JPH0982523A - Faraday rotator - Google Patents

Faraday rotator

Info

Publication number
JPH0982523A
JPH0982523A JP23538395A JP23538395A JPH0982523A JP H0982523 A JPH0982523 A JP H0982523A JP 23538395 A JP23538395 A JP 23538395A JP 23538395 A JP23538395 A JP 23538395A JP H0982523 A JPH0982523 A JP H0982523A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
faraday rotator
faraday
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23538395A
Other languages
Japanese (ja)
Inventor
Kenji Ishikura
賢二 石蔵
Kazushi Shirai
一志 白井
Norio Takeda
憲夫 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP23538395A priority Critical patent/JPH0982523A/en
Publication of JPH0982523A publication Critical patent/JPH0982523A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/346[(TO4) 3] with T= Si, Al, Fe, Ga

Abstract

PROBLEM TO BE SOLVED: To provide a method for reducing magnetic hysteresis and identifying easily and magnitude of the magnetic hysteresis in a bismuth-substituted rare- earth iron garnet single-crystal film having very low saturation magnetic field but hardly used as a photoswitch or a Faraday rotator for a magnetic field sensor because of its higher magnetic hysteresis. SOLUTION: A bismuth-substituted rare-earth garnet single crystal is grown in such a state that five or more pits remain in a Faraday rotator when the Faraday rotator is formed by cutting the bismuth-substituted rare-earth garnet single crystal. Then, the magnetic hysteresis is reduced in the bismuth-substituted rare-earth garnet single crystal that has been hardly used as an optical switch or a Faraday rotator for a field sensor, and at the same time a Faraday rotator with large magnetic hystreresis can be identified easily. Then, the bismuth- substituted rare-earth garnet single crystal with low saturation magnetization can be utilized as a Faraday rotator for an optical field sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、飽和磁界が非常に
低いビスマス置換希土類鉄ガーネット単結晶膜からなる
ファラデー回転子に関する。詳しくは、飽和磁界が非常
に低いにもかかわらず磁気ヒステリシスが小さいビスマ
ス置換希土類鉄ガーネット単結晶膜の製造法と、これを
用いた光磁界センサ用ファラデー回転子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Faraday rotator composed of a bismuth-substituted rare earth iron garnet single crystal film having a very low saturation magnetic field. Specifically, the present invention relates to a method for producing a bismuth-substituted rare earth iron garnet single crystal film having a small magnetic hysteresis despite a very low saturation magnetic field, and a Faraday rotator for an optical magnetic field sensor using the same.

【0002】[0002]

【従来の技術】近年、大きなファラデー効果を有するビ
スマス置換希土類鉄ガーネット単結晶膜(以下「BIG
膜」と記す)を利用した光スイッチ、また光電流センサ
や光回転センサとも呼ばれる光磁界センサと云ったデバ
イスが次々と実用化され、これら用途に合わせたBIG
膜の開発も盛んにおこなわれている。ファラデー効果は
磁気光学効果の一種で、ファラデー効果を示す材料、す
なわち希土類鉄ガーネット単結晶膜などのファラデー素
子〔ファラデー回転子〕を透過した光の偏波面が回転す
る現象を指す。
2. Description of the Related Art In recent years, a bismuth-substituted rare earth iron garnet single crystal film having a large Faraday effect (hereinafter referred to as "BIG
Devices called "optical film sensors" and optical magnetic field sensors, which are also called photocurrent sensors and optical rotation sensors, have been put to practical use one after another, and BIGs adapted to these applications have been developed.
Membranes are also being actively developed. The Faraday effect is a type of magneto-optical effect, and refers to a phenomenon in which the plane of polarization of light transmitted through a material exhibiting the Faraday effect, that is, a Faraday element (Faraday rotator) such as a rare-earth iron garnet single crystal film is rotated.

【0003】一般に、ファラデー回転子における偏波面
の回転角をファラデー回転角と称するが、ファラデー素
子に加えられた外部磁界の強度に比例して大きくなる。
しかしながら、ファラデー回転角に関する上記の説明
は、鉛ガラスなどの弱磁性材料に当てはまるもので、強
磁性材料であるBIG膜のファラデー回転角の説明とし
ては必ずしも適当なものではない。その理由はBIG膜
がたくさんの磁区からなる多磁区材料であるからであ
る。以下、BIG膜における、外部磁界強度に対するフ
ァラデー回転角や磁区構造の変化について説明する。
Generally, the rotation angle of the plane of polarization in the Faraday rotator is called the Faraday rotation angle, which increases in proportion to the strength of the external magnetic field applied to the Faraday element.
However, the above description regarding the Faraday rotation angle is applicable to the weak magnetic material such as lead glass, and is not necessarily appropriate as the description of the Faraday rotation angle of the BIG film which is a ferromagnetic material. The reason is that the BIG film is a multi-domain material composed of many magnetic domains. Hereinafter, changes in the Faraday rotation angle and the magnetic domain structure in the BIG film with respect to the external magnetic field strength will be described.

【0004】図1は、外部磁界に対応したBIG膜の磁
区構造の変化を示したものである。図1の状態1はBI
G膜の膜断面を示したもので、幅数ミクロンから数十ミ
クロンの磁区で構成されている。そして磁区内の磁化方
向が上向きの磁区Aと磁化方向が下向きの磁区Bとが交
互に並んでいる。それぞれの磁区は符号が異なるが絶対
値が同一のファラデー回転角を有する。すなわち、磁区
Aの磁化を(+M)、ファラデー回転角(+θf)とすると、磁
区Bの磁化とファラデー回転角はそれぞれ -M, -θf で
ある。なお、便宜的に、ファラデー回転角のプラス符号
は偏波面の回転が右回りを示し、マイナス符号は左回り
を示すものとする。また、磁化とファラデー回転角とに
ついて、以下の説明では、材料全体(=BIG膜) の磁化
を〔磁化〕及び符号(Mt)、ファラデー回転角を〔ファラ
デー回転角〕及び符号〔θt 〕として区別する。
FIG. 1 shows changes in the magnetic domain structure of the BIG film in response to an external magnetic field. State 1 in FIG. 1 is BI
The film cross section of the G film is shown, and is composed of magnetic domains having a width of several microns to several tens of microns. The magnetic domains A in which the magnetization direction is upward and the magnetic domains B in which the magnetization direction is downward are alternately arranged. Each magnetic domain has a Faraday rotation angle with a different sign but the same absolute value. That is, assuming that the magnetization of the magnetic domain A is (+ M) and the Faraday rotation angle (+ θf), the magnetization and the Faraday rotation angle of the magnetic domain B are -M and -θf, respectively. For convenience, the plus sign of the Faraday rotation angle indicates that the polarization plane rotates clockwise, and the minus sign indicates the counterclockwise rotation. Further, regarding the magnetization and the Faraday rotation angle, in the following description, the magnetization of the entire material (= BIG film) is distinguished as [magnetization] and the sign (Mt), and the Faraday rotation angle is defined as the [Faraday rotation angle] and the sign [θt]. To do.

【0005】図1において、状態1は外部磁界がまった
く加わっていない場合である。これに、上向きの外部磁
界を加えていくと、状態1から状態2へと磁区構造は変
化する。すなわち、外部磁界の向きと同一の磁化を有す
る磁区Aの領域が増加する。そしてさらに外部磁界を強
めていくと最後に磁区Bが消失した状態3、すなわち、
単一の磁区となる。これが磁気的に飽和した状態であ
る。外部磁界を下向きにした場合も同様に、状態4を経
て状態5となって飽和する。
In FIG. 1, the state 1 is a case where no external magnetic field is applied. When an upward external magnetic field is applied to this, the magnetic domain structure changes from state 1 to state 2. That is, the area of the magnetic domain A having the same magnetization as the direction of the external magnetic field increases. Then, when the external magnetic field is further strengthened, the state 3 in which the magnetic domain B finally disappears, that is,
It becomes a single magnetic domain. This is the magnetically saturated state. Similarly, when the external magnetic field is directed downward, the state goes through the state 4 to the state 5 and is saturated.

【0006】状態3におけるBIG膜の〔磁化〕は Mt=
+M、〔ファラデー回転角〕は磁区Aのファラデー回転角
+θf に等しく、θt =+θf となる。また、状態5で
は、Mt=-M,θt =-θf となる。磁区A、磁区Bが混在し
た状態2あるいは状態4におけるBIG膜全体としての
〔磁化〕は磁区Aの体積の割合(Va)から下式(1) のよ
うに表される。 Mt = +M ×Va+(-M)×(1-Va) (1)
The [magnetization] of the BIG film in the state 3 is Mt =
+ M, [Faraday rotation angle] is the Faraday rotation angle of domain A
It is equal to + θf and θt = + θf. In the state 5, Mt = -M, θt = -θf. The [magnetization] of the entire BIG film in the state 2 or the state 4 in which the magnetic domains A and B are mixed is expressed by the following equation (1) from the volume ratio (Va) of the magnetic domains A. Mt = + M x Va + (-M) x (1-Va) (1)

【0007】一方、磁区A、磁区Bが混在した状態1、
2あるいは状態4、いわゆる多磁区状態における、BI
G膜全体としての〔ファラデー回転角〕はどのような式
で与えられるのであろうか。詳細は、棚沢らの日本応用
磁気学会誌 14,648-652(1990)に譲るが、磁区A、磁区
Bが混在した状態1、2あるいは状態4における〔ファ
ラデー回転角〕は一義的には決まらず、測定方法によっ
て異なるのである。
On the other hand, state 1 in which magnetic domain A and magnetic domain B are mixed,
BI in 2 or state 4, so-called multi-domain state
What is the formula for the [Faraday rotation angle] for the G film as a whole? The details are given in Tanagzawa et al., Japan Society for Applied Magnetics 14,648-652 (1990), but the [Faraday rotation angle] in state 1, 2 or state 4 in which magnetic domain A and magnetic domain B are mixed is not uniquely determined. It depends on the measurement method.

【0008】通常のファラデー回転角の測定方法、すな
わち、直線偏光を照射して透過光を検光子で受け、検光
子を回転させながら検光子を透過した光強度が最低にな
るようにして検光子の回転位置を決める方法の場合は、
材料の飽和磁化を(Ms)として下式(2) で〔θt 〕が与え
られる。 θt = Tan-1(Mt/Ms×tanθf) (2) 外部磁界強度に応じて Mt は変化する。θt と外部磁界
の関係は、例えば、図2のような挙動を示す。しかしな
がら、同じ素材であってもθf の大きさによって曲線の
形が変化することに注意する必要がある。すなわち、多
磁区構造体における真の意味のファラデー回転角は飽和
した状態以外には定義できず、単に見かけの値にすぎな
いのである。
An ordinary method for measuring the Faraday rotation angle, that is, linearly polarized light is radiated and the transmitted light is received by the analyzer, and the light intensity transmitted through the analyzer is minimized while rotating the analyzer. For the method of determining the rotation position of,
[Θt] is given by the following equation (2) with the saturation magnetization of the material being (Ms). θt = Tan -1 (Mt / Ms × tanθf) (2) Mt changes according to the external magnetic field strength. The relationship between θt and the external magnetic field exhibits the behavior as shown in FIG. 2, for example. However, it should be noted that even with the same material, the shape of the curve changes depending on the magnitude of θf. That is, the true Faraday rotation angle in the multi-domain structure cannot be defined except in the saturated state, and is merely an apparent value.

【0009】BIG膜のような多磁区構造体における
〔ファラデー回転角〕は、見かけの値として測定される
が、一応磁区構造を反映したものとして理解できるもの
ある。従って、図2をベースにして、外部磁界に対する
BIG膜の見かけのファラデー回転角の変化、いわゆる
ファラデーループを説明する。図2において、外部磁界
〔強度〕を印加しない状態における、ファラデー回転子
のファラデー回転角は、ゼロ
[Faraday rotation angle] in a multi-domain structure such as a BIG film is measured as an apparent value, but it can be understood as a reflection of the magnetic domain structure. Therefore, the change in the apparent Faraday rotation angle of the BIG film with respect to the external magnetic field, that is, the so-called Faraday loop will be described with reference to FIG. In FIG. 2, the Faraday rotation angle of the Faraday rotator when no external magnetic field [strength] is applied is zero.

〔0〕、即ち、原点oに位
置する。この状態は図1の状態1である。
[0], that is, located at the origin o. This state is state 1 in FIG.

【0010】外部磁界が徐々に強まると見かけのファラ
デー回転角は、経路a又は経路dを経て、次第に飽和し
たときの値に近づいて行く〔経路o→a→b、又は、経
路o→d→e〕。この状態(経路a又は経路d)は図1
の状態2もしくは状態4に相当する。外部磁界強度があ
る強度〔Hs〕に達するとファラデー回転角は、飽和した
値〔飽和磁界、点b又は点e〕となる。更に外部磁界強
度が強まっても、すでに飽和しているから、bからc、
または、dからfへと移行するのみで、〔ファラデー回
転角〕は変化しない。この状態は図1における状態3又
は状態5に相当する。次に、外部磁界を徐々に弱めてい
くと、逆の経路、即ち、c→b→a→o、或いは、f→
e→d→oを辿り、最後には外部磁界の影響のない原点
oに戻る。
When the external magnetic field is gradually strengthened, the apparent Faraday rotation angle passes through the route a or the route d and gradually approaches the value when it is saturated [route o → a → b or route o → d → e]. This state (route a or route d) is shown in FIG.
Corresponds to the state 2 or the state 4. When the external magnetic field strength reaches a certain strength [Hs], the Faraday rotation angle becomes a saturated value [saturation magnetic field, point b or point e]. Even if the external magnetic field strength increases, it is already saturated, so b to c,
Alternatively, the [Faraday rotation angle] does not change but only changes from d to f. This state corresponds to the state 3 or the state 5 in FIG. Next, when the external magnetic field is gradually weakened, the reverse path, that is, c → b → a → o or f →
The route e → d → o is traced, and finally the origin o is returned to the point where there is no influence of the external magnetic field.

【0011】以上述べたような磁区の状態変化の外部磁
界依存特性を利用したものとして、光スイッチや磁界セ
ンサがある。光スイッチは、図1の飽和点bと飽和点e
以上の磁界を磁界発生装置によって発生、切り換えるこ
とで動作するものであり、また、光電流センサによる磁
界の検出は、この原点oと飽和点b間の領域における見
かけのファラデー回転角の差異(或いは磁区構造の変
化)を光強度として検出するものである。そして、光磁
界センサによる磁界の強弱の検出、例えば回転センサと
しての利用は、この原点oと、飽和点b或いは飽和点c
とにおける見かけのファラデー回転角の差異(或いは磁
区構造の変化)を光強度として、又は原点oと、飽和点
bもしくはcに達する点aもしくは点dにおける見かけ
のファラデー回転角の差異(或いは磁区構造の変化)を
光強度として検出するものである。
There are optical switches and magnetic field sensors that utilize the external magnetic field dependence characteristics of the state change of the magnetic domains as described above. The optical switch has a saturation point b and a saturation point e in FIG.
The above magnetic field is generated and switched by a magnetic field generator, and the detection of the magnetic field by the photocurrent sensor is performed by detecting the difference in the apparent Faraday rotation angle in the region between the origin o and the saturation point b (or The change in magnetic domain structure) is detected as the light intensity. The detection of the strength of the magnetic field by the optical magnetic field sensor, for example, the use as a rotation sensor is performed by using the origin o and the saturation point b or the saturation point c.
The difference in the apparent Faraday rotation angle (or the change in the magnetic domain structure) between and as the light intensity, or the difference in the apparent Faraday rotation angle between the origin o and the point a or point d reaching the saturation point b or c (or the magnetic domain structure). Change) is detected as the light intensity.

【0012】光磁界センサを用いる回転速度計、即ち、
光信号による回転速度計では、回転機器に永久磁石が取
り付けられており〔アプライド オプテイックス(Appli
edOptics) 、第28巻、第11号、1992頁(1989 年) 〕、こ
の永久磁石の形成する磁界の影響がおよぶ範囲にBIG
膜からなる光磁界センサが配置される。回転機器の回転
に伴い、光磁界センサと永久磁石が接近と離反を繰り返
すが、永久磁石が接近した場合と離反した場合とで、フ
ァラデー回転子に印加される磁界強度に差が生じる。す
なわち永久磁石の回転により、磁区構造が変化し、その
結果検光子と透過する光の強度が変化する。すなわち、
永久磁石の回転数・回転速度を光強度変化としてとらえ
ることによるものである。
A tachometer using an optical magnetic field sensor, ie,
In the optical signal tachometer, a permanent magnet is attached to the rotating equipment (Applied Optics (Appli
edOptics), Vol. 28, No. 11, p. 1992 (1989)], and the range of influence of the magnetic field formed by this permanent magnet is BIG.
An optical magnetic field sensor made of a film is arranged. With the rotation of the rotating device, the optical magnetic field sensor and the permanent magnet repeat approaching and separating, but there is a difference in the magnetic field strength applied to the Faraday rotator when the permanent magnet approaches and when the permanent magnet separates. That is, due to the rotation of the permanent magnet, the magnetic domain structure changes, and as a result, the intensity of light passing through the analyzer changes. That is,
This is because the number of rotations and the rotation speed of the permanent magnet are captured as a change in light intensity.

【0013】この場合、永久磁石と光磁界センサヘッド
との距離が長くなると、永久磁石の形成する磁界は弱ま
る。従って、ファラデー効果を利用した回転速度計の感
度と精度とをより高める手段には、より磁力の強い永久
磁石を用いるたと、弱い磁界においても充分な機能を発
揮する光磁界センサヘッドを選ぶこと、さらに、永久磁
石と光磁界センサヘッドとの距離をより短くすることな
どがある。
In this case, as the distance between the permanent magnet and the optical magnetic field sensor head becomes longer, the magnetic field formed by the permanent magnet becomes weaker. Therefore, when a permanent magnet having a stronger magnetic force is used as a means for further increasing the sensitivity and accuracy of the tachometer utilizing the Faraday effect, selecting an optical magnetic field sensor head that exhibits a sufficient function even in a weak magnetic field, Furthermore, the distance between the permanent magnet and the optical magnetic field sensor head may be shortened.

【0014】永久磁石をより磁力の強いものに替えるこ
とは、経済的に不利であるのみならず、時として、永久
磁石の形状が大きくなって設置場所に制約が生じ、ま
た、永久磁石と光磁界センサヘッドとの距離が長くな
り、実質的な改善効果が得られないなどの弊害が生じや
すい。これらから、より低い磁界で磁気的に飽和するビ
スマス置換希土類鉄ガーネット単結晶膜が必要となる。
以上のように、光磁界センサにおいては、性能面、ある
いは製造コストの面で、できるだけ低い磁界で飽和する
BIG膜が切望されている。
Not only is it economically disadvantageous to replace the permanent magnet with one having a stronger magnetic force, but sometimes the shape of the permanent magnet becomes large and the installation place is restricted. The distance from the magnetic field sensor head becomes long, and the adverse effect such as the substantial improvement effect is not likely to occur. From these, a bismuth-substituted rare earth iron garnet single crystal film that is magnetically saturated at a lower magnetic field is required.
As described above, in the optical magnetic field sensor, a BIG film that saturates at a magnetic field as low as possible is desired from the viewpoint of performance or manufacturing cost.

【0015】他方、化学式 R3(FeA)5O12〔但し、R はイ
ットリウム(Y) やビスマス(Bi)、或いはその他の希土類
元素を意味し、A はアルミニウム(Al)やガリウム(Ga)な
どのことを意味する〕で表されるBIG膜は、液相エピ
タキシャル(LPE) 法で比較的容易に製造することができ
る。特に希土類の一部をビスマスで置換したビスマス置
換鉄ガーネット単結晶は、非常に大きなファラデー効果
を示すことが知られている。
On the other hand, the chemical formula R 3 (FeA) 5 O 12 [wherein R means yttrium (Y), bismuth (Bi), or other rare earth elements, A is aluminum (Al), gallium (Ga), etc. The BIG film represented by [1] can be relatively easily manufactured by the liquid phase epitaxial (LPE) method. In particular, it is known that a bismuth-substituted iron garnet single crystal in which a part of rare earth is replaced with bismuth exhibits a very large Faraday effect.

【0016】光磁界センサに用いられる希土類鉄ガーネ
ット単結晶は、感度の面、或いは製造コストの面で、で
きるだけ低い飽和磁界を有することが望ましいことか
ら、通常鉄をアルミニウムやガリウムなどの元素で置換
することが広く行われている。例えば、(GdBi)3(FeGaA
l)5O12 や (HoTbBi)3(FeGaAl)5O12など〔特開平61-2092
6、特願平5-55621 参照〕が報告されている。しかしな
がらBIG膜において、AlやGaとFeとの構成比を変え、
その飽和磁界を下げていくと、次第に磁気ヒステリシス
が大きくなるという、実用上極めて大きな問題がある。
The rare earth iron garnet single crystal used in the optical magnetic field sensor is desired to have a saturation magnetic field as low as possible from the viewpoint of sensitivity or manufacturing cost. Therefore, iron is usually replaced with an element such as aluminum or gallium. It is widely practiced. For example, (GdBi) 3 (FeGaA
l) 5 O 12 and (HoTbBi) 3 (FeGaAl) 5 O 12 etc.
6, see Japanese Patent Application No. 5-55621]. However, in the BIG film, the composition ratio of Al or Ga and Fe is changed,
When the saturation magnetic field is lowered, the magnetic hysteresis gradually increases, which is a very serious problem in practical use.

【0017】以下に磁気ヒステリシスを説明する。説明
に際しては、理解が容易であるという理由から、上記説
明と同様に図2のような外部磁界強度と見かけのファラ
デー回転角の関係を用いることとする。飽和磁界の比較
的大きな希土類鉄ガーネット単結晶、例えば(HoTbBi)3F
e5O12のファラデー回転子の外部磁界に対する磁化特
性、即ち、外部磁界強度と見かけのファラデー回転角と
の関係は、図2のように、外部磁界に対してほぼ1つの
曲線で表される。
The magnetic hysteresis will be described below. In the description, the relationship between the external magnetic field strength and the apparent Faraday rotation angle as shown in FIG. 2 is used for the reason that it is easy to understand. Rare earth iron garnet single crystal with relatively high saturation magnetic field, for example (HoTbBi) 3 F
The magnetization characteristic of the F 5 O 12 of the Faraday rotator with respect to the external magnetic field, that is, the relationship between the external magnetic field strength and the apparent Faraday rotation angle is represented by almost one curve with respect to the external magnetic field as shown in FIG. .

【0018】ところが、飽和磁界が小さな希土類置換鉄
ガーネット単結晶、例えば (GdBi)3(FeAlGa)5O12は、外
部磁界強度とファラデー回転角との関係において、図3
のように、経路 o→a→b→c→b→b' →a→o
のようなヒステリシスループを描く。すなわち、外部磁
界の強度を強めて行くとき〔経路 o→a→b→c〕
と、弱めて行くとき〔経路c→b→b' →a→o〕と
で、その経路が異なるのである。外部磁界を弱めていく
ときに、本来ならば、飽和磁界以下の領域では、図1に
おける状態2もしくは状態4のように多磁区構造になる
べきものが、状態3あるいは状態5の構造(単磁区構
造)を一時的に維持するのである。
However, a rare earth-substituted iron garnet single crystal having a small saturation magnetic field, for example, (GdBi) 3 (FeAlGa) 5 O 12 has a relationship between the external magnetic field strength and the Faraday rotation angle as shown in FIG.
, The path is o → a → b → c → b → b '→ a → o
Draw a hysteresis loop like. That is, when increasing the strength of the external magnetic field [path o → a → b → c]
And when weakening [route c → b → b ′ → a → o], the route is different. When weakening the external magnetic field, what should normally have a multi-domain structure like the state 2 or the state 4 in FIG. 1 in the region below the saturation magnetic field is the structure of the state 3 or the state 5 (single domain). Structure) is maintained temporarily.

【0019】図3において、b点およびe点における磁
界を飽和磁界Hs、磁化特性のヒステリシスによって生じ
たb' 点およびe' 点における磁界を核形成磁界Hnと称
し、飽和磁界Hsと核形成磁界Hnとの差(Hs-Hn) をヒステ
リシスの大きさと定義する。また、b点における飽和磁
界Hsを Hs1、b' 点における核形成磁界Hnを Hn1と表示
し、また、e点における飽和磁界Hsを Hs2、e' 点にお
ける核形成磁界HnをHn2と表示する。ここで、「核形
成」という用語は単磁区構造から、多磁区に移行するた
めの何らかの核が発生するという意味である。
In FIG. 3, the magnetic fields at the points b and e are called the saturation magnetic field Hs, and the magnetic fields at the points b'and e'caused by the hysteresis of the magnetization characteristic are called the nucleation magnetic field Hn. The difference from Hn (Hs-Hn) is defined as the size of hysteresis. The saturation magnetic field Hs at the point b is represented by Hs1, the nucleation magnetic field Hn at the point b'is represented by Hn1, the saturation magnetic field Hs at the point e is represented by Hs2, and the nucleation magnetic field Hn at the point e'is represented by Hn2. Here, the term “nucleation” means that some nuclei for transitioning from a single magnetic domain structure to multiple magnetic domains are generated.

【0020】BIG膜のヒステリシスが大きくなり、核
形成磁界Hnが原点oに近づくと、磁気的に一旦飽和され
た状態(図1の状態3あるいは状態5)が、外部磁界が
殆どゼロになるまで保持されることになる。従って、ヒ
ステリシスの大きなファラデ回転子で構成された光回転
センサでは、磁界強度の強弱を検知するためには、光磁
界センサの周囲・周辺の磁界強度を、ほぼゼロにしなけ
ればならない。ところが、回転センサは通常一般に、機
械装置内部に設置され、しかもその機械装置材料はわず
かではあるが磁力を帯びている。したがって、光磁界セ
ンサの周囲・周辺の磁界強度を、ほぼゼロにした状態で
使用するのはかなり困難である。
When the hysteresis of the BIG film increases and the nucleation magnetic field Hn approaches the origin o, the magnetically saturated state (state 3 or state 5 in FIG. 1) is maintained until the external magnetic field becomes almost zero. Will be retained. Therefore, in the optical rotation sensor composed of the Faraday rotator having a large hysteresis, in order to detect the strength of the magnetic field strength, the magnetic field strength around and around the optical magnetic field sensor must be set to almost zero. However, the rotation sensor is generally installed inside the mechanical device, and the mechanical device material has a slight magnetic force. Therefore, it is quite difficult to use the magnetic field strength around and around the optical magnetic field sensor in a state where the magnetic field strength is substantially zero.

【0021】また、BIG膜のヒステリシスが更に大き
くなると、核形成磁界Hn1 が原点oを越えてマイナス側
に入り込むもの(図4)や核形成磁界Hn1 が飽和磁界Hs
2 よりも大きく、四角形のヒステリシスカーブを描き
(図5)、一旦飽和された後は、この四角形のループを
描くだけとなり、飽和に必要な磁界がBIG膜の本来の
飽和磁界Hsより大きくなるものもある。このようにヒス
テリシスの大きBIG膜は、その飽和に必要な磁界が大
きくなることから光磁界センサへの利用は非常に困難で
ある。
When the hysteresis of the BIG film is further increased, the nucleation magnetic field Hn1 enters the minus side beyond the origin o (FIG. 4) and the nucleation magnetic field Hn1 is saturated magnetic field Hs.
It is larger than 2 and draws a quadratic hysteresis curve (Fig. 5), and once it is saturated, it only draws this quadrangle loop, and the magnetic field required for saturation is larger than the original saturation magnetic field Hs of the BIG film. There is also. As described above, since the BIG film having a large hysteresis has a large magnetic field necessary for its saturation, it is very difficult to use it for the optical magnetic field sensor.

【0022】[0022]

【発明が解決しようとする課題】本発明者らは、磁気ヒ
ステリシスのないBIG膜を開発すべく鋭意検討した。
その結果、従来のBIG膜に比較して、飽和磁界が低い
にも関わらず磁気ヒステリシスが非常に小さいものとし
て (YLaBi)3(FeGa)5O12 を発見した。これは、非磁性ガ
ーネット単結晶基板上に、液相エピタキシャル法で育成
された一般式 Y3-x-y Lax Biy Fe5-z Gaz O12 〔但
し、x, y, z は、 0.1≦x≦0.4, 1.0≦y≦1.9, 1.0≦
z≦1.6 である〕なる化学組成を有するビスマス置換希
土類鉄ガーネット単結晶膜である。
DISCLOSURE OF THE INVENTION The present inventors have earnestly studied to develop a BIG film having no magnetic hysteresis.
As a result, we have found (YLaBi) 3 (FeGa) 5 O 12 as having a very small magnetic hysteresis despite a low saturation magnetic field, as compared with the conventional BIG film. This is a general formula Y 3-xy La x Bi y Fe 5-z Ga z O 12 grown on a non-magnetic garnet single crystal substrate by a liquid phase epitaxial method (where x, y, z are 0.1 ≦ x ≦ 0.4, 1.0 ≦ y ≦ 1.9, 1.0 ≦
z ≦ 1.6] is a bismuth-substituted rare earth iron garnet single crystal film.

【0023】しかしながら、上記 (YLaBi)3(FeGa)5O12
を製造し、磁界センサ用ファラデー回転子として使用す
るための実際の大きさ (例えば 2mm×2mm)に細かく切断
して、個々の切断品の磁気ヒステリシスを測定した結
果、磁気ヒステリシスが大きいものがいくつか混在し
た。そして、その磁気ヒステリシスの大きなもの割合
が、製造した (YLaBi)3(FeGa)5O12 よって異なることが
判った。
However, the above (YLaBi) 3 (FeGa) 5 O 12
Was manufactured and finely cut into actual sizes (for example, 2 mm × 2 mm) for use as a Faraday rotator for magnetic field sensors, and the magnetic hysteresis of each cut product was measured. Or mixed. Then, it was found that the ratio of large magnetic hysteresis was different depending on the (YLaBi) 3 (FeGa) 5 O 12 produced .

【0024】ファラデー回転子を製造する場合、磁気ヒ
ステリシスが大きい不良品は測定によって取り除くこと
は可能である。しかし、磁気ヒステリシスの測定時間が
長いため、量産性に問題を残している(実際には、ファ
ラデー回転子に加える磁界強度を次第に大きくし、つい
で磁界強度を弱めながら、そのファラデー回転角を測定
する必要がある)。また、装置も比較的大がかりである
ことから、製造コストアップにつながる。従って、磁気
ヒステリシスの測定に依らない、非常に簡便な方法で不
良品のチェックができることが望ましい。さらに、直接
的に磁気ヒステリシスをできるだけ小さくする手法の開
発が切望されている。
When manufacturing a Faraday rotator, defective products having large magnetic hysteresis can be removed by measurement. However, since the measurement time of magnetic hysteresis is long, there is a problem in mass productivity (actually, the magnetic field strength applied to the Faraday rotator is gradually increased, and then the Faraday rotation angle is measured while weakening the magnetic field strength. There is a need). Further, since the device is relatively large in size, it leads to an increase in manufacturing cost. Therefore, it is desirable to be able to check defective products by a very simple method that does not rely on measurement of magnetic hysteresis. Furthermore, there is a strong demand for the development of a method for directly reducing the magnetic hysteresis as much as possible.

【0025】以上、詳細に説明したように飽和磁界の低
いBIG膜は、磁気ヒステリシスが大きいため、光磁界
センサ用のファラデー回転子に用いる場合、磁界を切り
換えるための磁界発生装置が大きくなるとか、回転体に
とりつける永久磁石強度を強くするとか、磁界測定範囲
が非常に狭い等の障害や制限があるのが現状である。
As described above in detail, since the BIG film having a low saturation magnetic field has a large magnetic hysteresis, when it is used for a Faraday rotator for an optical magnetic field sensor, a magnetic field generator for switching magnetic fields becomes large. At present, there are obstacles and restrictions such as increasing the strength of the permanent magnet attached to the rotating body and the very narrow magnetic field measurement range.

【0026】[0026]

【課題を解決するための手段】本願発明者らは、BIG
膜を切断して多数のファラデー回転子を製造し、個々の
ファラデー回転子の磁気ヒステリシスを詳細に測定した
結果、上述したように、同一のBIG膜から切り出した
ファラデー回転子間で磁気ヒステリシスの大きさが異な
る、或いはいくつかのBIG膜間で磁気ヒステリシスの
大きなものが出現する割合が異なるという興味深い事実
を得た。本願発明者らはこの結果を詳細に検討した結
果、BIG膜から切り出された磁界センサ用ファラデー
回転子に見られるピット(欠陥の一種)が少ないか或い
は全く無いものは、磁気ヒステリシスが大きくなるとい
う極めて興味深い知見を得た。さらに、実験・測定を重
ねて、本発明を完成させた。
Means for Solving the Problems The present inventors
As a result of measuring the magnetic hysteresis of each Faraday rotator in detail by manufacturing a large number of Faraday rotators by cutting the film, as described above, the magnitude of the magnetic hysteresis between Faraday rotators cut out from the same BIG film was increased. We obtained an interesting fact that the BIG films have different magnetic properties, or the ratio of occurrence of large magnetic hysteresis differs among several BIG films. As a result of a detailed study of the results, the inventors of the present invention have found that the magnetic hysteresis becomes large when the Faraday rotator for magnetic field sensor cut out from the BIG film has few or no pits (a kind of defects). I got a very interesting finding. Further, experiments and measurements were repeated to complete the present invention.

【0027】すなわち、本発明は、非磁性ガーネット単
結晶基板上に液相エピタキシャル法で育成されたビスマ
ス置換希土類鉄ガーネット単結晶膜から製造されたファ
ラデー回転子であって、該ファラデー回転子中に結晶欠
陥の一種であるピットを少なくとも5個以上含むことを
特徴とするファラデー回転子である。また、該ビスマス
置換希土類鉄ガーネット単結晶膜が、非磁性ガーネット
単結晶基板上に液相エピタキシャル法で育成された一般
式; R3-xBix Fe5-yAy O12 〔但し、Rは、Y及び希土類元素から選ばれる少なくと
も一種であり、Aは、Ga、Alから選ばれる少なくとも一
種である。x, yは、各々、 0.8≦x≦1.9 、 0.5≦y≦
1.6 の数である〕なる化学組成を有するものである。
That is, the present invention provides a Faraday rotator manufactured from a bismuth-substituted rare earth iron garnet single crystal film grown by a liquid phase epitaxial method on a non-magnetic garnet single crystal substrate. The Faraday rotator is characterized by including at least five pits, which are a type of crystal defect. In addition, the bismuth-substituted rare earth iron garnet single crystal film was grown by a liquid phase epitaxial method on a non-magnetic garnet single crystal substrate; R 3-x Bi x Fe 5-y A y O 12 [where R Is at least one selected from Y and rare earth elements, and A is at least one selected from Ga and Al. x and y are 0.8 ≦ x ≦ 1.9 and 0.5 ≦ y ≦, respectively.
It has a chemical composition of 1.6.

【0028】以下、本発明を説明する。まず、ピットの
有無によって磁気ヒステリシスの大きさが異なるという
現象の背景は未だ明確ではなく、今後の研究実験結果・
成果を待たなければならない。しかし、いずれにせよ、
ピットの多寡で磁気ヒステリシスの大きさを推定でき
る、という知見は工業生産上非常に有意義である。すな
わち、ピット個数によるファラデー回転子の良品と不良
品の判別が可能となり、かつ磁気ヒステリシスの少ない
ビスマス置換希土類鉄ガーネット単結晶膜(BIG膜)
の製造指標が得られたことになる。
The present invention will be described below. First, the background of the phenomenon that the magnitude of magnetic hysteresis differs depending on the presence or absence of pits is not clear, and future research and experiment results
We have to wait for results. But anyway,
The knowledge that the size of magnetic hysteresis can be estimated by the number of pits is very significant in industrial production. That is, it is possible to distinguish between a good product and a defective product of the Faraday rotator by the number of pits, and a bismuth-substituted rare earth iron garnet single crystal film (BIG film) with less magnetic hysteresis.
This means that the manufacturing index of

【0029】ファラデー回転子中のピットの個数は、顕
微鏡或いは赤外顕微鏡によって観察できる。BIG膜が
薄い場合、具体的には 100μm以下であれば、ピットは
顕微鏡で容易に観察できる。また、BIG膜が 100μm
以上の厚さでは、一部のピットは埋もれて、通常の顕微
鏡では観察できなくなる。しかし、赤外顕微鏡によって
結晶内部のピットが観察可能である。
The number of pits in the Faraday rotator can be observed with a microscope or an infrared microscope. If the BIG film is thin, specifically 100 μm or less, the pits can be easily observed with a microscope. Also, the BIG film is 100 μm
With the above thickness, some pits are buried and cannot be observed with an ordinary microscope. However, pits inside the crystal can be observed with an infrared microscope.

【0030】本発明において、ピットはBIG膜を切断
して得られたファラデー回転子(通常大きさは 1mm×1m
m から 5mm×5mm)中に少なくとも5個以上あれば良い。
5個以下になると、磁気ヒステリシスによる不良品〔本
発明では、センサシステムの構造によって異なるが、便
宜的に、磁気ヒステリシス(飽和磁界Hsと核形成磁界Hn
の差)が飽和磁界の80%以上となるものを不良品と定義
する〕が多くなるので好ましくない。磁気ヒステリシス
を小さくしたファラデー回転子として、ピット個数の上
限は特に無い。しかし、ピットが多くなると光の透過率
低下や光散乱の増加などが生じるので、光磁界センサの
システムに応じて適宜決定する。
In the present invention, the pit is a Faraday rotator obtained by cutting the BIG film (normal size is 1 mm × 1 m).
There should be at least 5 or more in 5 mm x 5 mm from m.
If the number is 5 or less, defective products due to magnetic hysteresis [In the present invention, magnetic hysteresis (saturation magnetic field Hs and nucleation magnetic field Hn
Difference) is 80% or more of the saturation magnetic field is defined as a defective product. As a Faraday rotator with reduced magnetic hysteresis, there is no particular upper limit on the number of pits. However, if the number of pits increases, the light transmittance will decrease and the light scattering will increase. Therefore, it is appropriately determined according to the system of the optical magnetic field sensor.

【0031】本発明の該BIG膜としては、非磁性ガー
ネット単結晶基板上に液相エピタキシャル法で育成され
た一般式; R3-xBix Fe5-yAy O12〔但し、Rは
Y及び希土類元素からなる群から選択した1種または2
種以上の元素であり、AはGaおよびAlから選択した少な
くとも一種である。また、x, yは各々、 0.8≦x≦1.9
、 0.5≦y≦1.6 の数である〕なる化学組成を有する
ものが、ファラデー効果も大きく、しかも飽和磁界が低
く好ましい。さらに、BIG膜としては一般式; Y
3-x-yLaxBiy Fe5-zGaz O12〔但し、x, y, z は各々、
0.1≦x≦0.4 、 1.0≦y≦1.9 、 1.0≦z≦1.6 の数
である〕なる化学組成を有するものが、ファラデー効果
も大きく、しかも飽和磁界が低く磁界センサ用ファラデ
ー回転子材料として好適である。
The BIG film of the present invention has a general formula of R 3-x Bi x Fe 5-y A y O 12 grown on a non-magnetic garnet single crystal substrate by a liquid phase epitaxial method; 1 or 2 selected from the group consisting of Y and rare earth elements
More than one element, A is at least one selected from Ga and Al. Also, x and y are 0.8 ≦ x ≦ 1.9, respectively.
, 0.5 ≦ y ≦ 1.6] is preferable, and the Faraday effect is large and the saturation magnetic field is low. Further, as a BIG film, a general formula: Y
3-xy La x Bi y Fe 5-z Ga z O 12 (However, x, y, z are
0.1 ≦ x ≦ 0.4, 1.0 ≦ y ≦ 1.9, 1.0 ≦ z ≦ 1.6], which has a large Faraday effect and a low saturation magnetic field and is suitable as a Faraday rotator material for magnetic field sensors. is there.

【0032】本発明において、製造したBIG膜に所定
のピットを出現させることができる方法であれば、特に
制限は無い。しかし、経験的には、BIG膜育成基板の
汚染、過飽和度を大きくした液相エピタキシャル成長、
基板との格子定数差拡大、などが例示される。育成用の
基板を汚染すると汚染された部分からは正常なエピタキ
シャル成長ができなくなりピットが増える。過飽和度を
大きくすると、ピットが増えることは良く知られてい
る。また、育成用の基板との格子定数差を大きくする
と、基板とBIG膜間にストレスが生じ、ピットが出や
すくなる。
In the present invention, there is no particular limitation as long as it is a method capable of causing a predetermined pit to appear in the manufactured BIG film. However, empirically, contamination of the BIG film growth substrate, liquid phase epitaxial growth with an increased degree of supersaturation,
For example, the difference in lattice constant with the substrate is enlarged. When the substrate for growth is contaminated, normal epitaxial growth cannot be performed from the contaminated part, and pits increase. It is well known that pits increase with increasing supersaturation. Further, if the lattice constant difference from the substrate for growth is increased, stress is generated between the substrate and the BIG film, and pits are likely to appear.

【0033】以下、本発明を実施例によって、その実施
態様と効果を具体的に、かつ詳細に説明するが、以下の
例は、具体的に説明するものであって、本発明の実施態
様や発明の範囲を限定するものとしては意図されていな
い。
Hereinafter, the present invention will be described in detail and specifically by way of its embodiments and effects, and the following examples will specifically describe the embodiments and effects of the present invention. It is not intended to limit the scope of the invention.

【0034】[0034]

【実施例】【Example】

実施例1 容量 1,000ml(ミリリットル)の白金製ルツボに、酸化鉛(PbO,
4N) 1,260g、酸化ビスマス(Bi2O3, 4N) 1,260g、酸化第
2鉄(Fe2O3, 4N) 195g、酸化ほう素(B2O3, 5N)68g、酸
化イットリウム(Y2O3, 3N) 10.8g、酸化ランタン(La
2O3, 3N) 11.0g、酸化ガリウム(Ga2O3, 3N) 52g を仕
込んだ。これを精密縦型管状電気炉の所定の位置に設置
し、1000℃に加熱溶融して十分に撹拌して均一に混合し
たのち、融液温度 761℃にまで冷却してビスマス置換希
土類磁性ガーネット単結晶育成用融液とした。
Example 1 A platinum crucible having a capacity of 1,000 ml (milliliter) was charged with lead oxide (PbO,
4N) 1,260 g, bismuth oxide (Bi 2 O 3 , 4N) 1,260 g, ferric oxide (Fe 2 O 3 , 4N) 195 g, boron oxide (B 2 O 3 , 5N) 68 g, yttrium oxide (Y 2 O 3 , 3N) 10.8 g, lanthanum oxide (La
2 O 3, 3N) 11.0g, was charged with gallium oxide (Ga 2 O 3, 3N) 52g. This was placed in a predetermined position in a precision vertical tubular electric furnace, heated and melted at 1000 ° C, thoroughly stirred and uniformly mixed, and then cooled to a melt temperature of 761 ° C to cool the bismuth-substituted rare earth magnetic garnet unit. The melt was used for crystal growth.

【0035】ここに得られた融液表面に、常法に従っ
て、厚さが 500μm で、格子定数が 1.2497 ±0.0002 n
m の2インチ(111)ガーネット単結晶[(GdCa)3(GaMgZr)
5O12]基板の片面を接触させ、融液温度を 761℃に維持
しながら基板回転数を60r.p.m.として2時間のエピタキ
シャル成長を行った。厚さ65μmの(YLaBi)3(FeGa)5O12
単結晶膜(=YLBG膜-1) を得た。
On the surface of the melt thus obtained, the thickness was 500 μm and the lattice constant was 1.2497 ± 0.0002 n according to a conventional method.
2-inch (111) Garnet Single Crystal [(GdCa) 3 (GaMgZr) of m
One side of the 5 O 12 ] substrate was brought into contact with the substrate, and epitaxial growth was performed for 2 hours while maintaining the melt temperature at 761 ° C. and the substrate rotation speed at 60 rpm. 65 μm thick (YLaBi) 3 (FeGa) 5 O 12
A single crystal film (= YLBG film-1) was obtained.

【0036】次に、このYLBG膜-1を10.5mm×10.5mmの大
きさに分割し、分割品12枚を得た。10.5mm×10.5mmの分
割品 12 枚から任意の4枚を選択し、両面に波長0.78μ
m対応の反射防止膜を施し、ついで 2mm×2mm に切断し
て波長0.78μm帯用のファラデー回転子とした。ファラ
デー回転子は合計 100個が得られた。この 100個のファ
ラデー回転子について、ピット個数のカウントと磁気特
性を測定し、両者の関係を調べた。
Next, this YLBG film-1 was divided into a size of 10.5 mm × 10.5 mm to obtain 12 pieces. Select any 4 pieces out of 12 pieces of 10.5 mm x 10.5 mm divided product, and have a wavelength of 0.78μ on both sides.
An antireflection film corresponding to m was applied, and then cut into 2 mm x 2 mm to obtain a Faraday rotator for the 0.78 µm wavelength band. A total of 100 Faraday rotators were obtained. For these 100 Faraday rotators, the pit count and magnetic properties were measured and the relationship between them was investigated.

【0037】磁気測定は以下の方法を採った。まず、 2
mm×2mm の大きさのファラデー回転子を、マグネテック
社のヘルムホルツコイルからなる磁界発生装置の中心に
配置し、磁界を印加しながら、 0.786μmの半導体レー
ザ光をファラデー回転子に照射した。そしてファラデー
回転子を透過したレーザ光の偏波面の回転角を測定か
ら、ファラデー回転角の印加磁界依存性を調べた。結果
をまとめて図5に示した(ピット数が10個を越えるデー
タは省略した)。
For magnetic measurement, the following method was adopted. First, 2
A Faraday rotator having a size of mm × 2 mm was placed at the center of a magnetic field generator composed of Helmholtz coils manufactured by Magnetec Co., Ltd., and a semiconductor laser beam of 0.786 μm was applied to the Faraday rotator while applying a magnetic field. Then, the dependence of the Faraday rotation angle on the applied magnetic field was investigated by measuring the rotation angle of the plane of polarization of the laser light transmitted through the Faraday rotator. The results are shown together in FIG. 5 (data with more than 10 pits is omitted).

【0038】YLBG膜-1の飽和磁界は 250 Oe(エルステッ
ド) であった。磁気ヒステリシスによる良品と不良品の
選別は、核形成磁界Hnが飽和磁界の20%を示すライン、
即ち、Hnが 44 Oe以上を良品、44 Oe 未満を不良品とし
た。ピットが4個以下になると、不合格品が発生するの
に対し、ピットが5個以上になると不合格品はまったく
見られなくなった(ピット11個以上のデータは記載しい
ないが不合格品は無かった)。結局、 2mm×2mm の大き
さのファラデー回転子 100個中、ピット5個以上含むも
のは85個で、すべて良品であった。
The saturation magnetic field of the YLBG film-1 was 250 Oe (Oersted). In order to distinguish good products from bad products by magnetic hysteresis, the line where the nucleation magnetic field Hn shows 20% of the saturation magnetic field,
That is, Hn of 44 Oe or more was determined as a good product, and Hn of less than 44 Oe was determined as a defective product. When the number of pits is 4 or less, rejected products occur, whereas when the number of pits is 5 or more, rejected products are not seen at all (the data for 11 or more pits are not listed, but the rejected products are There was none). After all, out of 100 Faraday rotators measuring 2 mm x 2 mm, 85 contained 5 or more pits, which were all good products.

【0039】実施例2 容量 1,000mlの白金製ルツボに、酸化鉛(PbO, 4N) 1,26
0g、酸化ビスマス(Bi2O3, 4N) 1,260g、酸化第2鉄(Fe2
O3, 4N) 190g、酸化ほう素(B2O3, 5N) 45g、酸化ガドリ
ニウム(Gd2O3, 3N) 21.0g 、酸化ガリウム(Ga2O3, 3N)
4.0g、酸化アルミニウム(Al2O3, 3N) 8.5gを仕込んだ。
これを精密縦型管状電気炉の所定の位置に設置し、1,00
0 ℃に加熱溶融して十分に撹拌して均一に混合したの
ち、融液温度 776℃にまで冷却してビスマス置換希土類
磁性ガーネット単結晶育成用融液とした。
Example 2 Lead oxide (PbO, 4N) 1,26 was added to a platinum crucible having a capacity of 1,000 ml.
0 g, bismuth oxide (Bi 2 O 3 , 4N) 1,260 g, ferric oxide (Fe 2
O 3, 4N) 190g, boron oxide (B 2 O 3, 5N) 45g, gadolinium oxide (Gd 2 O 3, 3N) 21.0g, gallium oxide (Ga 2 O 3, 3N)
4.0 g and 8.5 g of aluminum oxide (Al 2 O 3 , 3N) were charged.
Place this in a predetermined position in a precision vertical tubular electric furnace and
The mixture was heated and melted at 0 ° C., sufficiently stirred and uniformly mixed, and then cooled to a melt temperature of 776 ° C. to obtain a bismuth-substituted rare earth magnetic garnet single crystal growing melt.

【0040】ここに得られた融液表面に、常法に従っ
て、厚さ 500μm、格子定数 1.2497±0.0002 nm の2
インチ(111)ガーネット単結晶[(GdCa)3(GaMgZr)5O12
基板の片面を接触させ、融液温度を 776℃に維持しなが
ら基板回転数を60r.p.m.として2時間のエピタキシャル
成長を行った。ただし結晶成長開始1時間後に10分間だ
け基板回転数を75r.p.m.とした。厚さ49μmの (GdBi)3
(FeGaAl)5O12単結晶膜(=GBGA膜-1) を得た。
On the surface of the melt thus obtained, 2 having a thickness of 500 μm and a lattice constant of 1.2497 ± 0.0002 nm was prepared by a conventional method.
Inch (111) garnet single crystal [(GdCa) 3 (GaMgZr) 5 O 12 ]
One side of the substrate was brought into contact with each other, and epitaxial growth was carried out for 2 hours while maintaining the melt temperature at 776 ° C and the substrate rotation speed at 60 rpm. However, the substrate rotation speed was set to 75 rpm for 10 minutes 1 hour after the start of crystal growth. 49 μm thick (GdBi) 3
A (FeGaAl) 5 O 12 single crystal film (= GBGA film-1) was obtained.

【0041】次に、このGBGA膜-1を10.5mm×10.5mmの大
きさに分割し、分割品12枚を得た。10.5mm×10.5mmの分
割品12枚から任意の4枚を選択し、両面に波長0.78μm
対応の反射防止膜を施し、ついで 2mm×2mm に切断して
波長0.78μm帯用ファラデー回転子とした。ファラデー
回転子は合計 100個が得られた。GBGA膜-1の飽和磁界は
290 Oe であった。この 100個のファラデー回転子につ
いて、実施例1と同様の方法でピット個数と磁気特性を
測定した。その結果、 2mm×2mm の大きさのファラデー
回転子 100個中、ピットを5個以上含むものは78個で、
すべて良品であった。一方、ピットが5個未満のファラ
デー回転子は32個得られ、そのうち26個が不良であっ
た。
Next, this GBGA film-1 was divided into a size of 10.5 mm × 10.5 mm to obtain 12 pieces. Select any 4 pieces out of 12 pieces of 10.5mm x 10.5mm, wavelength 0.78μm on both sides
A corresponding antireflection film was applied and then cut into 2 mm x 2 mm to prepare a Faraday rotator for the 0.78 µm wavelength band. A total of 100 Faraday rotators were obtained. The saturation magnetic field of GBGA film-1 is
It was 290 Oe. With respect to the 100 Faraday rotators, the number of pits and magnetic characteristics were measured by the same method as in Example 1. As a result, of 100 Faraday rotators measuring 2mm x 2mm, 78 contained 5 or more pits,
Everything was good. On the other hand, 32 Faraday rotators with less than 5 pits were obtained, of which 26 were defective.

【0042】実施例3 容量 3,000mlの白金製ルツボに、酸化鉛(PbO, 4N) 4,20
0g、酸化ビスマス(Bi2O3, 4N) 4,900g、酸化第2鉄(Fe2
O3, 4N) 650g、酸化ほう素(B2O3, 5N)150g、酸化ガドリ
ニウム(Gd2O3, 3N) 80g 、酸化ガリウム(Ga2O3, 3N) 61
g を仕込んだ。これを精密縦型管状電気炉の所定の位置
に設置し、1,000 ℃に加熱溶融して十分に撹拌して均一
に混合したのち、融液温度 790℃にまで冷却してビスマ
ス置換希土類磁性ガーネット単結晶育成用融液とした。
Example 3 Lead oxide (PbO, 4N) 4,20 was added to a platinum crucible having a capacity of 3,000 ml.
0g, bismuth oxide (Bi 2 O 3 , 4N) 4,900g, ferric oxide (Fe 2
O 3, 4N) 650g, boron oxide (B 2 O 3, 5N) 150g, gadolinium oxide (Gd 2 O 3, 3N) 80g, gallium oxide (Ga 2 O 3, 3N) 61
Charged g. This was placed in a predetermined position in a precision vertical tubular electric furnace, heated and melted at 1,000 ° C, sufficiently stirred and mixed uniformly, and then cooled to a melt temperature of 790 ° C and cooled to a bismuth-substituted rare earth magnetic garnet unit. The melt was used for crystal growth.

【0043】ここに得られた融液表面に、常法に従っ
て、厚さ 500μm、格子定数 1.2497±0.0002 nm の2
インチ(111)ガーネット単結晶[(GdCa)3(GaMgZr)5O12]
基板の片面を接触させ、融液温度を 790℃に維持し基板
回転数を60r.p.m.としてながら22時間のエピタキシャル
成長を行った。ただし結晶成長を開始してから16時間経
過した時点で10分間だけ基板回転数を75r.p.m.とした。
厚さ 385μmの (TbBi)3(FeGa)5O12単結晶膜(=TBG 膜)
を得た。
On the surface of the melt thus obtained, 2 having a thickness of 500 μm and a lattice constant of 1.2497 ± 0.0002 nm was prepared by a conventional method.
Inch (111) garnet single crystal [(GdCa) 3 (GaMgZr) 5 O 12 ]
Epitaxial growth was carried out for 22 hours while contacting one surface of the substrate and maintaining the melt temperature at 790 ° C and the substrate rotation speed at 60 rpm. However, when 16 hours passed after starting the crystal growth, the substrate rotation speed was set to 75 rpm for 10 minutes.
385 μm thick (TbBi) 3 (FeGa) 5 O 12 single crystal film (= TBG film)
I got

【0044】次に、この TBG膜を10.5mm×10.5mmの大き
さに分割し、分割品12枚を得た。10.5mm×10.5mmの分割
品12枚から任意の3枚を選択し、研磨によって基板を除
去し、さらに厚さを 324μmとした。両面に波長1.31μ
m対応の反射防止膜を施し、ついで 1.6mm×1.6mm に切
断して波長1.31μm帯用ファラデー回転子とした。ファ
ラデー回転子は合計 108個が得られた。TBG 膜の飽和磁
界は 340 Oe であった。この 108個のファラデー回転子
について、実施例1と同様の方法でピット個数のカウン
ト(赤外顕微鏡を使用)と磁気特性の測定を行った。そ
の結果、 1.6mm×1.6mm の大きさのファラデー回転子 1
08個中、ピット個数が5個以上含むものは92個で、すべ
て良品であった。一方、ピットが5個未満のファラデー
回転子は8個得られ、そのうち5個が不良であった。
Next, this TBG film was divided into a size of 10.5 mm × 10.5 mm to obtain 12 pieces. Arbitrary 3 pieces were selected from 12 pieces of 10.5 mm × 10.5 mm pieces, the substrate was removed by polishing, and the thickness was set to 324 μm. Wavelength 1.31μ on both sides
An antireflection film corresponding to m was applied, and then cut into 1.6 mm × 1.6 mm to obtain a Faraday rotator for a wavelength band of 1.31 μm. A total of 108 Faraday rotators were obtained. The saturation magnetic field of the TBG film was 340 Oe. With respect to the 108 Faraday rotators, the number of pits was counted (using an infrared microscope) and the magnetic properties were measured in the same manner as in Example 1. As a result, a Faraday rotator with a size of 1.6 mm × 1.6 mm 1
Of the 08 pieces, 92 pieces contained 5 or more pits, which were all good products. On the other hand, 8 Faraday rotators with less than 5 pits were obtained, of which 5 were defective.

【0045】比較例1 容量 1,000mlの白金製ルツボに、酸化鉛(PbO, 4N) 1,26
0g、酸化ビスマス(Bi2O3, 4N) 1,470g、酸化第2鉄(Fe2
O3, 4N) 195g、酸化ほう素(B2O3, 5N) 38g、酸化イット
リウム(Y2O3, 3N) 10.8g、酸化ランタン(La2O3, 3N) 1
1.0g 、酸化ガリウム(Ga2O3, 3N) 36g を仕込んだ。こ
れを精密縦型管状電気炉の所定の位置に設置し、1,000
℃に加熱溶融して十分に撹拌して均一に混合したのち、
融液温度 755℃にまで冷却してビスマス置換希土類磁性
ガーネット単結晶育成用融液とした。
Comparative Example 1 A platinum crucible having a capacity of 1,000 ml was charged with lead oxide (PbO, 4N) 1,26
0 g, bismuth oxide (Bi 2 O 3 , 4N) 1,470 g, ferric oxide (Fe 2
O 3 , 4N) 195 g, boron oxide (B 2 O 3 , 5N) 38 g, yttrium oxide (Y 2 O 3 , 3N) 10.8 g, lanthanum oxide (La 2 O 3 , 3N) 1
1.0 g and gallium oxide (Ga 2 O 3 , 3N) 36 g were charged. This is installed in the predetermined position of the precision vertical tubular electric furnace, and 1,000
After melting by heating to ℃ and stirring thoroughly to mix uniformly,
The melt was cooled to 755 ° C. to obtain a melt for growing a bismuth-substituted rare earth magnetic garnet single crystal.

【0046】ここに得られた融液表面に、常法に従っ
て、厚さ 500μm、格子定数 1.2497±0.0002 nm の2
インチ(111)ガーネット単結晶[(GdCa)3(GaMgZr)5O12]
基板の片面を接触させ、融液温度を 755℃に維持し基板
回転数を60r.p.m.としてながら2時間のエピタキシャル
成長を行った。厚さ 57μmの(YLaBi)3(FeGa)5O12単結
晶膜(=YLBG膜-2) を得た。
On the surface of the melt thus obtained, 2 with a thickness of 500 μm and a lattice constant of 1.2497 ± 0.0002 nm was used according to a conventional method.
Inch (111) garnet single crystal [(GdCa) 3 (GaMgZr) 5 O 12 ]
One surface of the substrate was brought into contact with the substrate, the melt temperature was maintained at 755 ° C., and the epitaxial rotation was performed for 2 hours while the substrate rotation speed was 60 rpm. A 57 μm thick (YLaBi) 3 (FeGa) 5 O 12 single crystal film (= YLBG film-2) was obtained.

【0047】次にこのYLBG膜-2を実施例1とまったく同
様に処理して 2mm×2mm のファラデー回転子 100個を得
た。この 100個のファラデー回転子について、ピット個
数のカウントと磁気特性の測定を行った。その結果、ピ
ットを5個以上含むファラデー回転子は10個ですべて良
品であった。またピット個数4個以下のファラデー回転
子は90個で、このうち良品は12個であった。
Next, this YLBG film-2 was treated in exactly the same manner as in Example 1 to obtain 100 Faraday rotators of 2 mm × 2 mm. The number of pits and the magnetic properties of the 100 Faraday rotators were measured. As a result, there were 10 Faraday rotators containing 5 or more pits, which were all good products. There were 90 Faraday rotators with 4 or less pits, of which 12 were good.

【0048】比較例2 実施例2において、結晶育成中の基板回転数を 60r.p.
m. の一定とした以外は全く同様の条件で、厚さ43μm
の (GdBi)3(FeGaAl)5O12単結晶膜(=GBGA膜-2) を得た。
次にこのGBGA膜-2を実施例2と全く同様に処理し、ピッ
ト個数と磁気特性を測定した。この結果、ピットを5個
以上含むファラデー回転子は5個ですべて良品であっ
た。また、ピット個数4個以下のファラデー回転子は95
個で、このうち良品は5個であった。
Comparative Example 2 In Example 2, the substrate rotation speed during crystal growth was 60 r.p.
The thickness is 43 μm under exactly the same conditions except that the m.
A (GdBi) 3 (FeGaAl) 5 O 12 single crystal film (= GBGA film-2) was obtained.
Next, this GBGA film-2 was processed in exactly the same manner as in Example 2, and the number of pits and magnetic characteristics were measured. As a result, the number of Faraday rotators containing 5 or more pits was 5, and all were good products. Also, Faraday rotator with 4 or less pits is 95
Of these, 5 were good products.

【0049】[0049]

【発明の効果】本発明によれば、飽和磁界の低いビスマ
ス置換希土類鉄ガーネット単結晶膜であっても磁気ヒス
テリシスが抑制され、かつ磁気ヒステリシスが大きい不
良品をピット個数の測定という簡便な識別法によるもの
であり、光磁界センサ用ファラデー回転子の製造が容易
となった。
According to the present invention, even if a bismuth-substituted rare earth iron garnet single crystal film having a low saturation magnetic field, magnetic hysteresis is suppressed, and a defective product having a large magnetic hysteresis is simply identified by measuring the number of pits. This facilitates the manufacture of a Faraday rotator for an optical magnetic field sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】ビスマス置換希土類鉄ガーネット単結晶膜(B
IG膜)の外部磁界強度に対する磁区構造の変化の一例
を示す模式図。
FIG. 1 Bismuth-substituted rare earth iron garnet single crystal film (B
FIG. 4 is a schematic diagram showing an example of a change in magnetic domain structure of an IG film) with respect to an external magnetic field strength.

【図2】磁気ヒステリシスを示さないBIG膜の磁気特
性の一例を示す模式図。
FIG. 2 is a schematic diagram showing an example of magnetic characteristics of a BIG film showing no magnetic hysteresis.

【図3】磁気ヒステリシスを示すBIG膜の磁気特性の
一例を示す模式図。
FIG. 3 is a schematic diagram showing an example of magnetic characteristics of a BIG film showing magnetic hysteresis.

【図4】大きな磁気ヒステリシスを示すBIG膜の磁気
特性の一例を示す模式図。
FIG. 4 is a schematic view showing an example of magnetic characteristics of a BIG film showing a large magnetic hysteresis.

【図5】磁気ヒステリシスが非常に大きいため、角型ヒ
ステリシスをなすBIG膜の磁気特性の一例を示す模式
図。
FIG. 5 is a schematic diagram showing an example of magnetic characteristics of a BIG film forming a square hysteresis because the magnetic hysteresis is very large.

【図6】実施例1におけるファラデー回転子におけるピ
ット個数と核形成磁界の関係を示す模式図。
FIG. 6 is a schematic diagram showing the relationship between the number of pits and the nucleation magnetic field in the Faraday rotator in the first embodiment.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非磁性ガーネット単結晶基板上に液相エ
ピタキシャル法で育成されたビスマス置換希土類鉄ガー
ネット単結晶膜から製造されたファラデー回転子であっ
て、該ファラデー回転子中に結晶欠陥の一種であるピッ
トを少なくとも5個以上含むことを特徴とするファラデ
ー回転子。
1. A Faraday rotator manufactured from a bismuth-substituted rare earth iron garnet single crystal film grown by a liquid phase epitaxial method on a non-magnetic garnet single crystal substrate, wherein a type of crystal defect is present in the Faraday rotator. A Faraday rotator characterized by including at least 5 or more pits.
【請求項2】 該ビスマス置換希土類鉄ガーネット単結
晶膜が、非磁性ガーネット単結晶基板上に液相エピタキ
シャル法で育成された一般式; R3-xBix Fe5-yAy O12 〔但し、RはY及び希土類元素からなる群から選択した
1種または2種以上の元素であり、AはGaおよびAlから
選択した少なくとも一種である。また、x, yは各々、
0.8≦x≦1.9 、 0.5≦y≦1.6 の数である〕なる化学
組成を有するものである請求項1記載のファラデー回転
子。
2. A general formula in which the bismuth-substituted rare earth iron garnet single crystal film is grown on a non-magnetic garnet single crystal substrate by a liquid phase epitaxial method; R 3-x Bi x Fe 5-y A y O 12 [ However, R is one or more elements selected from the group consisting of Y and rare earth elements, and A is at least one selected from Ga and Al. Also, x and y are
Faraday rotator according to claim 1, having a chemical composition of 0.8≤x≤1.9 and 0.5≤y≤1.6.
JP23538395A 1995-09-13 1995-09-13 Faraday rotator Pending JPH0982523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23538395A JPH0982523A (en) 1995-09-13 1995-09-13 Faraday rotator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23538395A JPH0982523A (en) 1995-09-13 1995-09-13 Faraday rotator

Publications (1)

Publication Number Publication Date
JPH0982523A true JPH0982523A (en) 1997-03-28

Family

ID=16985275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23538395A Pending JPH0982523A (en) 1995-09-13 1995-09-13 Faraday rotator

Country Status (1)

Country Link
JP (1) JPH0982523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022920A1 (en) * 2000-09-18 2002-03-21 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Rare earth-iron garnet single crystal material and method for preparation thereof and device using rare earth-iron garnet single crystal material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022920A1 (en) * 2000-09-18 2002-03-21 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Rare earth-iron garnet single crystal material and method for preparation thereof and device using rare earth-iron garnet single crystal material

Similar Documents

Publication Publication Date Title
US5898516A (en) Faraday rotator having a rectangular shaped hysteresis
JP3198053B2 (en) Products made of magneto-optical material with low magnetic moment
US5535046A (en) Faraday rotator
US4018692A (en) Composition for making garnet films for improved magnetic bubble devices
JP3458865B2 (en) Low saturation magnetic field bismuth-substituted rare earth iron garnet single crystal and its use
US4806858A (en) Liquid crystal nondestructive inspection of magnetization and variations in magnetization of high energy magnets
Görnert et al. Liquid phase epitaxy (LPE) grown Bi, Ga, Al substituted iron garnets with huge Faraday rotation for magneto‐optic applications
CA1050862A (en) Magnetic bubble devices and garnet films therefor
JPH0982523A (en) Faraday rotator
JPH09197360A (en) Faraday rotator for optical magnetic field sensor
US6673146B2 (en) Method of manufacturing a magnet-free faraday rotator
Clover et al. Low birefringent orthoferrites for optical devices
EP0338859B1 (en) Faraday rotator
JPH1031112A (en) Faraday rotator which shows square hysteresis
CA2131123A1 (en) Non-reciprocal optical device
JP4468045B2 (en) Method and apparatus for reading and evaluating magnetic information
JPH05117095A (en) Production of bismuth-substituted rare earth iron garnet
JPH0826900A (en) Treatment of rare earth-iron garnet single crystal film
JP3917859B2 (en) Faraday rotator
JP2007328296A (en) Faraday rotator and optical isolator
JPH0769797A (en) Bismuth-substituted iron garnet single crystal formed in low saturated magnetic field
JP2010072263A (en) Faraday rotator
Il’yashenko et al. Measuring and visualizing strong magnetic fields by means of indicators based on garnet ferrite films
JPH1126237A (en) Alternating-current magnetic field measuring faraday rotor
JPH0735727A (en) Magnetooptic flaw detecting element