JPH1126237A - Alternating-current magnetic field measuring faraday rotor - Google Patents

Alternating-current magnetic field measuring faraday rotor

Info

Publication number
JPH1126237A
JPH1126237A JP17564297A JP17564297A JPH1126237A JP H1126237 A JPH1126237 A JP H1126237A JP 17564297 A JP17564297 A JP 17564297A JP 17564297 A JP17564297 A JP 17564297A JP H1126237 A JPH1126237 A JP H1126237A
Authority
JP
Japan
Prior art keywords
magnetic field
single crystal
alternating
bismuth
garnet single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17564297A
Other languages
Japanese (ja)
Inventor
Kazushi Shirai
一志 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP17564297A priority Critical patent/JPH1126237A/en
Publication of JPH1126237A publication Critical patent/JPH1126237A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • H01F41/28Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids by liquid phase epitaxy

Abstract

PROBLEM TO BE SOLVED: To enable an alternating-current magnetic field measuring Faraday rotor to be kept high in sensitivity linearity even to an alternating-current magnetic field of a few oersteds or below, by a method wherein a bismuth- substituted rare earth iron garnet single crystal film is grown on a non-magnetic garnet board tilted at a specific angle to a (111) plane orientation through a liquid phase epitaxial method. SOLUTION: One side of a garnet single crystal board which is possessed of a lattice constant of 1.2495±0.0005 nm and tilted at an angle of 0.5 deg. or below to a (111) board plane orientation is brought into contact with the surface of a melting liquid for growing a bismuth-substituted rare earth iron garnet single crystal to start an epitaxial growth process. At this point, it is preferable that the composition formula of a bismuth-substituted rare earth iron garnet single crystal is represented by (RBi)3 (FeA)5 O12 (R denotes an element selected out of Y, La, Ce, Pr, Nb, Sm and the like). By this setup, an alternating-current magnetic field measuring Faraday rotor can be kept high in linearity of sensitivity to a very weak alternating-current magnetic field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電流センサ用途のファ
ラデー回転子として利用されるビスマス置換希土類鉄ガ
ーネット単結晶膜に関する。更に詳しく云えば、本発明
は、広いダイナミックレンジを持つビスマス置換希土類
鉄ガーネット単結晶膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bismuth-substituted rare earth iron garnet single crystal film used as a Faraday rotator for a current sensor. More specifically, the present invention relates to a bismuth-substituted rare earth iron garnet single crystal film having a wide dynamic range.

【0002】[0002]

【従来の技術】近年、大きなファラデー効果を有する希
土類鉄ガーネット単結晶膜を利用した光光アイソレー
タ、また光電流センサや光回転センサとも呼ばれる光磁
界センサと云ったデバイスが次々と実用化され、これら
用途に合わせた希土類鉄ガーネット単結晶膜の開発も盛
んにおこなわれている。ファラデー効果は磁気光学効果
の一種で、ファラデー効果を示す材料、すなわち希土類
鉄ガーネット単結晶膜などのファラデー素子〔ファラデ
ー回転子〕を透過した光の偏波面が回転する現象を指
す。そしてこの偏波面の回転角の大きさは、ファラデー
素子の磁化の強度に比例して大きくなる。この様子を図
1に示す。光電流センサによる磁界の検出は、この原点
oと飽和点a間の直線領域におけるファラデー回転角の
差異を光強度として検出しようとするものである。
2. Description of the Related Art In recent years, devices such as an optical-optical isolator using a rare-earth iron garnet single crystal film having a large Faraday effect and an optical magnetic field sensor also called an optical current sensor or an optical rotation sensor have been put into practical use one after another. The development of rare earth iron garnet single crystal films tailored to the application is also being actively pursued. The Faraday effect is a type of magneto-optical effect, and refers to a phenomenon in which the plane of polarization of light transmitted through a material exhibiting the Faraday effect, that is, a Faraday element (Faraday rotator) such as a rare-earth iron garnet single crystal film is rotated. Then, the magnitude of the rotation angle of the polarization plane increases in proportion to the magnetization intensity of the Faraday element. This is shown in FIG. The detection of the magnetic field by the photocurrent sensor is to detect the difference in the Faraday rotation angle in the linear region between the origin o and the saturation point a as the light intensity.

【0003】光電流センサは、一般に図2のように構成
される。すなわち、符号1はルチル等からなる偏光子、
符号2は希土類鉄ガーネット単結晶膜等からなるファラ
デー回転子、符号3はルチル等からなる検光子である。
図2において、偏光子1を透過した光は直線偏光とな
り、ついで、ファラデー回転子2によってその偏波面が
回転する。ファラデー回転子2を透過した光は、つぎ
に、検光子3を透過するが、その光強度は、ファラデー
回転角に応じて変化する。通常、ファラデー回転子によ
る偏波面の回転は、ファラデー回転子に印加される外部
磁界強度に応じて、飽和磁界以下においてはほぼ直線的
に変化する(図1参照)。したがって、検光子透過後の
光強度を測定することによって、ファラデー回転子に印
加される外部磁界強度が検知されることになる。
A photocurrent sensor is generally configured as shown in FIG. That is, reference numeral 1 denotes a polarizer made of rutile, etc.
Reference numeral 2 denotes a Faraday rotator made of a rare-earth iron garnet single crystal film or the like, and reference numeral 3 denotes an analyzer made of rutile or the like.
In FIG. 2, the light transmitted through the polarizer 1 becomes linearly polarized light, and then the plane of polarization is rotated by the Faraday rotator 2. The light transmitted through the Faraday rotator 2 then transmits through the analyzer 3, and the light intensity changes according to the Faraday rotation angle. Normally, the rotation of the plane of polarization by the Faraday rotator changes almost linearly below the saturation magnetic field in accordance with the external magnetic field intensity applied to the Faraday rotator (see FIG. 1). Therefore, by measuring the light intensity after transmission through the analyzer, the intensity of the external magnetic field applied to the Faraday rotator is detected.

【0004】[0004]

【発明が解決しようとする課題】近年、より広いダイナ
ミックレンジを持つセンサの必要性から、外部磁界に対
して良好な直線性を有したファラデー回転子が望まれて
いる。しかしながら、液相エピタキシャル法で製造され
たビスマス置換希土類鉄ガーネット単結晶膜では、数エ
ルステッド以下の交流磁界に対して感度が低下する、と
いう大きな課題があった。具体的には、1 Oeから10 Oe
の範囲で、感度の直線性からのずれとして20%以内が望
まれているが、実際には20%以上のずれがある、という
のが現状である。
In recent years, a Faraday rotator having good linearity with respect to an external magnetic field has been demanded because of the need for a sensor having a wider dynamic range. However, the bismuth-substituted rare earth iron garnet single crystal film manufactured by the liquid phase epitaxial method has a serious problem that the sensitivity is reduced with respect to an alternating magnetic field of several Oersteds or less. Specifically, 1 Oe to 10 Oe
Within this range, it is desired that the deviation from the linearity of the sensitivity be within 20%, but at present there is a deviation of 20% or more.

【0005】感度の直線性が劣化することの原因は明確
ではないが、ビスマス置換希土類鉄ガーネット単結晶膜
の磁区構造に関連して、以下のように推察される。希土
類鉄ガーネットの磁区構造は、図3に示したように、磁
化方向が上向きの領域Aと下向きの領域Bが交互に列
ぶ、いわゆる多磁区構造を示す(状態1)。磁区Aはあ
る一定のファラデー回転角(+θf )を有する。これに
対して磁区Bも磁区Aのファラデー回転角と絶対値は同
じであるが、符号が反対の(−θf )のファラデー回転
角を有するのである。
The cause of the deterioration of the sensitivity linearity is not clear, but is presumed as follows in connection with the magnetic domain structure of the bismuth-substituted rare earth iron garnet single crystal film. As shown in FIG. 3, the magnetic domain structure of the rare-earth iron garnet has a so-called multi-domain structure in which regions A having upward magnetization directions and regions B having downward magnetization lines are alternately arranged (state 1). The magnetic domain A has a certain Faraday rotation angle (+ θf). On the other hand, the magnetic domain B has the same Faraday rotation angle and the absolute value as the magnetic domain A, but has the opposite sign (−θf).

【0006】そして領域Aと同じ方向に外部から磁界を
印加すると、次第に領域Aの面積が増加し(状態2)、
最後には磁区が消失し、全ての磁化がプラス方向に揃っ
た状態となる(状態3)。先に外部磁界に比例した形で
ファラデー回転角が増加する、と説明したが、ファラデ
ー回転角が増加するのは、結局+θf の領域が増加し、
−θf の領域が減少することに対応しているのである。
したがって、感度の直線性が低下することは、磁界に対
しての磁区幅の増減が直線的に行われていない、という
ことを示唆していると考えられる。
When a magnetic field is applied from the outside in the same direction as the region A, the area of the region A gradually increases (state 2).
Finally, the magnetic domains disappear, and all the magnetizations are aligned in the plus direction (state 3). As described above, the Faraday rotation angle increases in proportion to the external magnetic field. However, the reason for the increase in the Faraday rotation angle is that the area of + θf eventually increases,
This corresponds to the decrease in the area of -θf.
Therefore, it is considered that the decrease in the sensitivity linearity indicates that the magnetic domain width is not increased or decreased linearly with respect to the magnetic field.

【0007】[0007]

【課題を解決するための手段】本願発明者らは、液相エ
ピタキシャル法により非磁性ガーネット基板上に育成さ
れたビスマス置換希土類鉄ガーネット単結晶膜をファラ
デー回転子に用いた場合、数エルステッド以下の交流磁
界に対して感度の直線性が劣化する、という大きな課題
を解決するため鋭意検討を重ねた結果、非磁性ガーネッ
ト基板の面方位が極めて重要な因子であるとの有益な知
見を得て、更に、研究・検討を加え本願発明を完成させ
た。
SUMMARY OF THE INVENTION The present inventors have found that when a bismuth-substituted rare earth iron garnet single crystal film grown on a non-magnetic garnet substrate by a liquid phase epitaxial method is used for a Faraday rotator, a few Oersted or less is obtained. As a result of intensive studies to solve the big problem that the linearity of sensitivity deteriorates with respect to the AC magnetic field, we obtained useful knowledge that the plane orientation of the non-magnetic garnet substrate is a very important factor, Further, the present inventors completed the invention of the present application through research and examination.

【0008】すなわち、本発明は、液相エピタキシャル
法で、(111)面方位から 0.5度以内の傾きの範囲にある
非磁性ガーネット基板上に育成してなるビスマス置換希
土類鉄ガーネット単結晶膜を用いてなる交流磁界測定用
ファラデー回転子である。ビスマス置換希土類鉄ガーネ
ット単結晶膜を育成するための非磁性ガーネット基板と
して、面方位が (111)から 0.5度以内が必要である。
0.5度を越えると、ビスマス置換希土類鉄ガーネット単
結晶膜の交流磁界における感度が1 Oeから10Oeの磁界の
範囲で20%以上、直線性からのずれが生じる。
That is, the present invention uses a bismuth-substituted rare earth iron garnet single crystal film grown on a non-magnetic garnet substrate having a tilt within 0.5 degrees from the (111) plane orientation by a liquid phase epitaxial method. This is a Faraday rotator for AC magnetic field measurement. A non-magnetic garnet substrate for growing a bismuth-substituted rare earth iron garnet single crystal film must have a plane orientation within 0.5 degrees from (111).
If it exceeds 0.5 degree, the sensitivity of the bismuth-substituted rare earth iron garnet single crystal film in an alternating magnetic field is 20% or more in a magnetic field of 1 Oe to 10 Oe, and deviation from linearity occurs.

【0009】本発明を実施するとき、ファラデー回転
子、すなわち、ビスマス置換希土類鉄ガーネット単結晶
膜の組成に特に制限はないが、一般式 : (RBi)3(FeA)5O
12〔但し、R はY,La,Ce,La,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,E
r,Tm,Yb,Luの群から選ばれる少なくとも一種でありA は
Ga,Sc,Al,In の群から選ばれる少なくとも一種であ
る。〕で示される磁性ガーネット単結晶が好ましい。本
発明を実施するとき、非磁性ガーネット基板種に特に制
限はないが、ビスマスを多量にドープすることができ、
かつ近赤外領域で透明な、格子定数が1.2495±0.0005nm
の(GdCa)3(GaMgZr)5O12 基板が特に好ましい。
In carrying out the present invention, the composition of the Faraday rotator, that is, the bismuth-substituted rare earth iron garnet single crystal film is not particularly limited, but the general formula: (RBi) 3 (FeA) 5 O
12 (where R is Y, La, Ce, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, E
r is at least one selected from the group consisting of r, Tm, Yb, and Lu, and A is
It is at least one selected from the group consisting of Ga, Sc, Al, and In. ] Is preferred. When practicing the present invention, the non-magnetic garnet substrate type is not particularly limited, but can be doped with a large amount of bismuth,
And transparent in the near infrared region, lattice constant is 1.2495 ± 0.0005nm
The (GdCa) 3 (GaMgZr) 5 O 12 substrate is particularly preferred.

【0010】[0010]

【実施例】以下、実施例、比較例を示し本発明を具体的
に説明する。 実施例1 酸化鉛(PbO, 4N) 4,500g、酸化ビスマス(Bi2O3, 4N) 5,
230g、酸化第2鉄(Fe2O3, 4N) 666g、酸化硼素(B2O3, 5
N) 230g 、酸化テルビウム(Tb2O3, 3N) 68.0gおよび酸
化ガリウム(Ga2O3, 3N) 42.0g を容量 2,000mlの白金製
ルツボに加熱溶融し、ビスマス置換希土類鉄ガーネット
単結晶育成用融液とした。ここに得られた融液表面に、
常法に従って、厚さが 500μmで、格子定数が 1.2497
±0.0002nmで(111)基板面方位からの傾きが 0.3度以内
のガーネット単結晶[(GdCa)3(GaMgZr)5O12 ]基板の片
面を接触させ、エピタキシャル成長を行った。そして、
厚さ72μmのTb1.7Bi1.3Fe4.6Ga0.4O12 単結晶膜(以下
「G膜-1」と記す)を得た。なお、組成分析はプラズマ
発光分析法によった。
The present invention will be specifically described below with reference to examples and comparative examples. Example 1 Lead oxide (PbO, 4N) 4,500 g, bismuth oxide (Bi 2 O 3 , 4N) 5,
230 g, ferric oxide (Fe 2 O 3 , 4N) 666 g, boron oxide (B 2 O 3 , 5N
N) 230 g, terbium oxide (Tb 2 O 3 , 3N) 68.0 g and gallium oxide (Ga 2 O 3 , 3N) 42.0 g are heated and melted in a 2,000 ml platinum crucible to grow a bismuth-substituted rare earth iron garnet single crystal It was used as a melt. On the surface of the melt obtained here,
According to a conventional method, the thickness is 500 μm and the lattice constant is 1.2497.
One side of a garnet single crystal [(GdCa) 3 (GaMgZr) 5 O 12 ] substrate having a tilt of ± 0.0002 nm and a tilt of 0.3 degrees or less from the (111) substrate plane orientation was brought into contact with the substrate to perform epitaxial growth. And
A Tb 1.7 Bi 1.3 Fe 4.6 Ga 0.4 O 12 single crystal film (hereinafter referred to as “G film-1”) having a thickness of 72 μm was obtained. The composition analysis was performed by a plasma emission analysis method.

【0011】このG膜−1を 2mm×2mm に切断し、図4
の交流磁界特性評価装置に供して、その磁気特性を測定
した。図4において、符号4は波長 830nmの半導体レー
ザー光源、符号5は、偏光子としてのグラントムソンプ
リズム、符号6は 2mm×2mmに切断されたG膜−1、符
号7はヘルムホルツコイル、符号8は電流計、符号9は
安定化電源、符号10はファンクッションジェネレータ、
符号11は磁界測定用のガウスメータ、符号12は検光子と
してのグラントムソンプリズム、符号13はフォトダイオ
ード、符号14は電圧計、符号15はアンプ、符号16はオシ
ロスコープである。なおグラントムソンプリズム5とグ
ラントムソンプリズム12はお互い45度傾けて配置されて
いる。
The G film-1 was cut into 2 mm × 2 mm, and FIG.
The magnetic characteristics were measured by using the AC magnetic field characteristic evaluation device of the above. In FIG. 4, reference numeral 4 denotes a semiconductor laser light source having a wavelength of 830 nm, reference numeral 5 denotes a Glan-Thompson prism as a polarizer, reference numeral 6 denotes a G film-1 cut into 2 mm × 2 mm, reference numeral 7 denotes a Helmholtz coil, and reference numeral 8 denotes Ammeter, reference numeral 9 is a stabilized power supply, reference numeral 10 is a fan cushion generator,
Reference numeral 11 denotes a Gauss meter for measuring a magnetic field, reference numeral 12 denotes a Glan-Thompson prism as an analyzer, reference numeral 13 denotes a photodiode, reference numeral 14 denotes a voltmeter, reference numeral 15 denotes an amplifier, and reference numeral 16 denotes an oscilloscope. The Glan-Thompson prism 5 and the Glan-Thompson prism 12 are arranged at an angle of 45 degrees with respect to each other.

【0012】半導体レーザー光源4から出射された 830
nmの光はグラントムソンプリズム5を透過して直線偏光
となり、G膜−1に入射する。ヘルムホルツコイル7に
は安定化電源より電流が供給され、その結果、交流磁界
がG膜−1に加わえられる。この交流磁界はガウスメー
タ11で測定される。G膜−1を透過したレーザ光は次い
でグラントムソンプリズム12を透過して、フォトダイオ
ード13に達する。フォトダイオード13で発生した電圧を
アンプ14を介してオシロスコープに取り込み、出力値と
して検出する。以上が測定の方法である。測定結果を図
5に示した。図5は周波数 230Hzにおける交流磁界(Oe)
に対する出力(mV)を示したものである。図6は20 Oe で
規格化した感度(=出力/磁界)からのずれを示したも
のである。G膜−1では、1 Oe以上の磁界における最大
の感度のずれは−15%であった。
830 emitted from the semiconductor laser light source 4
The light of nm passes through the Glan-Thompson prism 5 to become linearly polarized light, and enters the G film-1. Current is supplied to the Helmholtz coil 7 from a stabilized power supply, and as a result, an AC magnetic field is applied to the G film-1. This alternating magnetic field is measured by the Gauss meter 11. The laser beam transmitted through the G film-1 then passes through the Glan-Thompson prism 12 and reaches the photodiode 13. The voltage generated by the photodiode 13 is taken into an oscilloscope via the amplifier 14 and detected as an output value. The above is the measurement method. The measurement results are shown in FIG. Figure 5 shows the alternating magnetic field (Oe) at a frequency of 230 Hz
3 shows the output (mV) with respect to. FIG. 6 shows the deviation from the sensitivity (= output / magnetic field) normalized at 20 Oe. In the G film-1, the maximum deviation in sensitivity in a magnetic field of 1 Oe or more was -15%.

【0013】実施例2 容量 1,000mlの白金製ルツボに、酸化鉛(PbO, 4N) 1,66
0g、酸化ビスマス(Bi2O3, 4N) 1,160g、酸化第2鉄(Fe2
O3, 4N) 175g、酸化硼素(B2O3, 5N) 74.0g、酸化ガドリ
ニウム(Gd2O3, 3N) 10.3g 、酸化イットリウム(Y2O3, 3
N) 6.4g、酸化ガリウム(Ga2O3, 3N) 39.0g を仕込ん
だ。これを精密縦型管状電気炉の所定の位置に設置し、
1,000℃で十分に溶解・攪拌してビスマス置換希土類鉄
ガーネット単結晶育成用融液とした。
Example 2 Lead oxide (PbO, 4N) 1,66 was added to a platinum crucible having a capacity of 1,000 ml.
0 g, bismuth oxide (Bi 2 O 3 , 4N) 1,160 g, ferric oxide (Fe 2
O 3 , 4N) 175 g, boron oxide (B 2 O 3 , 5N) 74.0 g, gadolinium oxide (Gd 2 O 3 , 3N) 10.3 g, yttrium oxide (Y 2 O 3 , 3
N) 6.4 g and gallium oxide (Ga 2 O 3 , 3N) 39.0 g were charged. This is installed at a predetermined position in a precision vertical tubular electric furnace,
The mixture was sufficiently dissolved and stirred at 1,000 ° C to obtain a melt for growing a bismuth-substituted rare earth iron garnet single crystal.

【0014】ここに得られた融液表面に、常法に従っ
て、厚さが 500μmで格子定数が 1.2497 ±0.0002nmで
(111)基板面方位からの傾きが 0.3度以内のガーネット
単結晶[(GdCa)3(GaMgZr)5O12] 基板の片面を接触させ、
エピタキシャル成長を行った。そして厚さ65μmのGd
0.8Y0.8Bi1.4Fe4.0Ga1.0O12 単結晶膜(以下「G膜-2」
と記す)を得た。なお、組成分析はプラズマ発光分析法
によった。ついで、G膜−2 を 2mm×2mm に切断し、図
4の磁気測定装置に供し、実施例1 とまったく同様にし
て、感度を測定した。その結果、1 Oe以上の磁界におけ
る最大の感度のずれは−18%であった。
A garnet single crystal [(GdCa) having a thickness of 500 μm, a lattice constant of 1.2497 ± 0.0002 nm, and a tilt of less than 0.3 ° from the (111) substrate plane orientation is formed on the surface of the melt obtained in a conventional manner. ) 3 (GaMgZr) 5 O 12 ]
Epitaxial growth was performed. And Gd with a thickness of 65 μm
0.8 Y 0.8 Bi 1.4 Fe 4.0 Ga 1.0 O 12 single crystal film (hereinafter “G film-2”)
To be described). The composition analysis was performed by a plasma emission analysis method. Next, the G film-2 was cut into 2 mm × 2 mm, applied to the magnetometer shown in FIG. 4, and the sensitivity was measured exactly as in Example 1. As a result, the maximum sensitivity shift in a magnetic field of 1 Oe or more was -18%.

【0015】比較例1 [(GdCa)3(GaMgZr)5O12] 基板の面方位が(110)であるこ
とを除いては、実施例1とまったく同様にして、厚さ60
μmのTb1.7Bi1.3Fe4.6Ga0.4O12 単結晶膜(以下「G膜
−C1]と記す)を得た。ついで、G膜−C1を 2mm×2mm
に切断し、実施例1とまったく同様にして、感度を測定
した。その結果、1 Oe以上の磁界における最大の感度の
ずれは−44%であった。
COMPARATIVE EXAMPLE 1 Except that the [(GdCa) 3 (GaMgZr) 5 O 12 ] substrate has a (110) plane orientation, a thickness of 60
A Tb 1.7 Bi 1.3 Fe 4.6 Ga 0.4 O 12 single crystal film (hereinafter, referred to as “G film-C1”) having a thickness of μm was obtained.
And the sensitivity was measured in exactly the same manner as in Example 1. As a result, the maximum sensitivity shift in a magnetic field of 1 Oe or more was -44%.

【0016】比較例2 [(GdCa)3(GaMgZr)5O12] 基板の面方位が(111)から 5度
傾いていることを除いては、実施例1 とまったく同様に
して、厚さ75μmのTb1.7Bi1.3Fe4.6Ga0.4O12単結晶膜
(以下「G膜−C2]と記す)を得た。ついで、 G膜−C1
を 2mm×2mm に切断し、実施例1とまったく同様にし
て、感度を測定した。その結果、1 Oe以上の磁界におけ
る最大の感度のずれは−36%でった。
Comparative Example 2 A thickness of 75 μm was obtained in exactly the same manner as in Example 1 except that the plane orientation of the [(GdCa) 3 (GaMgZr) 5 O 12 ] substrate was inclined at 5 degrees from (111). Thus, a Tb 1.7 Bi 1.3 Fe 4.6 Ga 0.4 O 12 single crystal film (hereinafter referred to as “G film-C2”) was obtained.
Was cut into 2 mm × 2 mm, and the sensitivity was measured exactly as in Example 1. As a result, the maximum sensitivity shift in a magnetic field of 1 Oe or more was -36%.

【0017】比較例3 [(GdCa)3(GaMgZr)5O12] 基板の面方位が(111)から 0.5
度傾いていることを除いて、実施例1とまったく同様に
して、厚さ75μmのTb1.7Bi1.3Fe4.6Ga0.4O12単結晶膜
(以下「G膜−C3]と記す)を得た。ついで、G膜−C3
を 2mm×2mm に切断し、実施例1とまったく同様にし
て、感度を測定した。その結果、1 Oe以上の磁界におけ
る最大の感度のずれは−23%であった。
Comparative Example 3 The [(GdCa) 3 (GaMgZr) 5 O 12 ] substrate has a plane orientation of 0.5 from (111).
A Tb 1.7 Bi 1.3 Fe 4.6 Ga 0.4 O 12 single crystal film (hereinafter, referred to as “G film-C3”) having a thickness of 75 μm was obtained in exactly the same manner as in Example 1 except that the film was tilted. Then, G film-C3
Was cut into 2 mm × 2 mm, and the sensitivity was measured exactly as in Example 1. As a result, the maximum sensitivity shift in a magnetic field of 1 Oe or more was -23%.

【0018】比較例4 [(GdCa)3(GaMgZr)5O12] 基板の面方位が(111)から 0.5
度傾いていることを除いて、実施例2とまったく同様に
して、厚さ63μmのGd0.8Y0.8Bi1.4Fe4.0Ga1.0O12 単結
晶膜(以下「G膜−C4]と記す)を得た。ついで、G膜
−C4を 2mm×2mm に切断し、実施例1 とまったく同様に
して、感度を測定した。その結果、1 Oe以上の磁界にお
ける最大の感度のずれは−25%であった。
Comparative Example 4 The [(GdCa) 3 (GaMgZr) 5 O 12 ] substrate has a plane orientation of 0.5 from (111).
A Gd 0.8 Y 0.8 Bi 1.4 Fe 4.0 Ga 1.0 O 12 single crystal film (hereinafter referred to as “G film-C4”) having a thickness of 63 μm was obtained in exactly the same manner as in Example 2 except that the film was tilted. Then, the G film-C4 was cut into 2 mm × 2 mm, and the sensitivity was measured in exactly the same manner as in Example 1. As a result, the maximum sensitivity deviation in a magnetic field of 1 Oe or more was −25%. Was.

【0019】[0019]

【発明の効果】本発明によれば、極めて低い交流磁界で
も感度の直線性が維持されるため、広いダイナミックレ
ンジを持つ光磁界センサが構成できる。
According to the present invention, the linearity of sensitivity is maintained even at an extremely low AC magnetic field, so that an optical magnetic field sensor having a wide dynamic range can be constructed.

【図の簡単な説明】[Brief description of figures]

【図1】ファラデー回転子における外部磁界に対するフ
ァラデー回転角の変化をを示す模式図である。
FIG. 1 is a schematic diagram showing a change in a Faraday rotation angle with respect to an external magnetic field in a Faraday rotator.

【図2】ファラデー効果を利用した電流センサーの一例
を示す図である。
FIG. 2 is a diagram illustrating an example of a current sensor using the Faraday effect.

【図3】ビスマス置換希土類鉄ガーネット単結晶膜の磁
区の状態を示す模式図である。
FIG. 3 is a schematic view showing a state of magnetic domains of a bismuth-substituted rare earth iron garnet single crystal film.

【図4】ビスマス置換希土類鉄ガーネット単結晶膜の交
流磁界における感度測定のための装置を示す模式図であ
る。
FIG. 4 is a schematic diagram showing an apparatus for measuring the sensitivity of a bismuth-substituted rare earth iron garnet single crystal film in an alternating magnetic field.

【図5】ビスマス置換希土類鉄ガーネット単結晶膜をフ
ァラデー回転子として用いた場合の、交流磁界と出力と
の関係の一例を示す模式図である。
FIG. 5 is a schematic diagram showing an example of a relationship between an AC magnetic field and an output when a bismuth-substituted rare earth iron garnet single crystal film is used as a Faraday rotator.

【図6】ビスマス置換希土類鉄ガーネット単結晶膜をフ
ァラデー回転子として用いた場合の、交流磁界と感度と
の関係の一例を示す模式図である。
FIG. 6 is a schematic diagram illustrating an example of a relationship between an AC magnetic field and sensitivity when a bismuth-substituted rare earth iron garnet single crystal film is used as a Faraday rotator.

【符号の説明】[Explanation of symbols]

1:偏光子、2:ファラデー回転子、3:検光子、4:
半導体レーザー、5:グラントムソンプリズム、6:G
膜、7:ヘルムホルツコイル、8:電流計、9:安定化
電源、10:ファンクッションジェネレータ、11:ガ
ウスメータ、12:グラントムソンプリズム、13:フ
ォトダイオード、14:アンプ、15:オシロスコープ
1: polarizer, 2: Faraday rotator, 3: analyzer, 4:
Semiconductor laser, 5: Glan Thompson prism, 6: G
Membrane, 7: Helmholtz coil, 8: ammeter, 9: stabilized power supply, 10: fan cushion generator, 11: Gauss meter, 12: Glan-Thompson prism, 13: photodiode, 14: amplifier, 15: oscilloscope

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 液相エピタキシャル法で、(111)面方位
から 0.5度以内の傾きの範囲にある非磁性ガーネット基
板上に育成してなるビスマス置換希土類鉄ガーネット単
結晶膜を用いてなる交流磁界測定用ファラデー回転子。
An alternating magnetic field using a bismuth-substituted rare earth iron garnet single crystal film grown on a nonmagnetic garnet substrate having a tilt within 0.5 degrees from the (111) plane orientation by a liquid phase epitaxial method. Faraday rotator for measurement.
JP17564297A 1997-07-01 1997-07-01 Alternating-current magnetic field measuring faraday rotor Pending JPH1126237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17564297A JPH1126237A (en) 1997-07-01 1997-07-01 Alternating-current magnetic field measuring faraday rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17564297A JPH1126237A (en) 1997-07-01 1997-07-01 Alternating-current magnetic field measuring faraday rotor

Publications (1)

Publication Number Publication Date
JPH1126237A true JPH1126237A (en) 1999-01-29

Family

ID=15999664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17564297A Pending JPH1126237A (en) 1997-07-01 1997-07-01 Alternating-current magnetic field measuring faraday rotor

Country Status (1)

Country Link
JP (1) JPH1126237A (en)

Similar Documents

Publication Publication Date Title
EP0208476B1 (en) Magnetic field sensor having magneto-optic element
EP0510621B1 (en) Magneto-optical element and magnetic field measurement apparatus
US5535046A (en) Faraday rotator
US4018692A (en) Composition for making garnet films for improved magnetic bubble devices
US5898516A (en) Faraday rotator having a rectangular shaped hysteresis
JP3198053B2 (en) Products made of magneto-optical material with low magnetic moment
Kamada et al. Mixed rare‐earth iron garnet (TbY) IG for magnetic field sensors
JP3458865B2 (en) Low saturation magnetic field bismuth-substituted rare earth iron garnet single crystal and its use
CA1050862A (en) Magnetic bubble devices and garnet films therefor
Kita et al. Low‐temperature phase of yttrium iron garnet (YIG) and its first‐order magnetoelectric effect
JPH1126237A (en) Alternating-current magnetic field measuring faraday rotor
US6673146B2 (en) Method of manufacturing a magnet-free faraday rotator
Valiev et al. Faraday effect of rare-earth iron garnets in strong magnetic fields
Kamada et al. Magnetic field sensors using Ce: YIG single crystals as a Faraday element
EP0785454A1 (en) Faraday rotator for magneto-optic sensors
Fratello et al. Growth and characterization of magnetooptic garnet films with planar uniaxial anisotropy
JPH0826900A (en) Treatment of rare earth-iron garnet single crystal film
JP3269101B2 (en) Magneto-optical film
JP3269102B2 (en) Magneto-optical film
JPS62150185A (en) Magnetic field measuring apparatus
JP3248211B2 (en) Magneto-optical film
JP3458012B2 (en) Magnetic field sensor
JP3917859B2 (en) Faraday rotator
JPWO2004049039A1 (en) Faraday rotator and magneto-optical device using the same
JP2514398B2 (en) Method for growing single crystal for magneto-optical element