
た。例えば、用途として永久磁石のミクロな欠陥に起因
するミクロな磁界の不均一さの検出などがあげられる。That is, it has become necessary to be able to detect a weak magnetic field and to detect slight non-uniformity of the magnetic field. For example, it can be used to detect microscopic inhomogeneities in magnetic fields caused by microscopic defects in permanent magnets.
従って、これらの磁界センサーに要求される磁気光学膜
の感度係数は大きいほど望ましい(最低でも0.1以上
と考えられる)が、従来の材料では感度係数は0.02
程度であり、未だに満足できる磁気光学膜は得られてい
ない。Therefore, the sensitivity coefficient of the magneto-optical film required for these magnetic field sensors is preferably as large as possible (it is considered to be at least 0.1 or more), but with conventional materials, the sensitivity coefficient is 0.02.
However, a satisfactory magneto-optical film has not yet been obtained.
本発明は、上記問題点に鑑み、微弱な磁界やミクロな磁
界の不均一さを検出できる高感度の磁界センサー用磁気
光学膜を提供することを目的としている。SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a highly sensitive magneto-optical film for a magnetic field sensor that can detect weak magnetic fields and microscopic non-uniformity of magnetic fields.
〔課題を解決するための手段及び作用〕上記問題点を解
決するため、本発明者等は鋭意研究検討を重ねた結果、
カドリニウム・ガリウムガーネット単結晶基板上に液相
エピタキシャル成長させた(GdBi)s(FeAIG
a)50 ++の組成を持つ磁性ガーネット膜は飽和に
要する磁界Hsが極めて小さい材料であり、さらにHs
は磁性ガーネット膜の膜厚によって大きく変化すること
も併せて見い出し、本発明に至った。[Means and effects for solving the problem] In order to solve the above problems, the inventors of the present invention have conducted extensive research and examination, and have found that
(GdBi)s(FeAIG) grown by liquid phase epitaxial growth on a cadrinium gallium garnet single crystal substrate
a) A magnetic garnet film with a composition of 50 ++ is a material that requires an extremely small magnetic field Hs for saturation, and
It has also been found that the value varies greatly depending on the thickness of the magnetic garnet film, leading to the present invention.
θ及びηが大きいほど、またHsが小さい程感度係数θ
・η/Hsは大きくなり、高感度となる。The larger θ and η, and the smaller Hs, the greater the sensitivity coefficient θ.
- η/Hs increases, resulting in high sensitivity.
しかし、上記感度係数の式かられかるように、磁性ガー
ネット膜の膜厚dが大きくなると、θ及びHsは大きく
なりηは小さくなる。従って、大きな感度係数を得るた
めに必要な磁性ガーネット膜の膜厚dはθ、Hs、
ηの兼ね合いで決まる。更に、θ、ηは膜厚d及び光の
波長に大きく依存するため、磁界センサーに用いる光の
波長が異なると高感度が得られるための適正な磁性ガー
ネット膜の膜厚dも異なってくる。例えば、波長0.6
μm帯の光を用いるとき膜厚は0.5μm〜2μmが望
ましく、波長0.8μm帯の光を用いるとき膜厚は40
μm〜80μmが望ましく、波長1.3μm帯の光を用
いるとき膜厚は90μm〜1鵬が望ましい。However, as can be seen from the sensitivity coefficient equation above, as the thickness d of the magnetic garnet film increases, θ and Hs increase, and η decreases. Therefore, the thickness d of the magnetic garnet film required to obtain a large sensitivity coefficient is θ, Hs,
It is determined by the balance of η. Furthermore, since θ and η largely depend on the film thickness d and the wavelength of light, the appropriate film thickness d of the magnetic garnet film to obtain high sensitivity will also differ if the wavelength of light used in the magnetic field sensor differs. For example, wavelength 0.6
When using light in the μm band, the film thickness is preferably 0.5 μm to 2 μm, and when using light in the 0.8 μm wavelength band, the film thickness is 40 μm.
The film thickness is preferably 90 μm to 1 μm when using light with a wavelength of 1.3 μm.
以下、図示した一実施例に基づき本発明の詳細な説明す
る。Hereinafter, the present invention will be described in detail based on an illustrated embodiment.
X凰正 pするつぼを用いて、PbO221,64g。X 凰正 221.64 g of PbO using a crucible.
Bit Ox 308.47g、B! 01 1
9.75gをフラックスとして、Gdz Oa 7.
45 g。Bit Ox 308.47g, B! 01 1
9.75g as flux, Gdz Oa 7.
45g.
Fes Ox 35.56g、Alz Os 2
.98g。Fes Ox 35.56g, Alz Os 2
.. 98g.
Ga10+ 4.14gを溶かし込み、融液を作製し
た。該融液を770℃〜790℃に加熱しながら、融液
表面に(cdca)s (MgZrGa)a O12の
組成を持つガドリニウム・ガリウムガーネット単結晶基
板を接触させつつ1.0Orpmで回転させることによ
り、該基板の片面に0.3μm〜500μmの範囲で膜
厚を変えて(GdBi)3(FeAIGa)so l
lの組成を持つ磁性ガーネット膜を成長させ、該膜を本
発明による磁気光学膜の測定用試料とした。4.14 g of Ga10+ was dissolved to prepare a melt. By rotating the melt at 1.0 rpm while heating the melt to 770°C to 790°C and contacting the melt surface with a gadolinium gallium garnet single crystal substrate having a composition of (cdca)s(MgZrGa)aO12. , (GdBi)3(FeAIGa)sol was deposited on one side of the substrate with a film thickness varying from 0.3 μm to 500 μm.
A magnetic garnet film having a composition of 1 was grown, and this film was used as a sample for measuring the magneto-optic film according to the present invention.
膜厚の異なる磁性ガーネット膜(磁気光学膜)の飽和に
要する磁界Hsは、EG & G Pr1nceton
Applied Re5earch社製振動試料型磁力
計を用いて測定した。第1図に磁性ガーネット膜の膜厚
と測定されたHsとの関係を示す。この図から明らかな
ように、Hsは膜厚が小さくなるにしたがって小さくな
り、特に膜厚50μm以下で急激に小さくなることが分
かる。又、200μm以上の膜厚ではHsは殆ど変化し
ない。The magnetic field Hs required for saturation of magnetic garnet films (magneto-optical films) with different film thickness is EG & G Pr1nceton
The measurement was performed using a vibrating sample magnetometer manufactured by Applied Research. FIG. 1 shows the relationship between the thickness of the magnetic garnet film and the measured Hs. As is clear from this figure, Hs decreases as the film thickness decreases, and in particular, it decreases rapidly at a thickness of 50 μm or less. Moreover, Hs hardly changes when the film thickness is 200 μm or more.
磁性ガーネット膜のファラデー回転係数θ、及び吸収係
数αの測定は波長0.63μm、0.78μm、1.3
1μmの光に対して行った。波長0.63pmの光には
He−Neレーザー光を、0,78μm、1.31μm
の光はレーザーダイオード光を用いた。θFの測定には
溝尻光学工業製ファラデー効果測定装置を用いた。又、
αの測定には日立製作所製自記分光光度計を用いた。θ
F及びαの測定に先立ち、各光の波長に合わせたSin
、の無反射コートを真空蒸着法により上記ガドリニウム
・ガリウムガーネット単結晶基板及び(GdBi)+(
FeAIGa)501□の組成の磁性カーネット膜の表
面に施した。下記表に各波長における測定されたθ、及
びαを示す。両者共に波長が短いほど大きくなる。The Faraday rotation coefficient θ and absorption coefficient α of the magnetic garnet film were measured at wavelengths of 0.63 μm, 0.78 μm, and 1.3.
The test was performed using 1 μm light. He-Ne laser light is used for light with a wavelength of 0.63 pm, 0.78 μm, and 1.31 μm.
The light used was a laser diode light. A Faraday effect measuring device manufactured by Mizojiri Optical Industries was used to measure θF. or,
A self-recording spectrophotometer manufactured by Hitachi, Ltd. was used to measure α. θ
Prior to the measurement of F and α, the Sin
A non-reflective coating of (GdBi)+(
It was applied to the surface of a magnetic Carnet film having a composition of FeAIGa) 501□. The table below shows the measured θ and α at each wavelength. Both become larger as the wavelength becomes shorter.
表
この表のθF、αと磁性ガーネット膜の膜厚からファラ
デー回転角θと透過率ηが求められる。Table Faraday rotation angle θ and transmittance η can be determined from θF, α and the film thickness of the magnetic garnet film in this table.
これらのθ、η及び第1図から求められるHsを用いて
計算した波長0.63μm、0.78μm、1゜31μ
mの光に対する感度係数と膜厚の関係を第2図及び第3
図に示す。The wavelengths calculated using these θ, η and Hs obtained from Fig. 1 are 0.63 μm, 0.78 μm, and 1°31 μm.
Figures 2 and 3 show the relationship between the film thickness and the sensitivity coefficient for light of m.
As shown in the figure.
但し、第2図及び第3図は磁性ガーネット膜を第4図に
示すような構成の磁界センサーに用いた場合のものを示
している。一般に、磁界センサーの方式は第4図に示す
ような反射を用いる方式と、第5図に示すような透過を
用いる方式とがあるが、同しθを得るのにも反射を用い
た方が磁性ガーネット膜の膜厚が透過を用いるときの1
/2で済むため、Hsを小さくする点及び量産性向上の
点で反射を用いる方式の方が有利である。尚、第4図及
び第5図において、■は光源、2は偏光子、3はガドリ
ニウム・ガリウムガーネット単結晶基板、4は磁性ガー
ネット膜、5は反射膜、6は検光子、7は検出器である
。However, FIGS. 2 and 3 show the case where the magnetic garnet film is used in a magnetic field sensor having the structure shown in FIG. 4. In general, there are two types of magnetic field sensors: one uses reflection as shown in Figure 4, and the other uses transmission as shown in Figure 5.However, it is better to use reflection to obtain θ. The film thickness of the magnetic garnet film is 1 when using transmission.
/2, so the method using reflection is more advantageous in terms of reducing Hs and improving mass productivity. In Figures 4 and 5, ■ is a light source, 2 is a polarizer, 3 is a gadolinium-gallium garnet single crystal substrate, 4 is a magnetic garnet film, 5 is a reflective film, 6 is an analyzer, and 7 is a detector. It is.
第2図より、波長0.63μmの光を用いる場合は、磁
性ガーネット膜の膜厚が小さくなるほど感度係数が大き
くなる傾向にあり、膜厚2μm以下で感度係数は0,1
2以上の高特性が得られることが分かる。しかし、膜厚
が0.5μmより小さい場合膜厚制御が困難になるので
、膜厚制御の容易さという点で膜厚は0.5μm〜2μ
mが好ましい。From Figure 2, when using light with a wavelength of 0.63 μm, the sensitivity coefficient tends to increase as the thickness of the magnetic garnet film decreases, and the sensitivity coefficient is 0.1 when the film thickness is 2 μm or less.
It can be seen that high characteristics of 2 or more can be obtained. However, if the film thickness is smaller than 0.5 μm, it becomes difficult to control the film thickness, so from the viewpoint of ease of controlling the film thickness, the film thickness should be between 0.5 μm and 2 μm.
m is preferred.
又、波長0.78μmの光を用いる場合は、磁性ガーネ
ット膜の膜厚が55μmのときに感度係数のピークを持
ち、40μm〜80μmの範囲で感度係数が0,12以
上の高特性が得られる。Furthermore, when using light with a wavelength of 0.78 μm, the sensitivity coefficient peaks when the thickness of the magnetic garnet film is 55 μm, and high characteristics with a sensitivity coefficient of 0.12 or more can be obtained in the range of 40 μm to 80 μm. .
又、第2図及び第3図より、波長131μmの光を用い
る場合は、磁性ガーネット膜の膜厚が大きくなるほど感
度係数が大きくなる傾向にあり、膜厚が90μm以上で
感度係数が0.12以上の高特性が得られる。しかし、
磁性ガーネット膜の結晶性は膜厚が大きくなるほど劣化
する例えばピットができるため、膜厚はl+am以下で
なければならない。更に望ましくは、膜厚を500μm
以下にすることが好ましい。Furthermore, from FIGS. 2 and 3, when using light with a wavelength of 131 μm, the sensitivity coefficient tends to increase as the thickness of the magnetic garnet film increases, and when the film thickness is 90 μm or more, the sensitivity coefficient is 0.12. The above high characteristics can be obtained. but,
The crystallinity of the magnetic garnet film deteriorates as the film thickness increases, for example, pits are formed, so the film thickness must be 1+am or less. More preferably, the film thickness is 500 μm.
It is preferable to do the following.
上述の如く、本発明による磁界センサー用磁気光学膜は
、微弱な磁界やミクロな磁界の不均一さを検出できる高
感度の磁界センサーを構成し得るという実用上重要な利
点を有している。As described above, the magneto-optical film for a magnetic field sensor according to the present invention has a practically important advantage in that it can constitute a highly sensitive magnetic field sensor that can detect weak magnetic fields and microscopic non-uniformities in magnetic fields.
第1図は本発明による磁界センサー用磁気光学膜の一実
施例である磁性ガーネット膜の膜厚と該膜の飽和に要す
る磁界Hsの関係を示した図、第2図及び第3図は上記
磁性ガーネット膜の膜厚と感度係数の関係を示した図、
第4図及び第5図は夫々反射方式及び透過方式の磁界セ
ンサーの構成図である。
1・・・・光源、2・・・・偏光子、3・・・・ガドリ
ニウム・ガリウムガーネット単結晶基板、4・・・・磁
性ガーネット膜、5・・・・反射膜、6・・・・検光子
、7・・・・検出器。
fl
図
朕
R()Jm)
(愛ポ仁
〈剥重仁
第4
図
第5図
□
皿界FIG. 1 is a diagram showing the relationship between the film thickness of a magnetic garnet film, which is an embodiment of the magneto-optical film for a magnetic field sensor according to the present invention, and the magnetic field Hs required for saturation of the film, and FIGS. 2 and 3 are as described above. A diagram showing the relationship between the film thickness of the magnetic garnet film and the sensitivity coefficient,
FIG. 4 and FIG. 5 are configuration diagrams of a reflection type magnetic field sensor and a transmission type magnetic field sensor, respectively. DESCRIPTION OF SYMBOLS 1... Light source, 2... Polarizer, 3... Gadolinium gallium garnet single crystal substrate, 4... Magnetic garnet film, 5... Reflective film, 6... Analyzer, 7...detector. fl Illustration R()Jm)
Claims (4)
る磁気光学膜において、該膜が、ガドリニウム・ガリウ
ムガーネット単結晶基板上に液相エピタキシャル成長さ
せた(GdBi)_3(FeAlGa)_5O_1_2
の組成を持つ磁性ガーネット膜であることを特徴とする
磁気光学膜。(1) In a magneto-optical film used in a magnetic field sensor using the magneto-optic effect, the film is grown by liquid phase epitaxial growth on a gadolinium gallium garnet single crystal substrate (GdBi)_3(FeAlGa)_5O_1_2
A magneto-optical film characterized by being a magnetic garnet film having a composition of
であるとき膜厚が0.5μm〜2μmであることを特徴
とする請求項(1)に記載の磁気光学膜。(2) The magneto-optical film according to claim 1, wherein the film has a thickness of 0.5 μm to 2 μm when the light used for the magnetic field sensor has a wavelength of 0.6 μm.
であるとき膜厚が40μm〜80μmであることを特徴
とする請求項(1)に記載の磁気光学膜。(3) The magneto-optical film according to claim 1, wherein the film has a thickness of 40 μm to 80 μm when the light used in the magnetic field sensor has a wavelength of 0.8 μm.
であるとき膜厚が90μm〜1mmであることを特徴と
する請求項(1)に記載の磁気光学膜。(4) The magneto-optical film according to claim 1, wherein the film has a thickness of 90 μm to 1 mm when the light used in the magnetic field sensor has a wavelength of 1.3 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2045543A JPH03249565A (en) | 1990-02-28 | 1990-02-28 | Magneto-optical film for magnetic field sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2045543A JPH03249565A (en) | 1990-02-28 | 1990-02-28 | Magneto-optical film for magnetic field sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03249565A true JPH03249565A (en) | 1991-11-07 |
Family
ID=12722283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2045543A Pending JPH03249565A (en) | 1990-02-28 | 1990-02-28 | Magneto-optical film for magnetic field sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03249565A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019090714A (en) * | 2017-11-15 | 2019-06-13 | 株式会社東芝 | Optical magnetic field and current measuring device |
-
1990
- 1990-02-28 JP JP2045543A patent/JPH03249565A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019090714A (en) * | 2017-11-15 | 2019-06-13 | 株式会社東芝 | Optical magnetic field and current measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Magneto-optical properties of spin-coated bismuth-substituted yttrium iron garnet films on silicon substrates at 1550-nm wavelength | |
Mada et al. | Surface order parameter of 4-n-heptyl-4′-cyanobiphenyl | |
JPH03249565A (en) | Magneto-optical film for magnetic field sensor | |
EP0454860B1 (en) | Potential sensor using electro-optical crystal and method of measuring potential | |
CA2131123A1 (en) | Non-reciprocal optical device | |
JPH03249566A (en) | Magneto-optical film for magnetic field sensor | |
Kosmowski et al. | Tilt bias angle measurement with improved sensitivity | |
JPH06250135A (en) | Magneto-optical flaw detecting element | |
JP3269101B2 (en) | Magneto-optical film | |
JPH05834Y2 (en) | ||
JPS62149055A (en) | Magnetooptic element | |
SU711507A1 (en) | Magneto-optical sensor for measuring magnetic field | |
JPH0735727A (en) | Magnetooptic flaw detecting element | |
SU1550584A1 (en) | Method of determining magnetization of sublattices of epitaxial domain-containing ferromagnetic film | |
JPS61213611A (en) | Polishing method for crystal | |
JP2002234797A (en) | Cerium rare earth iron garnet crystal, method of producing the same and magnetic field sensor using single crystal thereof | |
JP2585397B2 (en) | Magnetic field sensor | |
JP2616124B2 (en) | How to make a magnetic sensor | |
Muller et al. | Field control of magneto-optic gratings | |
JPH05119288A (en) | Magneto-optical film of magneto-optical field sensor | |
JPH08105949A (en) | Magnetic field sensor | |
JPS6396567A (en) | Small-sized high sensitivity current sensor | |
JPH04238320A (en) | Faraday effect material and magnetic field sensor | |
JPS62133331A (en) | Method for measuring temperature | |
JPH04242222A (en) | Magnetooptic element and optical isolator using the same |