JPH0296676A - Magnetic field sensor - Google Patents

Magnetic field sensor

Info

Publication number
JPH0296676A
JPH0296676A JP25065588A JP25065588A JPH0296676A JP H0296676 A JPH0296676 A JP H0296676A JP 25065588 A JP25065588 A JP 25065588A JP 25065588 A JP25065588 A JP 25065588A JP H0296676 A JPH0296676 A JP H0296676A
Authority
JP
Japan
Prior art keywords
magnetic field
field sensor
faraday
constant
mnte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25065588A
Other languages
Japanese (ja)
Other versions
JP2585397B2 (en
Inventor
Morihiko Katsuta
勝田 守彦
Masaru Nakaseko
中世古 勝
Katsuhiro Hosoe
細江 勝広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63250655A priority Critical patent/JP2585397B2/en
Publication of JPH0296676A publication Critical patent/JPH0296676A/en
Application granted granted Critical
Publication of JP2585397B2 publication Critical patent/JP2585397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To enable miniaturization of a Faraday rotation element 1 by forming the element of an alloy of a CdTe-MnTe-ZnTe system. CONSTITUTION:A magnetic field sensor uses a Faraday effect material made up of an alloy of a CdTe-MnTe-ZnTe system as a Faraday rotation element. Since this Faraday effect material has a large Verdet constant, sufficient sensitivity can be obtained without setting the length of a crystal substance constituting the Faraday rotation element to be large, and the magnetic field sensor thus obtained can be used for measurement of magnetic field even in a narrow place.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、たとえば送電線や配電線に流れる電流や磁
界を検知するための磁界センサ、あるいは探傷用磁界セ
ンサや電力瓜討測用磁界センサなどのファラデー効果材
料を使用した磁界センサに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to, for example, a magnetic field sensor for detecting current flowing in a power transmission line or distribution line or a magnetic field, or a magnetic field sensor for flaw detection or a magnetic field sensor for power measurement. The present invention relates to a magnetic field sensor using Faraday effect materials such as.

[従来の技術] 鉛ガラス、Zn5e結品、BSO結晶等の先透過性の良
い磁気光学材料に外部から磁界を加え、磁界と同じ方向
に光を透過させると、ファラデー効果により磁気光学材
料を通過中に光の偏波面が回転する現象が知られている
。偏波面の回転角θ(min)は下式により与えられる
[Prior art] When a magnetic field is applied externally to a magneto-optical material with good tip permeability, such as lead glass, Zn5e crystal, or BSO crystal, and light is transmitted in the same direction as the magnetic field, light passes through the magneto-optic material due to the Faraday effect. It is known that the plane of polarization of light rotates during this process. The rotation angle θ (min) of the polarization plane is given by the following formula.

θ−VHQ。θ-VHQ.

ここで、■はベルデ定数(mi n10e−cm)、H
は磁界の強さ(Oe)、iはファラデー回転素子の長さ
(cm)を示す。
Here, ■ is the Verdet constant (min10e-cm), H
represents the strength of the magnetic field (Oe), and i represents the length of the Faraday rotation element (cm).

この磁気旋光現象を利用して磁界の測定を行なうことが
できる。第8図は、ファラデー効果を利用した磁界セン
サの基本構成を示している。第8図において、入射光り
は、光ファイバ1およびロッドレンズ2を通り、直方体
状の偏光子3を通過して直線偏波となり、次いで同様に
直方体状のファラデー回転索子4に入射し、ここで磁界
5の影響により偏波面が角度θだけ回転されてファラデ
ー回転水T4から出る。このときの偏波面の回転角度θ
は、ファラデー回転索子4の出力側に置いた直方体状の
検光子6により光の強度に置換えられる。そして、この
光は、ロッドレンズ7および先ファイバ8を通り、出射
光10となり、この出射光の強度をフォトダイオードで
検知することによりIIl+定することができる。
This magnetic optical rotation phenomenon can be used to measure magnetic fields. FIG. 8 shows the basic configuration of a magnetic field sensor using the Faraday effect. In FIG. 8, incident light passes through an optical fiber 1 and a rod lens 2, passes through a rectangular parallelepiped-shaped polarizer 3, becomes a linearly polarized wave, and then enters a similarly rectangular parallelepiped-shaped Faraday rotator 4, where it enters. Under the influence of the magnetic field 5, the plane of polarization is rotated by an angle θ and exits from the Faraday rotating water T4. The rotation angle θ of the plane of polarization at this time
is replaced by the intensity of light by a rectangular parallelepiped analyzer 6 placed on the output side of the Faraday rotator 4. Then, this light passes through the rod lens 7 and the end fiber 8 and becomes an emitted light 10, and IIl+ can be determined by detecting the intensity of this emitted light with a photodiode.

第8図に示す磁界センサでは、ファラデー回転素子4と
して鉛ガラス、Zn5e結晶、BSO結品(Bi+ 2
5i02o )等の光学結晶が用いられており、それら
の感度はベルデ定数Vで表わされ、850nmの波長で
は、次の数値となる。
In the magnetic field sensor shown in FIG. 8, the Faraday rotation element 4 is made of lead glass, Zn5e crystal, BSO crystal (Bi+2
Optical crystals such as 5i02o) are used, and their sensitivity is expressed by the Verdet constant V, which at a wavelength of 850 nm has the following value.

鉛ガラス   0.01  minloe−cmBSO
結晶  0.10  m1n10e−crnZnSe結
晶 0.15  m1n10e拳cm[発明が解決しよ
うとする課題] しかしながら、上述の従来の光学結晶は、いずれもベル
デ定数値が小さく、このため感度が低かった。実用的な
感度を得るためには、一定の回転角度θを得る必要があ
るが、上述の弐〇−VHηから明らかなように、ベルデ
定数値が低い場合には、ファラデー回転素子の長さ店を
、たとえば5〜30mm程度の長さに設定する必要があ
った。
Lead glass 0.01 minloe-cmBSO
Crystal 0.10 m1n10e-crnZnSe crystal 0.15 m1n10e fist cm [Problem to be solved by the invention] However, all of the above-mentioned conventional optical crystals had a small Verdet constant value, and therefore had low sensitivity. In order to obtain practical sensitivity, it is necessary to obtain a constant rotation angle θ, but as is clear from the above 2〇−VHη, when the Verdet constant value is low, the length store of the Faraday rotator It was necessary to set the length to, for example, about 5 to 30 mm.

このため、従来のファラデー効果材料を用いた磁界セン
サの場合には、センサが大型化し、狭い場所での磁界測
定が困難になるという問題を生じた。
For this reason, in the case of a conventional magnetic field sensor using Faraday effect material, the sensor becomes large and a problem arises in that it becomes difficult to measure the magnetic field in a narrow place.

この発明のL1的は、大きなベルデ定数値を示すファラ
デー効果材料を用いることにより小型化を図ることを可
能にした磁界センサを提供することにある。
The primary objective of the present invention is to provide a magnetic field sensor that can be miniaturized by using a Faraday effect material that exhibits a large Verdet constant value.

[課題を解決するための手段およびその作用効果]本発
明者等は、上記の問題点を解決するため、従来よりも大
きなベルデ定数をHするファラデー効果材料について種
々検討を重ねた結果、CdMrr T e系合金に、Z
nTeを合金化させることにより、ベルデ定数の大きな
ファラデー効果材料が得られることを見出し、この発明
をなすに至ったものである。
[Means for Solving the Problems and Their Effects] In order to solve the above-mentioned problems, the present inventors have conducted various studies on Faraday effect materials that have a larger Verdet constant H than conventional ones, and as a result, CdMrr T Z to e-based alloy
It was discovered that a Faraday effect material with a large Verdet constant could be obtained by alloying nTe, and this invention was made.

すなわち、この発明の磁界センサは、CdTe−MnT
e−ZnTe系合金からなるファラデー効果材料をファ
ラデー回転素子として用いることを特徴としている。
That is, the magnetic field sensor of the present invention is made of CdTe-MnT.
It is characterized by using a Faraday effect material made of an e-ZnTe alloy as a Faraday rotation element.

さらに、この発明の磁界センサに用いられるファラデー
効果材料は、以下のような組成範囲内にあることが好ま
しい。すなわち、添付の第1図に示すように、Cd0.
、Mn0.5 Zno、2 Te (CdTe30%、
MnTe50%、ZnTe20%)、CdO,Mr+0
.5 zno、+ Te (CdTe40%、MnTe
50%、ZnTe10%)、Cd。
Further, it is preferable that the Faraday effect material used in the magnetic field sensor of the present invention has a composition within the following composition range. That is, as shown in the attached FIG. 1, Cd0.
, Mn0.5 Zno, 2 Te (CdTe30%,
MnTe50%, ZnTe20%), CdO, Mr+0
.. 5 zno, + Te (CdTe40%, MnTe
50%, ZnTe 10%), Cd.

I S Mn、)、4 Zn(、,65Te (CdT
e55%。
I S Mn, ), 4 Zn(,,65Te (CdT
e55%.

MnTe40%、ZnTe3°u) 、Cdo、71 
Mno、2 zno、05 ′re  (CdTe75
%、MnTe 20 z’01  Z n T e 5
%) 、Cdo、8 Mn+)、I  Zno、I T
e  (CdTe80%、MnTe10%。
MnTe40%, ZnTe3°u), Cdo, 71
Mno, 2 zno, 05're (CdTe75
%, MnTe 20 z'01 Z n Te 5
%), Cdo, 8 Mn+), I Zno, I T
e (CdTe80%, MnTe10%.

ZnTe 10!’6) 、Cdo、I Mn、)、I
  Zno、2 Te  (CdTe70%、MnTe
1O!’6.ZnTe20%)で囲まれる範囲内(境界
線を含む)の組成をaすることが好ましい。
ZnTe 10! '6), Cdo, I Mn,), I
Zno, 2Te (CdTe70%, MnTe
1O! '6. It is preferable that the composition be within the range (including the boundary line) surrounded by ZnTe (20% ZnTe).

この発明の磁界センサに用いられるファラデー効果材料
は、大きなベルデ定数をf了しており、特に第1図に示
す範囲内の組成のものは、ベルデ定数が2.00白【1
10e−Cm以上のベルデ定数を(−jしている。した
がって、従来のファラデー効果材料である鉛ガラス、B
SO結晶およびZn5e結晶等に比べると、10倍〜数
10倍という大きなベルデ定数を有していることになる
。このため、この発明の磁界センサでは、ファラデー回
転素子の長さaを従来に比べ1/10〜1/数10に小
型化することができる。このため、この発明の磁界セン
サは小型化が可能であり、狭い場所での磁界Jll定か
可能となる。
The Faraday effect material used in the magnetic field sensor of this invention has a large Verdet constant, and in particular, those with a composition within the range shown in Figure 1 have a Verdet constant of 2.00 [1].
The Verdet constant is (-j) of 10e-Cm or more. Therefore, conventional Faraday effect materials such as lead glass and B
Compared to SO crystals, Zn5e crystals, etc., it has a large Verdet constant of 10 to several tens of times. Therefore, in the magnetic field sensor of the present invention, the length a of the Faraday rotation element can be reduced to 1/10 to 1/10 of the conventional length. Therefore, the magnetic field sensor of the present invention can be miniaturized, and the magnetic field can be determined in a narrow place.

[実施例] 第2図の3元系相図中に○で示した組成の結晶を、ブリ
ッジマン法により作製した。高純度の原1″1であるC
dTe、MnTeおよびZnTeをそれぞれ所定の組成
比となるように、グラファイトボート中で配合し、肉厚
の石英反応管中に入れ真空封入した。この石英反応管を
横形電気炉中に入れ、原料を加熱溶融した後、約121
.17間保持した。
[Example] A crystal having a composition indicated by a circle in the ternary phase diagram of FIG. 2 was produced by the Bridgman method. C which is a high purity raw material 1″1
dTe, MnTe, and ZnTe were mixed in a graphite boat so as to have predetermined composition ratios, and the mixture was placed in a thick-walled quartz reaction tube and sealed under vacuum. This quartz reaction tube was placed in a horizontal electric furnace, and after heating and melting the raw materials, approximately 121
.. It was held for 17 hours.

その後石英反応管を低温部へ微速で移動させることによ
り、一端から結晶化させた。得られた結晶は、幅20 
ro m、長さ200 m m 、深さ10mmであり
、多結晶体であった。結晶の長さ方向の中央部から、厚
さ2mmのウェハ:t f、1をすJ出し、両面を11
摩し、鏡面仕上げして厚さ1mmの試料とした。得られ
た結晶の構造は、分11′rの結果、閃亜鉛鉱型結晶の
単一相であった。各試料について、室温でベルデ定数を
測定した。71p+定波長は、660.730,780
,850および1300nmとした。第3図は、660
nmのΔPI定波長における実施例のベルデ定数を示す
3元系相図である。
Thereafter, the quartz reaction tube was moved at a slow speed to a low temperature section to cause crystallization from one end. The resulting crystal has a width of 20
ro m, length 200 mm, depth 10 mm, and was polycrystalline. A wafer with a thickness of 2 mm: t f, 1 is taken out from the center in the length direction of the crystal, and both sides are 11
The sample was polished to a mirror finish and had a thickness of 1 mm. As a result of 11'r, the structure of the obtained crystal was a single phase of zincblende crystal. The Verdet constant was measured for each sample at room temperature. 71p+constant wavelength is 660.730,780
, 850 and 1300 nm. Figure 3 shows 660
It is a ternary system phase diagram showing the Verdet constant of an example at a ΔPI constant wavelength of nm.

各組成比の結晶に対するイー1定結果は、それぞれのΔ
p1定比を示す点の右上に示した。単位は、m i n
10e−cmであり、光が透過しない試料については、
・で示した。
The E1 constant results for crystals with each composition ratio are
It is shown on the upper right of the point indicating the p1 stoichiometry. The unit is min
For a sample that is 10 e-cm and does not transmit light,
・Indicated.

同様に、第4図、第5図、第6図および第7図は、それ
ぞれΔpj定波長730 n m 、 780 n m
、850 n mおよびl 300n mにおけるJp
I定結果を示している。第3図〜第7図に示す7111
+定結果から明らかなように、ベルデ定数の値は/Ip
+定波長によって変化するが、Mn、Zn、Teおよび
Cdの量に大きく依存している。
Similarly, FIGS. 4, 5, 6, and 7 show Δpj constant wavelengths of 730 nm and 780 nm, respectively.
, Jp at 850 nm and l 300 nm
The results are shown below. 7111 shown in Figures 3 to 7
As is clear from the +constant result, the value of the Verdet constant is /Ip
+ constant varies with wavelength, but is highly dependent on the amounts of Mn, Zn, Te and Cd.

第1図に示す斜線の領域は、第3図〜第7図に示す11
−1定ベルデ定数が2. 0m i n10e−cm以
上の従来にない大きな値を示す組成範囲を示している。
The shaded area shown in Figure 1 corresponds to the 11 area shown in Figures 3 to 7.
-1 constant Verdet constant is 2. The composition range shows an unprecedentedly large value of 0 min 10 e-cm or more.

なおこの組成範囲は、境界線に相当する部分も含まれる
Note that this composition range also includes a portion corresponding to the boundary line.

以上のようにして得られるCdTe−MnTe−ZnT
e系合金からファラデー回転素子を形成し、たとえば第
8図に示すように1M成して、この発明の磁界センサと
することができる。
CdTe-MnTe-ZnT obtained as above
The magnetic field sensor of the present invention can be obtained by forming a Faraday rotation element from an e-based alloy, for example, as shown in FIG. 8, with a thickness of 1M.

そして、この発明の磁界センサに用いられるファラデー
効果材f1は、高いベルデ定数をHするため、ファラデ
ー回転素子を構成する結晶体の長さ庭を長く設定しなく
とも、十分な感度が得られ、狭い場所でも磁界測定が可
能な磁界センサとすることができる。従来より用いられ
ているZn5e結晶やBSO結晶をファラデー回転素子
に用いた場合、たとえば5〜30 m mの長さが必要
であったとすると、この発明では、ファラデー回転素子
の結晶体の長さを約0.06mm〜2.3mm程度まで
短くすることができ、磁界センサを小型化することがで
きる。
Since the Faraday effect material f1 used in the magnetic field sensor of the present invention has a high Verdet constant H, sufficient sensitivity can be obtained without setting the length of the crystal body that constitutes the Faraday rotation element long. A magnetic field sensor capable of measuring a magnetic field even in a narrow place can be obtained. If a conventionally used Zn5e crystal or BSO crystal is used in a Faraday rotation element, for example, a length of 5 to 30 mm is required, but in this invention, the length of the crystal of the Faraday rotation element is It can be shortened to approximately 0.06 mm to 2.3 mm, and the magnetic field sensor can be miniaturized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の実施例において、室温で2.0m
i n10e−cm以上のベルデ定数を示すH1成範囲
を示す3元系411図である。第2図は、この発明の実
施例において測定した組成を示す3元系)1図である。 第3図は、660 n mのA1+定波長における実施
例のベルデ定数を示す3元系相図である。第4図は、7
30 n IIIの14p1定波長における実施例のベ
ルデ定数を示す3元系相図である。 第5図は、780 n口1の測定波長における実施例の
ベルデ定数を示す3元系相図である。第6図は、850
 +i mのAPI定波長における実施例のベルデ定数
を示す3元系相図である。第7図は、1300nmのΔ
III定波長における実施例のベルデ定数を示す3元系
相図である。第8図は、磁界センサの11が成概念図で
ある。 図において、1は光ファイバ、2はロッドレンズ、3は
1−光子、4はファラデー回転素子、5は磁界、6は検
光子、7はロッドレンズ、8は光ファイバ、9は入射光
、10は出射光を示す。
FIG. 1 shows a 2.0 m
FIG. 411 is a ternary system diagram showing an H1 component range showing a Verdet constant of i n10e-cm or more. FIG. 2 is a ternary system (1) diagram showing the composition measured in an example of the present invention. FIG. 3 is a ternary system phase diagram showing the Verdet constant of the example at the A1+ constant wavelength of 660 nm. Figure 4 shows 7
FIG. 3 is a ternary system phase diagram showing the Verdet constant of an example at a 14p1 constant wavelength of 30 n III. FIG. 5 is a ternary system phase diagram showing the Verdet constant of the example at the measurement wavelength of 780 n port 1. Figure 6 shows 850
It is a ternary system phase diagram showing the Verdet constant of an example at an API constant wavelength of +i m. Figure 7 shows Δ of 1300 nm.
FIG. 3 is a ternary system phase diagram showing the Verdet constant of the example at III constant wavelength. FIG. 8 is a conceptual diagram of 11 of the magnetic field sensor. In the figure, 1 is an optical fiber, 2 is a rod lens, 3 is a 1-photon, 4 is a Faraday rotation element, 5 is a magnetic field, 6 is an analyzer, 7 is a rod lens, 8 is an optical fiber, 9 is an incident light, 10 indicates the emitted light.

Claims (2)

【特許請求の範囲】[Claims] (1)ファラデー回転素子を通過する光の偏波面の回転
角の大きさから磁界を検知する磁界センサにおいて、 前記ファラデー回転素子がCdTe−MnTe−ZnT
e系合金から形成されていることを特徴とする磁界セン
サ。
(1) In a magnetic field sensor that detects a magnetic field based on the rotation angle of the polarization plane of light passing through a Faraday rotator, the Faraday rotator is made of CdTe-MnTe-ZnT.
A magnetic field sensor characterized by being formed from an e-based alloy.
(2)前記CdTe−MnTe−ZnTe系合金が、添
付の第1図に示すように、Cd_0_._3Mn_0_
._5Zn_0_._2Te(CdTe30%、MnT
e50%、ZnTe20%)、Cd_0_._4Mn_
0_._5Zn_0_._1Te(CdTe40%、M
nTe50%、ZnTe10%)、Cd_0_._5_
5Mn_0_._4Zn_0_._0_5Te(CdT
e55%、MnTe40%、ZnTe5%)、Cd_0
_._7_5Mn_0_._2Zn_0_._0_5T
e(CdTe75%、MnTe20%、ZnTe5%)
、Cd_0_._8Mn_0_._1Zn_0_._1
Te(CdTe80%、MnTe10%、ZnTe10
%)、Cd_0_._7Mn_0_._1Zn_0_.
_2Te(CdTe70%、MnTe10%、ZnTe
20%)で囲まれる範囲内(境界線を含む)の組成を有
する、請求項1記載の磁界センサ。
(2) As shown in the attached FIG. 1, the CdTe-MnTe-ZnTe alloy is Cd_0_. _3Mn_0_
.. _5Zn_0_. _2Te (CdTe30%, MnT
e50%, ZnTe20%), Cd_0_. _4Mn_
0__. _5Zn_0_. _1Te (CdTe40%, M
nTe50%, ZnTe10%), Cd_0_. _5_
5Mn_0_. _4Zn_0_. _0_5Te(CdT
e55%, MnTe40%, ZnTe5%), Cd_0
_. _7_5Mn_0_. _2Zn_0_. _0_5T
e (CdTe75%, MnTe20%, ZnTe5%)
, Cd_0_. _8Mn_0_. _1Zn_0_. _1
Te (CdTe80%, MnTe10%, ZnTe10
%), Cd_0_. _7Mn_0_. _1Zn_0_.
_2Te (CdTe70%, MnTe10%, ZnTe
The magnetic field sensor according to claim 1, wherein the magnetic field sensor has a composition within a range (including the boundary line) surrounded by (20%).
JP63250655A 1988-10-04 1988-10-04 Magnetic field sensor Expired - Lifetime JP2585397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63250655A JP2585397B2 (en) 1988-10-04 1988-10-04 Magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250655A JP2585397B2 (en) 1988-10-04 1988-10-04 Magnetic field sensor

Publications (2)

Publication Number Publication Date
JPH0296676A true JPH0296676A (en) 1990-04-09
JP2585397B2 JP2585397B2 (en) 1997-02-26

Family

ID=17211084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250655A Expired - Lifetime JP2585397B2 (en) 1988-10-04 1988-10-04 Magnetic field sensor

Country Status (1)

Country Link
JP (1) JP2585397B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975882A (en) * 2010-09-16 2011-02-16 哈尔滨工业大学 Difference-stream detecting method based on BSO (Bi12SiO20) crystal and device for realizing same

Also Published As

Publication number Publication date
JP2585397B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
JPH0766044B2 (en) Magnetic field sensor
EP0086373A1 (en) Magneto-optical converter
JPH04324817A (en) Magneto-optical element and magnetic field measuring device
Hayashida et al. Phase transition and domain formation in ferroaxial crystals
US4018692A (en) Composition for making garnet films for improved magnetic bubble devices
JPH0296676A (en) Magnetic field sensor
Huang et al. Wavelength and temperature characteristics of BiYbIG film/YIG crystal composite structure for magneto-optical applications
CA1050862A (en) Magnetic bubble devices and garnet films therefor
Clover et al. Low birefringent orthoferrites for optical devices
JPH02189516A (en) Faraday effect material and magnetic field sensor
Sekijima et al. Optical Faraday rotator using Ce-substituted fibrous YIG single crystal grown by floating-zone method with YAG laser heating
JP2585396B2 (en) Faraday effect material
JP2592942B2 (en) Faraday effect material and magnetic field sensor
JP2645449B2 (en) Faraday effect material and magnetic field sensor
JP2585412B2 (en) Faraday effect material and magnetic field sensor
JP2585411B2 (en) Faraday effect material and magnetic field sensor
JPH04243219A (en) Faraday effect sensor and magnetic field sensor
JPH04243218A (en) Faraday effect material and magnetic field sensor
JPH04238320A (en) Faraday effect material and magnetic field sensor
Rice et al. Characteristics of Ba2NaNb5 O 15 for Optical Switching and Harmonic Generation
JPH05196908A (en) Faraday effect material and magnetic field sensor
JPH0527208A (en) Faraday effect material and magnetic field sensor
JPH05196909A (en) Faraday effect material and magnetic field sensor
JP3950636B2 (en) Cerium rare earth iron garnet crystal, manufacturing method thereof, and magnetic field sensor using the single crystal
Buse et al. Photorefractive and related properties of Ba0. 984Sr0. 016TiO3 crystals