JPH04238320A - Faraday effect material and magnetic field sensor - Google Patents

Faraday effect material and magnetic field sensor

Info

Publication number
JPH04238320A
JPH04238320A JP3006433A JP643391A JPH04238320A JP H04238320 A JPH04238320 A JP H04238320A JP 3006433 A JP3006433 A JP 3006433A JP 643391 A JP643391 A JP 643391A JP H04238320 A JPH04238320 A JP H04238320A
Authority
JP
Japan
Prior art keywords
magnetic field
faraday effect
field sensor
effect material
hgs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3006433A
Other languages
Japanese (ja)
Inventor
Morihiko Katsuta
勝田 守彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3006433A priority Critical patent/JPH04238320A/en
Publication of JPH04238320A publication Critical patent/JPH04238320A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize the magnetic field sensor by using a specific Faraday effect material which exhibits a large Verdet's constant value. CONSTITUTION:The Faraday effect material essentially consisting of an HgS- MnS-ZnS alloy is prepd. Namely, ZnS is alloyed to an HgMnS alloy, by which the Faraday effect material having >=2.0min/Oe.cm Verdet's constant value is obtd. Then, the Verdet's constant tens to several tens times larger Verdet's constant than lead glass, BSO crystal, etc., which are the conventional Faraday effect materials is obtd. and, therefore, the magnetic field sensor formed by using this Faraday effect material can reduce the length of the Faraday rotating element to 1/10 to 1/several 10 the length of the conventional elements. The magnetic field sensor is, therefore, miniaturized and the magnetic field measurement is possible even in a narrow place.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ファラデー効果を有す
る材料および送電線や配電線に流れる電流や磁界を検知
するための磁界センサ、あるいは探傷用磁界センサや電
力量計測用磁界センサなどのファラデー効果材料を使用
した磁界センサに関するものである。
[Industrial Application Field] The present invention is applicable to materials having a Faraday effect and magnetic field sensors for detecting currents and magnetic fields flowing in power transmission lines and distribution lines, or for use in Faraday effects such as magnetic field sensors for flaw detection and magnetic field sensors for measuring electric energy. The present invention relates to a magnetic field sensor using an effect material.

【0002】0002

【従来の技術】鉛ガラス、ZnSe結晶、BSO結晶等
の光透過性の良い磁気光学材料に外部から磁界を与え、
磁界と同じ方向に光を透過させると、ファラデー効果に
より磁気光学材料を通過中に光の偏波面が回転する現象
が知られている。偏波面の回転角θ(min)は、θ=
VHlで与えられる。ここで、Vはベルデ定数(min
/Oe・cm)、Hは磁界の強さ(Oe)、lはファラ
デー回転素子の長さ(cm)を示す。
[Prior Art] A magnetic field is applied externally to a magneto-optical material with good optical transparency such as lead glass, ZnSe crystal, BSO crystal, etc.
It is known that when light is transmitted in the same direction as a magnetic field, the plane of polarization of the light rotates while passing through a magneto-optical material due to the Faraday effect. The rotation angle θ (min) of the plane of polarization is θ=
It is given by VHl. Here, V is the Verdet constant (min
/Oe·cm), H indicates the strength of the magnetic field (Oe), and l indicates the length (cm) of the Faraday rotation element.

【0003】この磁気旋光現象を利用して磁界の測定を
行うことができる。図7は、ファラデー効果を利用した
磁界センサの構成概念図である。図7において、入射光
9は光ファイバ1およびロッドレンズ2を通り、直方体
状の偏光子3を通過して直線偏波となる。直線偏波とな
った入射光は、同様に直方体状のファラデー回転素子4
に入射し、ここで磁界5の影響により偏波面が角度θだ
け回転されてファラデー回転素子4から出る。このとき
の偏波面の回転角度θは、ファラデー回転素子4の出力
側に置いた直方体状の検光子6により光の強度に置き換
えられる。そして、この光はロッドレンズ7および光フ
ァイバ8を通り出射光10となる。この出射光の強度は
フォトダイオードで検知することにより測定することが
できる。
[0003] This magnetic optical rotation phenomenon can be used to measure magnetic fields. FIG. 7 is a conceptual diagram of a magnetic field sensor using the Faraday effect. In FIG. 7, incident light 9 passes through an optical fiber 1 and a rod lens 2, and then passes through a rectangular parallelepiped polarizer 3 to become linearly polarized light. The linearly polarized incident light is similarly passed through a rectangular parallelepiped Faraday rotation element 4.
Here, the plane of polarization is rotated by an angle θ due to the influence of the magnetic field 5 and exits from the Faraday rotation element 4. The rotation angle θ of the plane of polarization at this time is replaced by the intensity of light by a rectangular parallelepiped analyzer 6 placed on the output side of the Faraday rotation element 4. Then, this light passes through the rod lens 7 and the optical fiber 8 and becomes the output light 10. The intensity of this emitted light can be measured by detecting it with a photodiode.

【0004】図7に示す磁界センサでは、ファラデー回
転素子4として鉛ガラス、ZnSe結晶、BSO結晶(
Bi12SiO20)等の光学結晶が用いられており、
それらの感度はベルデ定数Vで表され、850nmの波
長では、次の数値となる。鉛ガラスでは、0.01mi
n/Oe・cm、BSO結晶では、0.10min/O
e・cm、ZnSe結晶では、0.15min/Oe・
cmである。
In the magnetic field sensor shown in FIG. 7, the Faraday rotation element 4 is made of lead glass, ZnSe crystal, BSO crystal (
Optical crystals such as Bi12SiO20) are used,
Their sensitivity is expressed by the Verdet constant V, which at a wavelength of 850 nm has the following value: For lead glass, 0.01 mi
n/Oe・cm, 0.10 min/O for BSO crystal
e・cm, for ZnSe crystal, 0.15 min/Oe・
cm.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
従来の光学結晶はいずれもベルデ定数値が小さく、この
ため感度が低かった。実用的な感度を得るためには一定
の回転角度θを得る必要があるが、上述の式θ=VHl
から明らかなように、ベルデ定数値が低い場合にはファ
ラデー回転素子の長さlを、例えば5〜30mm程度の
長さに設定する必要があった。このため、従来のファラ
デー効果材料を用いた場合にはセンサが大型化し、狭い
場所での磁界測定が困難になるという問題を生じた。
[Problems to be Solved by the Invention] However, all of the above-mentioned conventional optical crystals have a small Verdet constant value, and therefore have low sensitivity. In order to obtain practical sensitivity, it is necessary to obtain a constant rotation angle θ, but the above formula θ = VHl
As is clear from the above, when the Verdet constant value is low, it is necessary to set the length l of the Faraday rotation element to, for example, about 5 to 30 mm. For this reason, when a conventional Faraday effect material is used, the sensor becomes large and a problem arises in that it becomes difficult to measure a magnetic field in a narrow place.

【0006】本発明の目的は、大きなベルデ定数値を示
すファラデー効果材料を提供するとともに、該ファラデ
ー効果材料を用いることにより小型化を図ることのでき
る磁界センサを提供することにある。
An object of the present invention is to provide a Faraday effect material that exhibits a large Verdet constant value, and to provide a magnetic field sensor that can be miniaturized by using the Faraday effect material.

【0007】[0007]

【課題を解決するための手段】本発明者は上記の問題点
を解決するため従来よりも大きなベルデ定数を有するフ
ァラデー効果材料について種々検討を重ねた結果、Hg
MnS系合金にZnSを合金化させることにより、ベル
デ定数値の大きなファラデー効果材料が得られること見
いだし、本発明をなすに至ったものである。すなわち、
本発明のファラデー効果材料はHgS−MnS−ZnS
系合金を主成分とすることを特徴としている。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventors have conducted various studies on Faraday effect materials having a larger Verdet constant than conventional ones, and have found that Hg
It was discovered that a Faraday effect material with a large Verdet constant value can be obtained by alloying ZnS with a MnS-based alloy, leading to the present invention. That is,
The Faraday effect material of the present invention is HgS-MnS-ZnS
It is characterized by having a base alloy as its main component.

【0008】さらに、本発明のファラデー効果材料は、
以下のような組成範囲内にあることが好ましい。すなわ
ち、図1のHgS−MnS−ZnS系合金の三元系相図
に示す、Hg0.06Mn0.13Zn0.81S(H
gS6atomic%、MnS13atomic%、Z
nS81atomic%)、Hg0.06Mn0.09
Zn0.85S(HgS6atomic%、MnS9a
tomic%、ZnS85atomic%)、Hg0.
1Mn0.06Zn0.84S(HgS10atomi
c%、MnS6atomic%、ZnS84atomi
c%)、Hg0.25Mn0.06Zn0.69S(H
gS25atomic%、MnS6atomic%、Z
nS69atomic%)、Hg0.3Mn0.09Z
n0.61S(HgS30atomic%、MnS9a
tomic%、ZnS61atomic%)、Hg0.
3Mn0.13Zn0.57S(HgS30atomi
c%、MnS13atomic%、ZnS57atom
ic%)、で囲まれる範囲内(境界線を含む)の組成を
主成分として有することが好ましい。
Furthermore, the Faraday effect material of the present invention is
It is preferable that the composition falls within the following composition range. That is, Hg0.06Mn0.13Zn0.81S (H
gS6atomic%, MnS13atomic%, Z
nS81atomic%), Hg0.06Mn0.09
Zn0.85S (HgS6atomic%, MnS9a
atomic%, ZnS85atomic%), Hg0.
1Mn0.06Zn0.84S (HgS10 atoms
c%, MnS6atomic%, ZnS84atomic
c%), Hg0.25Mn0.06Zn0.69S (H
gS25atomic%, MnS6atomic%, Z
nS69atomic%), Hg0.3Mn0.09Z
n0.61S (HgS30atomic%, MnS9a
atomic%, ZnS61 atomic%), Hg0.
3Mn0.13Zn0.57S (HgS30atomi
c%, MnS13atomic%, ZnS57atom
It is preferable to have a composition as a main component within the range (including the boundary line) surrounded by (ic%).

【0009】本発明のファラデー効果材料においては、
HgS−MnS−ZnS系合金を主成分とするファラデ
ー効果材料であればよく、例えばTeやSe元素が微量
含まれていてもよい。
In the Faraday effect material of the present invention,
Any Faraday effect material containing an HgS-MnS-ZnS alloy as a main component may be used, and for example, a trace amount of Te or Se elements may be included.

【0010】また、本発明の磁界センサは上述のファラ
デー効果材料、すなわちHgS−MnS−ZnS系合金
を主成分としたファラデー回転素子を有し、このファラ
デー回転素子を通過する光の偏波面の回転角の大きさか
ら磁界を検知する。
Further, the magnetic field sensor of the present invention has a Faraday rotation element mainly composed of the above-mentioned Faraday effect material, that is, an HgS-MnS-ZnS alloy, and rotates the plane of polarization of light passing through the Faraday rotation element. The magnetic field is detected from the size of the corner.

【0011】また、本発明の磁界センサは好ましくは、
図1に示す範囲内(境界線を含む)の上記と同様の組成
を有するHgS−MnS−ZnS系合金を主成分とする
ファラデー効果材料からなるファラデー回転素子を有す
る。
[0011] Furthermore, the magnetic field sensor of the present invention preferably includes:
It has a Faraday rotation element made of a Faraday effect material whose main component is an HgS-MnS-ZnS alloy having the same composition as above within the range shown in FIG. 1 (including the boundary line).

【0012】本発明のファラデー効果材料は大きなベル
デ定数を有しており、特に図1に示す範囲内のものは2
.0min/Oe・cm以上のベルデ定数を有している
。従って、従来のファラデー効果材料である鉛ガラス、
BSO結晶およびZnSe結晶等に比べると10倍〜数
10倍あるいはそれ以上の大きなベルデ定数を有してい
ることになる。このため、本発明のファラデー効果材料
を使用した磁界センサでは、ファラデー回転素子の長さ
lを従来に比べ1/10〜1/数10に小型化すること
ができる。このため、本発明の磁界センサは小型化する
ことが可能であり、狭い場所でも磁界測定が可能となる
The Faraday effect material of the present invention has a large Verdet constant, especially those within the range shown in FIG.
.. It has a Verdet constant of 0 min/Oe·cm or more. Therefore, lead glass, which is a conventional Faraday effect material,
This means that it has a large Verdet constant that is 10 to several tens of times or more compared to BSO crystals, ZnSe crystals, and the like. Therefore, in the magnetic field sensor using the Faraday effect material of the present invention, the length l of the Faraday rotation element can be reduced to 1/10 to 1/10 of the conventional length. Therefore, the magnetic field sensor of the present invention can be miniaturized, and magnetic field measurement can be performed even in a narrow place.

【0013】[0013]

【実施例】図2の三元系相図中に●で示した組成を有す
るHgS−MnS−ZnS系合金の結晶をブリッジマン
法により作製した。高純度の原料であるHgS、MnS
およびZnSをそれぞれ所定の組成比となるように、グ
ラファイトボート中で配合した。このグラファイトボー
トを肉厚の石英反応管中に入れ真空封入した。この石英
反応管を横形電気炉中に入れ、原料を加熱溶融した後、
その状態で約24時間保持した。その後、石英反応管を
低温部へ微速で移動させることにより、溶融した原料を
一端から結晶化させた。得られた結晶は幅40mm、長
さ250mm、深さ15mmであった。切断面を観察し
たところ結晶は多結晶体であった。結晶の長さ方向の中
央部から厚さ2mmのウエハ試料を切り出し、両面を研
磨し、鏡面仕上げをして厚さ1mmの試料とした。得ら
れた結晶の構造は分析の結果、ウルツ鉱型結晶の単一相
であった。
EXAMPLE Crystals of an HgS-MnS-ZnS alloy having the composition indicated by ● in the ternary phase diagram of FIG. 2 were prepared by the Bridgman method. High purity raw materials HgS and MnS
and ZnS were blended in a graphite boat so that each had a predetermined composition ratio. This graphite boat was placed in a thick-walled quartz reaction tube and sealed under vacuum. After placing this quartz reaction tube in a horizontal electric furnace and heating and melting the raw materials,
It was kept in that state for about 24 hours. Thereafter, by moving the quartz reaction tube to a low temperature section at a slow speed, the molten raw material was crystallized from one end. The obtained crystal had a width of 40 mm, a length of 250 mm, and a depth of 15 mm. When the cut surface was observed, the crystal was polycrystalline. A wafer sample with a thickness of 2 mm was cut from the center in the longitudinal direction of the crystal, and both sides were polished to give a mirror finish to obtain a sample with a thickness of 1 mm. As a result of analysis, the structure of the obtained crystal was found to be a single phase of wurtzite type crystal.

【0014】各試料について室温でベルデ定数を測定し
た。ベルデ定数の測定法には、直交偏光子法、ファラデ
ーセル法、回転検光子法および円偏光変調法等がある。 ここでは円偏光変調法により測定した。測定は、730
、780、850および1300nmの波長をもつ光で
測定した。図3は、730nmの測定波長における実施
例のベルデ定数値を示す三元系相図である。各組成比の
結晶に対するベルデ定数の測定結果は、それぞれの組成
比を示す点の右上に示した。単位はmin/Oe・cm
である。
The Verdet constant was measured for each sample at room temperature. Methods for measuring the Verdet constant include the orthogonal polarizer method, the Faraday cell method, the rotating analyzer method, and the circular polarization modulation method. Here, the measurement was performed using the circular polarization modulation method. The measurement is 730
, 780, 850 and 1300 nm wavelengths. FIG. 3 is a ternary phase diagram showing the Verdet constant value of the example at a measurement wavelength of 730 nm. The measurement results of the Verdet constant for crystals of each composition ratio are shown on the upper right of the point indicating each composition ratio. Unit is min/Oe・cm
It is.

【0015】同様に、図4、図5および図6は、それぞ
れ測定波長780、850および1300nmにおける
ベルデ定数の測定結果を示すものである。図3〜図6に
示す測定結果から明らかなように、ベルデ定数値は測定
波長によって変化するが、Mn、Zn、HgおよびSの
量にも大きく依存している。
Similarly, FIG. 4, FIG. 5, and FIG. 6 show the measurement results of the Verdet constant at measurement wavelengths of 780, 850, and 1300 nm, respectively. As is clear from the measurement results shown in FIGS. 3 to 6, the Verdet constant value changes depending on the measurement wavelength, but also largely depends on the amounts of Mn, Zn, Hg, and S.

【0016】図1に示す斜線の領域は、図3〜図6に示
すベルデ定数の測定値が2.0min/Oe・cm以上
の従来にない大きな値を示す組成範囲を示すものである
。なお、この組成範囲は境界線に相当する部分も含まれ
る。
The shaded area shown in FIG. 1 indicates a composition range in which the measured values of the Verdet constant shown in FIGS. 3 to 6 show an unprecedentedly large value of 2.0 min/Oe·cm or more. Note that this composition range also includes a portion corresponding to the boundary line.

【0017】このように、本発明に従うファラデー効果
材料は高いベルデ定数を有するため、ファラデー回転素
子を構成する結晶体として本発明のファラデー効果材料
を用いた場合、結晶体の長さlを長く設定しなくとも十
分な感度が得られ、狭い場所でも磁界測定が可能な磁界
センサとすることができる。従来より用いられているZ
nSe結晶やBSO結晶をファラデー回転素子に用いた
場合、結晶体の長さが例えば5〜30mm必要であった
とすると、本発明のHgS−MnS−ZnS系合金を主
成分とした結晶の場合には、ファラデー回転素子の結晶
体の長さを約0.06〜2.3mm程度まで短くするこ
とができる結果、磁界センサを小型化することができる
As described above, since the Faraday effect material according to the present invention has a high Verdet constant, when the Faraday effect material of the present invention is used as a crystal body constituting a Faraday rotation element, the length l of the crystal body is set to be long. It is possible to obtain a magnetic field sensor that can obtain sufficient sensitivity even without using the magnetic field sensor, and can measure magnetic fields even in a narrow place. Traditionally used Z
When an nSe crystal or a BSO crystal is used in a Faraday rotation element, the length of the crystal body needs to be, for example, 5 to 30 mm.In the case of a crystal mainly composed of the HgS-MnS-ZnS alloy of the present invention, As a result of being able to shorten the length of the crystal of the Faraday rotation element to about 0.06 to 2.3 mm, the magnetic field sensor can be downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例において、室温で2.0min
/Oe・cm以上のベルデ定数を示す組成範囲を示すH
gS−MnS−ZnS系合金の三元系相図である。
FIG. 1: In an example of the present invention, 2.0 min at room temperature
H indicating a composition range exhibiting a Verdet constant of /Oe・cm or more
FIG. 3 is a ternary phase diagram of a gS-MnS-ZnS alloy.

【図2】本発明の実施例において、ベルデ定数を測定し
た組成を示すHgS−MnS−ZnS系合金の三元系相
図である。
FIG. 2 is a ternary phase diagram of a HgS-MnS-ZnS alloy showing a composition whose Verdet constant was measured in an example of the present invention.

【図3】本発明の実施例において、測定波長730nm
におけるベルデ定数値を示すHgS−MnS−ZnS系
合金の三元系相図である。
[Fig. 3] In the embodiment of the present invention, the measurement wavelength is 730 nm.
FIG. 2 is a ternary phase diagram of a HgS-MnS-ZnS alloy showing the Verdet constant value in FIG.

【図4】本発明の実施例において、測定波長780nm
におけるベルデ定数値を示すHgS−MnS−ZnS系
合金の三元系相図である。
[Figure 4] In the example of the present invention, the measurement wavelength is 780 nm.
FIG. 2 is a ternary phase diagram of a HgS-MnS-ZnS alloy showing the Verdet constant value in FIG.

【図5】本発明の実施例において、測定波長850nm
におけるベルデ定数値を示すHgS−MnS−ZnS系
合金の三元系相図である。
[Fig. 5] In the example of the present invention, the measurement wavelength is 850 nm.
FIG. 2 is a ternary phase diagram of a HgS-MnS-ZnS alloy showing the Verdet constant value in FIG.

【図6】本発明の実施例において、測定波長1300n
mにおけるベルデ定数値を示すHgS−MnS−ZnS
系合金の三元系相図である。
[Fig. 6] In the embodiment of the present invention, the measurement wavelength is 1300n.
HgS-MnS-ZnS showing the Verdet constant value at m
FIG. 3 is a ternary system phase diagram of the system alloy.

【図7】磁界センサの構成概念図である。FIG. 7 is a conceptual diagram of the configuration of a magnetic field sensor.

【符号の説明】[Explanation of symbols]

1  光ファイバ 2  ロッドレンズ 3  偏光子 4  ファラデー回転素子 5  磁界 6  検光子 7  ロッドレンズ 8  光ファイバ 9  入射光 10  出射光 1 Optical fiber 2 Rod lens 3 Polarizer 4 Faraday rotation element 5 Magnetic field 6 Analyzer 7 Rod lens 8 Optical fiber 9 Incident light 10 Output light

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  HgS−MnS−ZnS系合金を主成
分とすることを特徴とするファラデー効果材料。
1. A Faraday effect material comprising a HgS-MnS-ZnS alloy as a main component.
【請求項2】  前記HgS−MnS−ZnS系合金が
添付の図1の三元系相図に示すように Hg0.06Mn0.13Zn0.81S(HgS6a
tomic%、MnS13atomic%、ZnS81
atomic%)、Hg0.06Mn0.09Zn0.
85S(HgS6atomic%、MnS9atomi
c%、ZnS85atomic%)、Hg0.1Mn0
.06Zn0.84S(HgS10atomic%、M
nS6atomic%、ZnS84atomic%)、
Hg0.25Mn0.06Zn0.69S(HgS25
atomic%、MnS6atomic%、ZnS69
atomic%)、Hg0.3Mn0.09Zn0.6
1S(HgS30atomic%、MnS9atomi
c%、ZnS61atomic%)、Hg0.3Mn0
.13Zn0.57S(HgS30atomic%、M
nS13atomic%、ZnS57atomic%)
、で囲まれる範囲内(境界線を含む)の組成を有する請
求項1に記載のファラデー効果材料。
2. The HgS-MnS-ZnS alloy is composed of Hg0.06Mn0.13Zn0.81S (HgS6a
tomic%, MnS13atomic%, ZnS81
atomic%), Hg0.06Mn0.09Zn0.
85S (HgS6atomic%, MnS9atomic%
c%, ZnS85atomic%), Hg0.1Mn0
.. 06Zn0.84S (HgS10atomic%, M
nS6atomic%, ZnS84atomic%),
Hg0.25Mn0.06Zn0.69S (HgS25
atomic%, MnS6atomic%, ZnS69
atomic%), Hg0.3Mn0.09Zn0.6
1S (HgS30atomic%, MnS9atomic%
c%, ZnS61atomic%), Hg0.3Mn0
.. 13Zn0.57S (HgS30atomic%, M
nS13atomic%, ZnS57atomic%)
The Faraday effect material according to claim 1, having a composition within the range (including the boundary line) surrounded by .
【請求項3】  ファラデー回転素子を通過する光の偏
波面の回転角の大きさから磁界を検知する磁気センサに
おいて、前記ファラデー回転素子がHgS−MnS−Z
nS系合金を主成分として形成されていることを特徴と
する磁界センサ。
3. A magnetic sensor that detects a magnetic field based on the rotation angle of a polarization plane of light passing through a Faraday rotator, wherein the Faraday rotator is made of HgS-MnS-Z.
A magnetic field sensor characterized by being formed mainly of an nS-based alloy.
【請求項4】  前記HgS−MnS−ZnS系合金が
添付の図1の三元系相図に示すように、Hg0.06M
n0.13Zn0.81S(HgS6atomic%、
MnS13atomic%、ZnS81atomic%
)、Hg0.06Mn0.09Zn0.85S(HgS
6atomic%、MnS9atomic%、ZnS8
5atomic%)、Hg0.1Mn0.06Zn0.
84S(HgS10atomic%、MnS6atom
ic%、ZnS84atomic%)、Hg0.25M
n0.06Zn0.69S(HgS25atomic%
、MnS6atomic%、ZnS69atomic%
)、Hg0.3Mn0.09Zn0.61S(HgS3
0atomic%、MnS9atomic%、ZnS6
1atomic%)、Hg0.3Mn0.13Zn0.
57S(HgS30atomic%、MnS13ato
mic%、ZnS57atomic%)、で囲まれる範
囲内(境界線を含む)の組成を有する請求項3に記載の
磁界センサ。
4. As shown in the ternary phase diagram of FIG. 1, the HgS-MnS-ZnS alloy contains Hg0.06M
n0.13Zn0.81S (HgS6atomic%,
MnS13 atomic%, ZnS81 atomic%
), Hg0.06Mn0.09Zn0.85S (HgS
6atomic%, MnS9atomic%, ZnS8
5atomic%), Hg0.1Mn0.06Zn0.
84S (HgS10atomic%, MnS6atom
ic%, ZnS84atomic%), Hg0.25M
n0.06Zn0.69S (HgS25atomic%
, MnS6atomic%, ZnS69atomic%
), Hg0.3Mn0.09Zn0.61S (HgS3
0atomic%, MnS9atomic%, ZnS6
1atomic%), Hg0.3Mn0.13Zn0.
57S (HgS30atomic%, MnS13ato
5. The magnetic field sensor according to claim 3, wherein the magnetic field sensor has a composition within a range (including the boundary line) surrounded by (including the boundary line).
JP3006433A 1991-01-23 1991-01-23 Faraday effect material and magnetic field sensor Pending JPH04238320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3006433A JPH04238320A (en) 1991-01-23 1991-01-23 Faraday effect material and magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3006433A JPH04238320A (en) 1991-01-23 1991-01-23 Faraday effect material and magnetic field sensor

Publications (1)

Publication Number Publication Date
JPH04238320A true JPH04238320A (en) 1992-08-26

Family

ID=11638266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3006433A Pending JPH04238320A (en) 1991-01-23 1991-01-23 Faraday effect material and magnetic field sensor

Country Status (1)

Country Link
JP (1) JPH04238320A (en)

Similar Documents

Publication Publication Date Title
EP0086373B1 (en) Magneto-optical converter
US4018692A (en) Composition for making garnet films for improved magnetic bubble devices
Scheel et al. Crystal growth and characterization of “striation-free” KTa1− xNbxO3 (x≈ 0.26) solid solutions
CA1050862A (en) Magnetic bubble devices and garnet films therefor
Germann et al. Linear magnetic birefringence in transition metal oxides: CoO
JPH04238320A (en) Faraday effect material and magnetic field sensor
JP2585397B2 (en) Magnetic field sensor
JP2592942B2 (en) Faraday effect material and magnetic field sensor
JP2585412B2 (en) Faraday effect material and magnetic field sensor
JPH04243218A (en) Faraday effect material and magnetic field sensor
Nosenzo et al. Effect of magnetic ordering on the optical properties of transition-metal halides: Ni Cl 2, Ni Br 2, Cr Cl 3, and Cr Br 3
JP2585411B2 (en) Faraday effect material and magnetic field sensor
JP2645449B2 (en) Faraday effect material and magnetic field sensor
Mulder Recombination diffusion length of minority charge carriers in cuprous sulphide (chalcosite and djurleite)
JPH04243219A (en) Faraday effect sensor and magnetic field sensor
JP2585396B2 (en) Faraday effect material
Hussein et al. Characteristic of the photoconductivity of thallium monoselenide
JP2645450B2 (en) Faraday effect material and magnetic field sensor
JPH05196908A (en) Faraday effect material and magnetic field sensor
JPH0527208A (en) Faraday effect material and magnetic field sensor
JPH05196909A (en) Faraday effect material and magnetic field sensor
JP3950636B2 (en) Cerium rare earth iron garnet crystal, manufacturing method thereof, and magnetic field sensor using the single crystal
Sato et al. Magnetoresistance oscillations in aluminum near the [001] axis
Didosyan et al. Temperature characteristics of a new magneto-optical current transformer
JPH06256092A (en) Magnetic garnet single crystal for measurement of magnetic field and apparatus for optical measurement of magnetic field