JP2002234797A - Cerium rare earth iron garnet crystal, method of producing the same and magnetic field sensor using single crystal thereof - Google Patents

Cerium rare earth iron garnet crystal, method of producing the same and magnetic field sensor using single crystal thereof

Info

Publication number
JP2002234797A
JP2002234797A JP2001030136A JP2001030136A JP2002234797A JP 2002234797 A JP2002234797 A JP 2002234797A JP 2001030136 A JP2001030136 A JP 2001030136A JP 2001030136 A JP2001030136 A JP 2001030136A JP 2002234797 A JP2002234797 A JP 2002234797A
Authority
JP
Japan
Prior art keywords
magnetic field
magneto
optical element
rare earth
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001030136A
Other languages
Japanese (ja)
Other versions
JP3950636B2 (en
Inventor
Sadao Higuchi
貞雄 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2001030136A priority Critical patent/JP3950636B2/en
Publication of JP2002234797A publication Critical patent/JP2002234797A/en
Application granted granted Critical
Publication of JP3950636B2 publication Critical patent/JP3950636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the detection sensibility of a sensor by eliminating Cotton-Mouton effect caused by a vertical magnetic field Hb while maintaining a state that the direction of spin of photon is aligned by applying the vertical magnetic field Hb. SOLUTION: The compositional ratio of a cerium rare earth iron garnet crystal being a magneto-optical element for a magnetic field sensor is set to be Ce3-xDyxFe5O12, provided 0<x<3. Further, in the magnetic field sensor which is provided with a polarizer P, the magneto-optical element 1, an analyzer A and a detector D, and in which a magnetic field Ha in the propagation direction of light is applied to the magneto- optical element 1 and the quantity of light is detected by the Faraday effect, a magnetic field Hb is previously applied in the direction perpendicular to the propagation direction of light so as to make the direction of magnetization 2 constant, and the difference between double refraction indices of the propagation direction and the perpendicular direction, which is formed by applying the magnetic field Hb in the perpendicular direction, is compensated by the magneto-optical element 1 formed from the cerium rare earth iron garnet crystal having the compositional ratio of Ce3-xDyxFe5O12, provided 0<x<3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セリウム希土類鉄
ガーネット結晶およびその単結晶の製造方法並びにその
単結晶を磁気光学素子として用いた磁界センサに関す
る。さらに詳述すると、本発明は微小な磁界でもファラ
デー効果が得られるガーネット結晶及びそれを磁気光学
素子として利用する磁界センサ並びにガーネット単結晶
の製造方法の改良に関する。
The present invention relates to a cerium rare earth iron garnet crystal, a method for producing a single crystal thereof, and a magnetic field sensor using the single crystal as a magneto-optical element. More specifically, the present invention relates to a garnet crystal capable of obtaining a Faraday effect even with a minute magnetic field, a magnetic field sensor using the garnet crystal as a magneto-optical element, and an improvement in a method of manufacturing a garnet single crystal.

【0002】[0002]

【従来の技術】電流や磁束を測定する磁界センサとして
は、従来、図5に示すように、偏光子と磁気光学素子
(ファラデー媒体あるいは磁気光学物質とも呼ばれる)
と検光子とを組み合わせ、レーザ光(LASER Light)等
の光が偏光子Pを透過して直線偏光(Polarized Ligh
t)となり、その後、磁場中の磁気光学素子1を透過す
る際にファラデー効果によって偏光面を回転させ、検光
子Aを通過する光の強度を検出器(ディテクタ)Dで検
出して磁界の大きさを検出するものが一般に知られてい
る。
2. Description of the Related Art Conventionally, as a magnetic field sensor for measuring current or magnetic flux, as shown in FIG. 5, a polarizer and a magneto-optical element (also called a Faraday medium or a magneto-optical material) are used.
A light such as a laser beam (LASER Light) is transmitted through the polarizer P and is linearly polarized (Polarized Light).
t), after that, when the light passes through the magneto-optical element 1 in the magnetic field, the polarization plane is rotated by the Faraday effect, and the intensity of the light passing through the analyzer A is detected by a detector (detector) D. A device for detecting the height is generally known.

【0003】この磁界センサでは、検出器Dにより光量
を検出することにより、ファラデー回転角の変化が測定
でき、これから磁界の大きさを知ることができるもので
ある。ここで、磁気光学素子1としては、YIG(Y
Fe12)が一般的であるが、近年、ファラデー効
果を高めるものとしてセリウム希土類鉄ガーネット結晶
(CeRIG)を用いたものも知られている。
In this magnetic field sensor, a change in the Faraday rotation angle can be measured by detecting the amount of light by the detector D, and the magnitude of the magnetic field can be known from this. Here, as the magneto-optical element 1, YIG (Y 3
Fe 5 O 12) is common, but in recent years, it is also known that using cerium rare-earth iron garnet crystal as to enhance the Faraday effect (CeRIG).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな磁気光学素子1を用いた磁界センサの場合、磁界H
a中における磁化の方向が図示するように揃っていない
ため、被測定磁界をかけたとき逆向きの磁化2を反転さ
せるための力が必要となってしまうことから、その分だ
け感度が劣ってしまう問題がある。
However, in the case of a magnetic field sensor using such a magneto-optical element 1, the magnetic field H
Since the directions of magnetization in a are not aligned as shown in the figure, a force for reversing the magnetization 2 in the opposite direction when a magnetic field to be measured is applied is required. There is a problem.

【0005】本発明は、微小な磁界でも測定可能な磁界
センサ並びにそれを可能とする磁気光学素子として利用
できるセリウム希土類鉄ガーネット結晶およびその単結
晶の製造方法を提供することを目的とする。
It is an object of the present invention to provide a magnetic field sensor capable of measuring even a minute magnetic field, a cerium rare earth iron garnet crystal usable as a magneto-optical element capable of making it possible, and a method for producing a single crystal thereof.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成するた
め、本発明者等は、図1に示すように、磁気光学素子1
にあらかじめ光の伝搬方向と直交する方向の磁界Hbを
印加し、磁気光学素子1の磁化の方向を揃えておくこと
を考えた。予め磁界Hbをかければ、被測定磁界が印加
される時には磁化の方向が一方向に揃っているので、弱
い測定磁界をかけても精度よく回転するようになるので
検出感度が向上することが期待できる。
Means for Solving the Problems To achieve the above object, the present inventors, as shown in FIG.
To apply a magnetic field Hb in a direction perpendicular to the light propagation direction in advance to make the magnetization directions of the magneto-optical element 1 uniform. If the magnetic field Hb is applied in advance, the direction of magnetization is uniform in one direction when the magnetic field to be measured is applied, so that even if a weak measuring magnetic field is applied, the magnet rotates accurately, so that the detection sensitivity is expected to be improved. it can.

【0007】しかしながら、垂直な磁界Hbを予めかけ
ておくと、磁界をかけた方向とこれに垂直な方向とで複
屈折率が変わることに起因してコットン・ムートン効果
が生じ、図1に示すように楕円偏光が生じ、検光子Aの
検出感度が悪くなるという別の問題が起きる。つまり、
直線偏光した光が今度は楕円偏光となってしまうため、
検光子Aが楕円偏光の45゜成分までひろってしまい検
出感度が劣ってしまう。
However, if a perpendicular magnetic field Hb is applied in advance, the Cotton-Mouton effect occurs due to a change in the birefringence between the direction in which the magnetic field is applied and the direction perpendicular thereto, as shown in FIG. As described above, another problem occurs that elliptically polarized light is generated and the detection sensitivity of the analyzer A is deteriorated. That is,
Since the linearly polarized light is now elliptically polarized,
The analyzer A spreads to the 45 ° component of the elliptically polarized light, and the detection sensitivity deteriorates.

【0008】そこで、本発明者等が種々研究・検討した
結果、ジスプロシウム(元素記号:Dy)を微量加える
と、コットン・ムートン効果を抑制させることができる
ことを知見するに至った。
Therefore, as a result of various studies and studies made by the present inventors, it has been found that the cotton-mouton effect can be suppressed by adding a small amount of dysprosium (element symbol: Dy).

【0009】本願発明はかかる知見に基づくもので、請
求項1記載の発明にかかるセリウム希土類鉄ガーネット
結晶は、その組成比を Ce3-xDyxFe5O12 (ただし0<x<3) としたものである。
The present invention is based on this finding, and the composition ratio of the cerium rare earth iron garnet crystal according to the first aspect of the present invention is Ce 3-x Dy x Fe 5 O 12 (where 0 <x <3). It is what it was.

【0010】この組成比の場合、各組成物の複屈折率
は、磁界をかけた方向の複屈折率が大きくなる場合を正
とするとセリウムが負の値となるのに対し、ジスプロシ
ウム(Dy)は正の値になる。そこで、セリウムの一部をジ
スプロシウムに置換した上記のような組成とし、かつ組
成xの値としてセリウムによる負の値とジスプロシウム
による正の値とが相殺される値を選ぶようにすれば、磁
気光学素子としてのセリウム希土類鉄ガーネット結晶に
おける複屈折率がゼロにすることが可能となる。
In this composition ratio, the birefringence of each composition is negative when cerium has a negative value when the birefringence in the direction in which a magnetic field is applied increases, whereas dysprosium (Dy) Is a positive value. Therefore, if a composition as described above in which part of cerium is replaced by dysprosium and a value by which a negative value due to cerium and a positive value due to dysprosium are selected as the value of the composition x is selected, magneto-optical The birefringence of the cerium rare earth iron garnet crystal as an element can be reduced to zero.

【0011】さらに請求項2記載の発明は、種子結晶と
原料棒との間に液相を形成して原料棒を液相中に溶かし
て種子結晶上に単結晶として析出させるフローティング
・ゾーン法によってCe3-xDyxFe5O12 の単結晶を製造す
る方法において、液相のCe:Dy:Feの成分比を Ce=0〜10 Dy=0〜50 Fe=50〜85 とするようにしている。
Further, the invention according to claim 2 is a floating zone method in which a liquid phase is formed between the seed crystal and the raw material rod, and the raw material rod is dissolved in the liquid phase and precipitated as a single crystal on the seed crystal. In the method for producing a single crystal of Ce 3-x Dy x Fe 5 O 12 , the composition ratio of Ce: Dy: Fe in the liquid phase is such that Ce = 0 to 10 Dy = 0 to 50 Fe = 50 to 85. ing.

【0012】液相がこの成分の場合、原料棒中のセリウ
ム希土類鉄ガーネット結晶が一度溶融してから液相を介
して種子結晶上に組成比を変えずに析出して単結晶を生
成する。
When the liquid phase is this component, the cerium rare earth iron garnet crystal in the raw material rod is once melted and then precipitated on the seed crystal via the liquid phase without changing the composition ratio to form a single crystal.

【0013】また、請求項3記載の発明は、偏光子と磁
気光学素子と検光子と検出器とを備え、磁気光学素子に
かかる光の伝搬方向への磁界Haの大きさに応じてファ
ラデー効果によって偏光面を回転させて光量を検出する
ようにした磁界センサにおいて、磁気光学素子に組成比
Ce3-xDyxFe5O12 (ただし0<x<3)のセリウム希土
類鉄ガーネット単結晶を用い、かつ光の伝搬方向と垂直
な方向に磁界Hbがあらかじめ加えられているようにし
ている。
According to a third aspect of the present invention, there is provided a polarizer, a magneto-optical element, an analyzer, and a detector, and the Faraday effect according to the magnitude of the magnetic field Ha in the light propagation direction on the magneto-optical element. In a magnetic field sensor that rotates the polarization plane to detect the amount of light, the composition ratio
A cerium rare earth iron garnet single crystal of Ce 3-x Dy x Fe 5 O 12 (where 0 <x <3) is used, and a magnetic field Hb is applied in advance in a direction perpendicular to the light propagation direction. .

【0014】この場合には、磁気光学素子は予め光の伝
播方向と垂直な方向に印加されている磁界Hbによって
磁化方向が揃えられ同じ方向を向いている。しかも、こ
の垂直磁界Hbの印加によるコットン・ムートン効果即
ち伝搬方向および垂直方向の複屈折率の相違分をジスプ
ロシウム(Dy)の添加により相殺して抑制するように
している。したがって、被測定磁界Haが印加される
と、その磁界の大きさに応じて偏光面が回転し、それを
反映した直線偏光のみが検光子を通過して検出器で検出
される。この検出器で検出される光の強度変化は磁界の
変化に比例する。
In this case, the magnetization direction of the magneto-optical element is aligned by the magnetic field Hb applied in advance in a direction perpendicular to the light propagation direction, and the magneto-optical element faces the same direction. In addition, the cotton Mouton effect due to the application of the vertical magnetic field Hb, that is, the difference between the birefringence in the propagation direction and the vertical direction is offset by the addition of dysprosium (Dy). Therefore, when the measured magnetic field Ha is applied, the plane of polarization rotates according to the magnitude of the magnetic field, and only linearly polarized light reflecting the rotation passes through the analyzer and is detected by the detector. The change in the intensity of the light detected by this detector is proportional to the change in the magnetic field.

【0015】[0015]

【発明の実施の形態】以下、本発明の構成を図面に示す
実施の形態の一例に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below in detail based on an example of an embodiment shown in the drawings.

【0016】図1に本発明の磁界センサの一実施形態を
示す。この磁界センサは、偏光子Pと磁気光学素子1と
検光子Aと検出器Dとを備え、磁気光学素子1にかかる
光の伝搬方向への磁界Haの大きさに応じてファラデー
効果によって偏光面を回転させて光量を検出するように
したものであり、磁気光学素子1に組成比Ce3-xDyxFe 5O
12 (ただし0<x<3)のセリウム希土類鉄ガーネッ
ト単結晶を用い、かつ光の伝搬方向と垂直な方向に磁界
Hbがあらかじめ加えられていることを特徴としてい
る。
FIG. 1 shows an embodiment of the magnetic field sensor of the present invention.
Show. This magnetic field sensor includes a polarizer P, a magneto-optical element 1,
It includes an analyzer A and a detector D, and is related to the magneto-optical element 1.
Faraday according to the magnitude of the magnetic field Ha in the direction of light propagation
Rotate the plane of polarization to detect the amount of light
The magneto-optical element 1 has a composition ratio Ce3-xDyxFe FiveO
12 (However, 0 <x <3) cerium rare earth iron garnet
Magnetic field in the direction perpendicular to the light propagation direction using a single crystal
Hb is added in advance.
You.

【0017】ここで、磁気光学素子1としてのセリウム
希土類鉄ガーネット単結晶(以下「CeRIG」ともいう)
は、本実施形態では、 Ce3-xDyxFe5O12 (ただし0<x<3) で表される組成比からなるようにし、セリウム(Ce)の一
部をジスプロシウム(Dy)に置換した構造としている。
Here, a cerium rare earth iron garnet single crystal (hereinafter also referred to as “CeRIG”) as the magneto-optical element 1.
In the present embodiment, a composition ratio represented by Ce 3-x Dy x Fe 5 O 12 (where 0 <x <3) is used, and part of cerium (Ce) is replaced with dysprosium (Dy). It has a structured structure.

【0018】このようなセリウム希土類鉄ガーネット結
晶中の組成別の光の複屈折率(本実施形態の説明中では
以下「Δn」という)に着目する。磁界をかけた方向の
方が複屈折率が大きくなる場合をΔn>0とすると、セ
リウムのΔnは負の値であるのに対し、ジスプロシウム
のΔnは正の値を有している。そこで、組成xの値とし
て、ガーネット結晶構造を成立させる範囲(0<x<
3)でセリウムによる負の値とジスプロシウムによる正
の値とが相殺される値を選ぶようにすれば、本組成のセ
リウム希土類鉄ガーネット結晶における複屈折率(Δ
n)をゼロにすることができる。ジスプロシウム(Dy)の
置換量xは、好ましくは2.5以上3未満、最も好まし
くは2.9程度である。
Attention is paid to the birefringence of light (hereinafter referred to as “Δn” in the description of the present embodiment) for each composition in such a cerium rare earth iron garnet crystal. Assuming that Δn> 0 when the birefringence is higher in the direction in which the magnetic field is applied, Δn of cerium has a negative value, while Δn of dysprosium has a positive value. Therefore, as the value of the composition x, the range (0 <x <
If a value in which the negative value due to cerium and the positive value due to dysprosium cancel each other is selected in 3), the birefringence index (Δ
n) can be zero. The substitution amount x of dysprosium (Dy) is preferably 2.5 or more and less than 3, and most preferably about 2.9.

【0019】この磁気光学素子1に利用される組成比Ce
3-xDyxFe5O12(ただし0<x<3)のセリウム希土類鉄
ガーネット単結晶は、例えば公知のフローティング・ゾ
ーン法によって製造される。
The composition ratio Ce used in this magneto-optical element 1
The cerium rare earth iron garnet single crystal of 3-x Dy x Fe 5 O 12 (where 0 <x <3) is produced by, for example, a known floating zone method.

【0020】フローティング・ゾーン法は、種子結晶と
原料棒との間に液相を形成して原料棒を液相中に溶かし
て種子結晶上に単結晶として析出させるものである。こ
こで、本実施形態の原料棒3は焼結棒からなり、この焼
結棒に用いるCeRIGは、組成が Ce3-xDyxFe5O12 という
条件になるように焼結して形成されたものである。この
場合、焼結棒の組成比xの範囲は、0<x<3である。
また、結晶成長を行う液相5については、Ce:Dy:Feの
成分比を、 Ce=0〜10 Dy=0〜50 Fe=50〜85 としている。この液相のCe:Dy:Feの成分比は好ましく
はCeとDyとFeの全ての元素を含むことであるが、場合に
よってはCeは含まれなくとも良い場合がある。
In the floating zone method, a liquid phase is formed between a seed crystal and a raw material rod, and the raw material rod is dissolved in the liquid phase and deposited as a single crystal on the seed crystal. Here, the raw material rod 3 of the present embodiment is formed of a sintered rod, and CeRIG used for the sintered rod is formed by sintering such that the composition becomes Ce 3-x Dy x Fe 5 O 12. It is something. In this case, the range of the composition ratio x of the sintered rod is 0 <x <3.
In the liquid phase 5 for crystal growth, the component ratio of Ce: Dy: Fe is set to Ce = 0 to 10 Dy = 0 to 50 Fe = 50 to 85. The component ratio of Ce: Dy: Fe in this liquid phase preferably includes all elements of Ce, Dy, and Fe, but in some cases, Ce may not be required.

【0021】フローティング・ゾーン法によるCe3-xDyx
Fe5O12(ただし0<x<3)のセリウム希土類鉄ガーネ
ット単結晶の製造方法は、まず、特に図示しないが例え
ば4個の楕円鏡の一端の焦点にハロゲンランプを設置
し、もう一方の焦点に結晶組成とほぼ同一の原料棒3と
種子結晶4を図2に示すように上下に離して設置し、種
子結晶4の上に原料棒3とは組成の異なる液相5を作る
ための原料を設置する。この時点で液相5は固体であっ
ても構わない。また、原料棒3および種子結晶4は石英
管で囲い、好ましくは0.1〜50rpmの速度で回転させる。
石英管内は酸素、窒素、アルゴンまたは純空気で大気圧
の雰囲気にする。続いてハロゲンランプの出力を0W〜
1000Wまで調節し、液相5を加熱し溶かしてから原料棒
3の位置を下げ、図3に示すように溶けた液相5を介し
て原料棒3と種子結晶4を接合する。そうしたら、図4
に示すように原料棒3を下端から溶融させつつ、ランプ
を固定したまま原料棒3と種子結晶4とを同時に同速度
で下降させる。下降速度は、好ましくは0.1〜20mm/h
(毎時)、より好ましくは約1mm/h程度である。原料
棒3の成分は、溶融した後に種子結晶上に再結晶して単
結晶を析出し、徐々に結晶成長する。成長したこの結晶
6をカッターなどでディスク状にスライスしてから研磨
して磁気光学素子1とする。
Ce 3-x Dy x by the floating zone method
A method for producing a cerium rare earth iron garnet single crystal of Fe 5 O 12 (where 0 <x <3) is as follows. At the focal point, a raw material rod 3 and a seed crystal 4 having substantially the same crystal composition are placed vertically apart as shown in FIG. 2 to form a liquid phase 5 having a different composition from the raw material rod 3 on the seed crystal 4. Install raw materials. At this point, the liquid phase 5 may be a solid. The raw material rod 3 and the seed crystal 4 are surrounded by a quartz tube, and are preferably rotated at a speed of 0.1 to 50 rpm.
The inside of the quartz tube is set to an atmospheric pressure atmosphere with oxygen, nitrogen, argon or pure air. Next, set the output of the halogen lamp to 0W ~
The temperature is adjusted to 1000 W, the liquid phase 5 is heated and melted, then the position of the raw material rod 3 is lowered, and the raw material rod 3 and the seed crystal 4 are joined via the molten liquid phase 5 as shown in FIG. Then, Figure 4
As shown in (1), the raw material rod 3 and the seed crystal 4 are simultaneously lowered at the same speed while the lamp is fixed while the raw material rod 3 is melted from the lower end. The descending speed is preferably 0.1 to 20 mm / h
(Per hour), more preferably about 1 mm / h. After the components of the raw material rod 3 are melted, they are recrystallized on the seed crystal to precipitate a single crystal, and the crystal gradually grows. The grown crystal 6 is sliced into a disk shape by a cutter or the like, and then polished to obtain the magneto-optical element 1.

【0022】以上のような組成の磁気光学素子1を利用
した本実施形態の磁界センサによると、光の伝搬方向に
磁界をかけることに加え、図1に示すように光の伝搬方
向と垂直な方向の磁界Hbがあらかじめ印加されること
により磁気光学素子1の磁化の方向が一定の向きに揃え
られるので感度が良くなり、被測定磁界Haが小さくと
も偏光面を回転させて精度良く磁界を測定できる。
According to the magnetic field sensor of the present embodiment using the magneto-optical element 1 having the composition described above, in addition to applying a magnetic field in the light propagation direction, as shown in FIG. The direction of magnetization of the magneto-optical element 1 is made uniform by applying a magnetic field Hb in a predetermined direction, so that the sensitivity is improved. Even if the magnetic field to be measured Ha is small, the polarization plane is rotated to accurately measure the magnetic field. it can.

【0023】また、この磁界センサでは、垂直磁界Hb
を与えていることからコットン・ムートン効果によって
図示するような楕円偏光が生じ得るが、垂直方向の磁界
Hbを与えたことによる伝搬方向との複屈折率の相違分
は、 Ce3-xDyxFe5O12 という組成のセリウム希土類鉄ガ
ーネット結晶中においてコットン・ムートン効果がゼロ
になるジスプロシウムの組成を選び相殺することによっ
て楕円偏光となるのを防止することが可能となる。
In this magnetic field sensor, the vertical magnetic field Hb
Is given by the Cotton Mouton effect, but the difference in the birefringence from the propagation direction due to the application of the vertical magnetic field Hb is Ce 3-x Dy x Elliptically polarized light can be prevented by selecting and canceling the dysprosium composition in which the Cotton-Mouton effect becomes zero in the cerium rare earth iron garnet crystal having the composition of Fe 5 O 12 .

【0024】なお、上述の実施形態は本発明の好適な実
施の一例ではあるがこれに限定されるものではなく本発
明の要旨を逸脱しない範囲において種々変形実施可能で
ある。
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention.

【0025】[0025]

【発明の効果】以上の説明より明らかなように、請求項
1記載の発明によると、ガーネット結晶構造を成立させ
る範囲でセリウムの一部をジスプロシウム(Dy)で置換す
ることにより、セリウムの負の複屈折率とジスプロシウ
ムの正の複屈折率とを相殺することができるセリウム希
土類鉄ガーネット結晶が得られる。このセリウム希土類
鉄ガーネット結晶は、磁界センサの磁気光学素子として
利用する場合には、ファラデー効果が高い上に結晶にお
ける複屈折率をゼロにすることが可能であり、被測定磁
界と直交する磁界を加えても感度を下げる楕円偏光とす
ることが無く好適である。
As is apparent from the above description, according to the first aspect of the present invention, cerium is partially substituted with dysprosium (Dy) within a range where a garnet crystal structure is established, so that the negative effect of cerium is reduced. A cerium rare earth iron garnet crystal that can cancel the birefringence and the positive birefringence of dysprosium is obtained. When this cerium rare earth iron garnet crystal is used as a magneto-optical element of a magnetic field sensor, it has a high Faraday effect and can make the birefringence of the crystal zero, and reduces the magnetic field perpendicular to the magnetic field to be measured. Even if added, elliptically polarized light which lowers the sensitivity is not preferable, and thus it is preferable.

【0026】さらに請求項2記載の発明によると、液相
がこの成分の場合、原料棒中のセリウム希土類鉄ガーネ
ット結晶が一度溶融してから液相を介して種子結晶上に
組成比を変えずに析出して単結晶を生成する。
According to the second aspect of the present invention, when the liquid phase is this component, the cerium rare earth iron garnet crystal in the raw material rod is melted once, and the composition ratio is not changed on the seed crystal via the liquid phase. To form a single crystal.

【0027】また、請求項3記載の発明の磁界センサに
よると、光の伝搬方向と垂直な方向に磁界Hbをあらか
じめ加え磁界中のスピンの向きが揃うように一定にした
ことから、たとえ弱い測定磁界をかけた場合でも精度よ
く回転させて感度をよくすることができる。
According to the magnetic field sensor of the third aspect of the present invention, since the magnetic field Hb is applied in advance in a direction perpendicular to the light propagation direction and is fixed so that the spin directions in the magnetic field are uniform, even a weak measurement is performed. Even when a magnetic field is applied, it is possible to improve the sensitivity by rotating accurately.

【0028】しかも、この場合、垂直方向の磁界Hbを
加えたことによる伝搬方向および垂直方向の複屈折率の
相違分を Ce3-xDyxFe5O12 という組成のセリウム希土類
鉄ガーネット結晶で形成した磁気光学素子によって相殺
するようにしたことから、楕円偏光となって検出感度が
劣るのを防止することができる。
Further, in this case, the difference between the birefringence in the propagation direction and the birefringence in the vertical direction due to the application of the magnetic field Hb in the vertical direction is reduced by a cerium rare earth iron garnet crystal having a composition of Ce 3-x Dy x Fe 5 O 12. Since it is canceled by the formed magneto-optical element, it is possible to prevent the detection sensitivity from being deteriorated due to the elliptically polarized light.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁界センサの原理図である。FIG. 1 is a principle diagram of a magnetic field sensor of the present invention.

【図2】フローティング・ゾーン法によるセリウム希土
類鉄ガーネット単結晶の製造開始工程を示す図である。
FIG. 2 is a view showing a process of starting production of a cerium rare earth iron garnet single crystal by a floating zone method.

【図3】フローティング・ゾーン法によるセリウム希土
類鉄ガーネット単結晶の加熱工程を示す図である。
FIG. 3 is a view showing a heating step of a cerium rare earth iron garnet single crystal by a floating zone method.

【図4】フローティング・ゾーン法によるセリウム希土
類鉄ガーネット単結晶の結晶成長工程を示す図である。
FIG. 4 is a view showing a crystal growth process of a cerium rare earth iron garnet single crystal by a floating zone method.

【図5】従来の磁界センサの原理図である。FIG. 5 is a principle diagram of a conventional magnetic field sensor.

【符号の説明】[Explanation of symbols]

1 磁気光学素子 2 磁化(スピン) 3 原料棒 4 種子結晶 5 液相 P 偏光子 A 検光子 D 検出器 DESCRIPTION OF SYMBOLS 1 Magneto-optical element 2 Magnetization (spin) 3 Raw material rod 4 Seed crystal 5 Liquid phase P Polarizer A Analyzer D Detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セリウム希土類鉄ガーネット結晶におい
て、その組成比を Ce3-xDyxFe5O12 (ただし0<x<3) としたことを特徴とするセリウム希土類鉄ガーネット結
晶。
1. A cerium rare earth iron garnet crystal, wherein the composition ratio is Ce 3-x Dy x Fe 5 O 12 (where 0 <x <3).
【請求項2】 種子結晶と原料棒との間に液相を形成し
て前記原料棒を前記液相中に溶かして前記種子結晶上に
単結晶として析出させるフローティング・ゾーン法によ
ってCe3-xDyxFe5O12 の単結晶を製造する方法におい
て、前記液相のCe:Dy:Feの成分比を Ce=0〜10 Dy=0〜50 Fe=50〜85 とすることを特徴とするセリウム希土類鉄ガーネット単
結晶の製造方法。
2. A Ce 3-x by a floating zone method in which a liquid phase is formed between a seed crystal and a raw material rod, and the raw material rod is dissolved in the liquid phase and deposited as a single crystal on the seed crystal. In the method for producing a single crystal of Dy x Fe 5 O 12 , the composition ratio of Ce: Dy: Fe in the liquid phase is Ce = 0 to 10 Dy = 0 to 50 Fe = 50 to 85 Method for producing cerium rare earth iron garnet single crystal.
【請求項3】 偏光子と磁気光学素子と検光子と検出器
とを備え、前記磁気光学素子にかかる光の伝搬方向への
磁界Haの大きさに応じてファラデー効果によって偏光
面を回転させて光量を検出するようにした磁界センサに
おいて、前記磁気光学素子に組成比Ce3-xDyxFe5O12
(ただし0<x<3)のセリウム希土類鉄ガーネット単
結晶を用い、かつ光の伝搬方向と垂直な方向に磁界Hb
があらかじめ加えられていることを特徴とする磁界セン
サ。
3. A device comprising a polarizer, a magneto-optical element, an analyzer, and a detector, wherein a polarization plane is rotated by a Faraday effect according to the magnitude of a magnetic field Ha in a light propagation direction on the magneto-optical element. In the magnetic field sensor configured to detect the amount of light, the magneto-optical element may have a composition ratio of Ce 3-x Dy x Fe 5 O 12
(0 <x <3) using a cerium rare earth iron garnet single crystal and a magnetic field Hb perpendicular to the light propagation direction.
A magnetic field sensor characterized in that is added in advance.
JP2001030136A 2001-02-06 2001-02-06 Cerium rare earth iron garnet crystal, manufacturing method thereof, and magnetic field sensor using the single crystal Expired - Fee Related JP3950636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001030136A JP3950636B2 (en) 2001-02-06 2001-02-06 Cerium rare earth iron garnet crystal, manufacturing method thereof, and magnetic field sensor using the single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001030136A JP3950636B2 (en) 2001-02-06 2001-02-06 Cerium rare earth iron garnet crystal, manufacturing method thereof, and magnetic field sensor using the single crystal

Publications (2)

Publication Number Publication Date
JP2002234797A true JP2002234797A (en) 2002-08-23
JP3950636B2 JP3950636B2 (en) 2007-08-01

Family

ID=18894398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001030136A Expired - Fee Related JP3950636B2 (en) 2001-02-06 2001-02-06 Cerium rare earth iron garnet crystal, manufacturing method thereof, and magnetic field sensor using the single crystal

Country Status (1)

Country Link
JP (1) JP3950636B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344925A (en) * 2013-07-05 2013-10-09 上海大学 Slow light Sagnac nonreciprocal interference optical fiber magnetic field sensor
JP2018080077A (en) * 2016-11-15 2018-05-24 日本電気硝子株式会社 Faraday rotator for magnetic field sensors
US11561173B2 (en) 2017-09-29 2023-01-24 Cotton Mouton Diagnostics Limited Magneto-optical method and apparatus for detecting analytes in a liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344925A (en) * 2013-07-05 2013-10-09 上海大学 Slow light Sagnac nonreciprocal interference optical fiber magnetic field sensor
JP2018080077A (en) * 2016-11-15 2018-05-24 日本電気硝子株式会社 Faraday rotator for magnetic field sensors
US11561173B2 (en) 2017-09-29 2023-01-24 Cotton Mouton Diagnostics Limited Magneto-optical method and apparatus for detecting analytes in a liquid

Also Published As

Publication number Publication date
JP3950636B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP4107292B2 (en) Terbium-based paramagnetic garnet single crystal and porcelain optical device
US4018692A (en) Composition for making garnet films for improved magnetic bubble devices
US6033470A (en) Method of producing a cerium-containing magnetic garnet single crystal
Ding et al. Effects of anisotropy on structural and optical characteristics of LYSO: Ce crystal
JP2002234797A (en) Cerium rare earth iron garnet crystal, method of producing the same and magnetic field sensor using single crystal thereof
Guo et al. Magneto-optical properties and measurement of the novel doping silica optical fibers
Görnert et al. Liquid phase epitaxy (LPE) grown Bi, Ga, Al substituted iron garnets with huge Faraday rotation for magneto‐optic applications
JP2004109086A (en) Optical magnetic field sensor
CA1050862A (en) Magnetic bubble devices and garnet films therefor
JPWO2004049039A1 (en) Faraday rotator and magneto-optical device using the same
JPH09197360A (en) Faraday rotator for optical magnetic field sensor
JP2002534685A (en) Glass fiber, current sensor and method
WO2022210566A1 (en) Single crystal diamond, manufacturing method for same, and manufacturing method for single crystal diamond plate
KR100247443B1 (en) Magneto-optical device and method for production thereof
JPH06103325B2 (en) Magneto-optical film for magnetic field sensor
JPS63163815A (en) Magnetic field sensor
JP3346176B2 (en) Manufacturing method of polarizer
JPH08208392A (en) Magneto-optical element
JPH02189516A (en) Faraday effect material and magnetic field sensor
JPH06250135A (en) Magneto-optical flaw detecting element
JPH04238320A (en) Faraday effect material and magnetic field sensor
JP2003114332A (en) Polarizer
JPH0296676A (en) Magnetic field sensor
JPH0527208A (en) Faraday effect material and magnetic field sensor
JPH0982523A (en) Faraday rotator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees