JPH03248569A - Thin-film transistor - Google Patents

Thin-film transistor

Info

Publication number
JPH03248569A
JPH03248569A JP4449490A JP4449490A JPH03248569A JP H03248569 A JPH03248569 A JP H03248569A JP 4449490 A JP4449490 A JP 4449490A JP 4449490 A JP4449490 A JP 4449490A JP H03248569 A JPH03248569 A JP H03248569A
Authority
JP
Japan
Prior art keywords
film
hydrogen concentration
gate insulating
silicon nitride
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4449490A
Other languages
Japanese (ja)
Other versions
JP2885458B2 (en
Inventor
Mitsuo Nakajima
充雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4449490A priority Critical patent/JP2885458B2/en
Publication of JPH03248569A publication Critical patent/JPH03248569A/en
Application granted granted Critical
Publication of JP2885458B2 publication Critical patent/JP2885458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the peeling of a film, and to improve reliability by forming a section near at least an amorphous silicon film of a gate insulating film by a silicon nitride film and setting the hydrogen concentration distribution in the film thickness direction, so that the amorphous silicon film side of the silicon nitride film has lower concentration. CONSTITUTION:A section near at least the a-Si film 4 side of a gate insulating film 3 is formed by a silicon nitride film 3c, and the silicon nitride film 3c has hydrogen concentration distribution in the film, thickness direction, in which hydrogen concentration is lowered, on the a-Si film 4 side. The internal stress of the silicon nitride film 3c depends upon hydrogen concentration in the film, and tensile stress is augmented with the increase of hydrogen concentration. Consequently, hydrogen concentration in the film thickness direction in the silicon nitride film 3c brought into contact with the a-Si film 4 as an active layer is changed, thus inhibiting stress working on the interfaces of these films and preventing the generation of peeling. Accordingly, the peeling of the films due to the difference of internal stress can be obviated, thus improving reliability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、スイッチング素子に用いられる薄膜トランジ
スタの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in thin film transistors used as switching elements.

(従来の技術) 近年、非晶質シリコン(a −S i)膜を用いた薄膜
トランジスタをスイッチング素子として構成されたアク
ティブマトリックス型液晶表示装置が注目されている。
(Prior Art) In recent years, active matrix liquid crystal display devices configured with thin film transistors using amorphous silicon (a-Si) films as switching elements have attracted attention.

これは、安価なガラス基板を用いることで大画面、高精
細、高画質なパネルデイスプレィを低コストで実現する
可能性があるからである。
This is because by using an inexpensive glass substrate, it is possible to realize a panel display with a large screen, high definition, and high image quality at low cost.

第8図は、活性層にa−Si膜を用いた従来の表示駆動
装置用TPTの断面図である。先ず、ガラス板のような
透光性絶縁基板21上に設けられたMoやCrのような
金属がバターニングされゲート電極22が形成される。
FIG. 8 is a cross-sectional view of a conventional TPT for a display driving device using an a-Si film as an active layer. First, a metal such as Mo or Cr provided on a transparent insulating substrate 21 such as a glass plate is patterned to form a gate electrode 22 .

このゲート電極22上にはゲート絶縁膜23である5i
n2膜23a。
On this gate electrode 22 is a gate insulating film 23 5i.
n2 film 23a.

SiNx膜23bが順次積層されている。このゲ−ト絶
縁膜23上のゲート電極22上に位置するところに、活
性層としてa−8i膜24の半導体膜が所定のパターン
に形成されている。このaSiSi膜上4上SiNx膜
25aとSiOx膜25bとの1に層膜である保3膜2
5が形成されている。活性層にはオーミックコンタクト
層としてn″’ a−8L膜26を介してソース電極2
7.ドレイン電極28が形成されている。。ソース電極
27、ドレイン電極28と半導体膜24との間には、オ
ーミックコンタクト層としてn”a−3i膜26が形成
されている。
SiNx films 23b are sequentially stacked. A semiconductor film of an A-8I film 24 is formed as an active layer in a predetermined pattern on the gate insulating film 23 and above the gate electrode 22. As shown in FIG. A protective film 2, which is a layered film, is formed on the SiNx film 25a and the SiOx film 25b on this aSiSi film 4.
5 is formed. A source electrode 2 is connected to the active layer via an n''a-8L film 26 as an ohmic contact layer.
7. A drain electrode 28 is formed. . An n''a-3i film 26 is formed as an ohmic contact layer between the source electrode 27, the drain electrode 28, and the semiconductor film 24.

一般に、a−5i膜の内部応力は圧縮応力。Generally, the internal stress of the a-5i film is compressive stress.

SiNx膜の内部応力は引張り応力そしてSiOx膜の
内部応力は圧縮応力であるので、このような従来構造の
TPTでは、活性層の内部応力とこれに接するゲート絶
縁膜中のSiNx膜の内部応力は逆になっている。さら
にゲート絶縁膜中で接するSiNx膜とSiOx膜の内
部応力もお互いに異なっている。したがって、このよう
な接合面では当然膜の剥離発生頻度が他の箇所に比べて
高くなる。その結果、ゲート絶縁層のリーク電流の増大
、スイッチング機能の消失などのようにTPT特性が不
良になり歩留まりが悪くなるという問題があった。
Since the internal stress of the SiNx film is tensile stress and the internal stress of the SiOx film is compressive stress, in a TPT with such a conventional structure, the internal stress of the active layer and the internal stress of the SiNx film in the gate insulating film in contact with it are It's the other way around. Furthermore, the internal stresses of the SiNx film and the SiOx film that are in contact with each other in the gate insulating film are also different from each other. Therefore, the frequency of film peeling occurring at such a joint surface is naturally higher than at other locations. As a result, there have been problems in that the TPT characteristics are poor, such as an increase in leakage current in the gate insulating layer and loss of switching function, resulting in poor yield.

(発明が解決しようとする課8) 以上のように従来構造の薄膜トランジスタは、ゲート絶
縁膜とそれに接合する活性層の如く、内部応力が異なる
膜間での接合が存在するのでこれらの膜の剥離に起因す
るTPT特性の不良が見られた。
(Issue 8 to be solved by the invention) As described above, in the thin film transistor of the conventional structure, there are bonds between films with different internal stress, such as the gate insulating film and the active layer bonded to it, so it is difficult for these films to peel off. Defects in TPT characteristics due to this were observed.

本発明はこのような膜の剥離を回避して信頼性向上を図
った薄膜トランジスタを提供することを目的としている
An object of the present invention is to provide a thin film transistor with improved reliability by avoiding such film peeling.

[発明の構成] (課題を解決するための手段) 上記の目的を達成するために、本発明は、基板と、この
基板上に所定パターンをもって形成されたa−5i膜と
、このa−8t膜にコンタクトするソースおよびドレイ
ン電極と、前記a−Si膜の上部または下部にゲート絶
縁膜を介して配設されたゲート電極とを有する薄膜トラ
ンジスタにおいて、前記ゲート絶縁膜は少くとも前記a
St膜側に近い部分が窒化シリコン膜により形成され、
かつその窒化シリコン膜は前記a−5i膜側では水素濃
度が低くなる膜厚方向の水素濃度分布を有することを特
徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a substrate, an a-5i film formed with a predetermined pattern on the substrate, and an a-8t film formed on the substrate with a predetermined pattern. In a thin film transistor having source and drain electrodes in contact with the a-Si film, and a gate electrode disposed above or below the a-Si film with a gate insulating film interposed therebetween, the gate insulating film includes at least the a-Si film.
A portion close to the St film side is formed of a silicon nitride film,
The silicon nitride film is characterized in that it has a hydrogen concentration distribution in the film thickness direction such that the hydrogen concentration is lower on the a-5i film side.

(作用) 不発者らか研究を重ねた結果、窒化シリコン膜の内部応
力は膜中の水素濃度に依存し、水素濃度が高くなるにし
たがい引張り応力が強くなることを確認した。
(Function) As a result of repeated research conducted by those involved in the failure, it was confirmed that the internal stress of a silicon nitride film depends on the hydrogen concentration in the film, and as the hydrogen concentration increases, the tensile stress becomes stronger.

したがって本発明によれば、活性層であるaSi膜と接
する窒化シリコン膜中の膜厚方向の水素濃度を変えるこ
とで、これら膜界面に働く応力を抑えることができ、剥
離が起こり難くなる。
Therefore, according to the present invention, by changing the hydrogen concentration in the film thickness direction in the silicon nitride film that is in contact with the aSi film that is the active layer, it is possible to suppress the stress acting on the interface of these films, making it difficult for peeling to occur.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は、本発明の第1の実施例に係る薄膜トランジス
タの断面図である。これを製造工程に従い説明すると、
最初にガラス基板からなる透光性絶縁基板1上に厚さ約
2000人のTaあるいはM o T a合金等の金属
膜をスパッタリング法を用いて堆積する。この金属膜を
CF、と02を反応ガスとしたプラズマエツチングによ
りバターニングしてゲート電極2を形成する。次に光C
VD法のより第1.第2.第3のゲート絶縁膜3a、3
b、3cであるSiNxをそれぞれ約1000人、50
0人、500人の厚さで順次堆積して厚さ2000人の
ゲート絶縁膜3を形成する。引き続き光CVD法により
活性層となるa−9i膜4を3000人形成し、その上
にSiNx膜5a、SiOx膜5bを厚さ1000人で
順次堆積して厚さ2000人の積層膜を形成する。次に
この積層膜にエツチングを施して保護膜5を形成する。
FIG. 1 is a cross-sectional view of a thin film transistor according to a first embodiment of the present invention. Explaining this according to the manufacturing process,
First, a metal film such as Ta or MoTa alloy is deposited to a thickness of about 2000 on a transparent insulating substrate 1 made of a glass substrate using a sputtering method. The gate electrode 2 is formed by patterning this metal film by plasma etching using CF and 02 as reaction gases. Next, light C
1. From the VD method. Second. Third gate insulating film 3a, 3
Approximately 1000 and 50 SiNx b and 3c, respectively.
A gate insulating film 3 having a thickness of 2,000 thick is formed by sequentially depositing the gate insulating film 3 to a thickness of 0 and 500 thick. Subsequently, a 3000 layer a-9i film 4, which will become an active layer, is formed by photo-CVD, and a SiNx film 5a and a SiOx film 5b are sequentially deposited thereon to a thickness of 1000 layers to form a laminated film with a thickness of 2000 layers. . Next, this laminated film is etched to form a protective film 5.

この後、保護膜5をマスクとしてaSiSi膜面表面上
−ミックコンタクト層として厚さ500人のn”a−5
i膜6を形成する。最後に金属膜を形成し、これをバタ
ーニングすることによりソース電極7.ドレイン電極8
を形成して薄膜トランジスタが完成する。
After that, using the protective film 5 as a mask, a layer of n"a-5 with a thickness of 500 nm is applied as a micro contact layer on the aSiSi film surface.
An i-film 6 is formed. Finally, a metal film is formed and patterned to form the source electrode 7. drain electrode 8
is formed to complete the thin film transistor.

なお、上記第1の絶縁膜3aの原料ガスとして、2SC
CMのシランと98SCCMのアンモニアとの混合ガス
を、第2の絶縁膜3bの原料ガスとして流j12scc
Mのシランと流量98SCCMのアンモニアとの原料ガ
スに流量505CCMの水素を混合したガスを、第3の
絶縁膜3cの原料ガスとして流fi2 S CCMのシ
ランと流ffi983CCMのアンモニアとの原料ガス
に流量11003CCの水素を混合したガスを採用した
。これによりゲート絶縁膜中の水素は膜厚方向に濃度分
布を持つことになる。第2図はこの絶縁膜中の原子水素
濃度を評価した結果であり、図中、横軸はSiNx膜の
厚さ、縦軸はSiNx膜中の原子水素濃度である。この
ように3つの絶縁膜からなるゲート絶縁膜3中の水素濃
度分布は、それぞれの絶縁膜中では一定濃度で、第3の
ゲート絶縁膜3cから第1のゲート絶縁膜3aの順に膜
厚方向に濃度が低くなる分布を呈している。
Note that 2SC is used as the raw material gas for the first insulating film 3a.
A mixed gas of CM silane and 98 SCCM ammonia is flowed as a raw material gas for the second insulating film 3b.
A gas obtained by mixing hydrogen at a flow rate of 505 CCM with a raw material gas of silane M and ammonia at a flow rate of 98 SCCM is used as a raw material gas for the third insulating film 3c. A gas mixed with 11,003 cc of hydrogen was used. As a result, hydrogen in the gate insulating film has a concentration distribution in the film thickness direction. FIG. 2 shows the results of evaluating the atomic hydrogen concentration in this insulating film. In the figure, the horizontal axis is the thickness of the SiNx film, and the vertical axis is the atomic hydrogen concentration in the SiNx film. In this way, the hydrogen concentration distribution in the gate insulating film 3 consisting of three insulating films is constant in each insulating film, and is distributed in the film thickness direction from the third gate insulating film 3c to the first gate insulating film 3a. It exhibits a distribution in which the concentration decreases.

第3図は本発明者らがSiNx膜中に於ける水素の影響
にについて研究した結果である。図中、横軸はSiNx
膜中の原子水素濃度、左縦軸はSiNx膜の内部応力、
右縦軸はSiNx膜中の欠陥密度、実線は内部応力と水
素濃度の関係を示し、破線は欠陥密度と水素濃度の関係
を示す。この図から分かるようにSiNx膜の内部応力
は水素濃度が高いほど引張り応力が大きくなり、逆に欠
陥密度は水素濃度が高いほど小さくなっている。
FIG. 3 shows the results of research conducted by the present inventors on the influence of hydrogen in the SiNx film. In the figure, the horizontal axis is SiNx
The atomic hydrogen concentration in the film, the left vertical axis is the internal stress of the SiNx film,
The right vertical axis shows the defect density in the SiNx film, the solid line shows the relationship between internal stress and hydrogen concentration, and the broken line shows the relationship between defect density and hydrogen concentration. As can be seen from this figure, as for the internal stress of the SiNx film, the higher the hydrogen concentration, the greater the tensile stress, and conversely, the higher the hydrogen concentration, the lower the defect density.

したがって、上記実施例のような構成の薄膜トランジス
タは、活性層とゲート絶縁膜3とが内部応力の差が小さ
いa−3i膜4と第3のゲート絶縁膜3aとで接合して
いるので従来の薄膜トランジスタのようにこの界面で大
きな応力歪みを受けない。その結果、膜剥離の発生頻度
が非常に小さくなる。さらに高濃度の水素を含む第1.
第2のゲート絶縁膜3a、3bの存在により、第1のゲ
ート絶縁膜3a中の欠陥密度が高いことで絶縁膜として
の機能が低下しても、ゲート絶縁膜3全体として緻密な
絶縁膜として働く。
Therefore, in the thin film transistor configured as in the above embodiment, the active layer and the gate insulating film 3 are joined by the a-3i film 4 and the third gate insulating film 3a, which have a small difference in internal stress. Unlike thin film transistors, this interface does not experience large stress strains. As a result, the frequency of occurrence of film peeling becomes extremely low. The first one contains even higher concentration of hydrogen.
Due to the presence of the second gate insulating films 3a and 3b, even if the function as an insulating film is reduced due to the high defect density in the first gate insulating film 3a, the gate insulating film 3 as a whole remains a dense insulating film. work.

第4図は、本発明に係る第2の実施例を示す薄膜トラン
ジスタの断面図である。なお第1図と同一機能部分には
同一符号を付し、詳しい説明は省略する。
FIG. 4 is a cross-sectional view of a thin film transistor showing a second embodiment of the present invention. Note that the same functional parts as in FIG. 1 are denoted by the same reference numerals, and detailed explanations will be omitted.

この実施例が先に説明した第1の実施例と異なる点は、
透光性絶縁基板1上にゲート電極2を設けた後、光CV
D法を用いて第1.第2のゲート絶縁膜13a、13b
であるSiOx膜をそれぞれ500人の厚さで順次堆積
し、さらにこのゲート絶縁膜13b上に第3.第4のゲ
ート絶縁膜13c、13dとしてSiNx膜を各々50
0人の厚さで順次堆積して絶縁膜13をSiOx膜とS
 iNx膜との積層膜としたことである。
This embodiment differs from the first embodiment described above as follows:
After providing the gate electrode 2 on the transparent insulating substrate 1, optical CV
First, using method D. Second gate insulating film 13a, 13b
A third SiOx film is sequentially deposited to a thickness of 500 nm each, and a third SiOx film is further deposited on this gate insulating film 13b. SiNx films are each used as the fourth gate insulating films 13c and 13d.
The insulating film 13 is formed by sequentially depositing SiOx film and S to a thickness of 0.
The reason is that it is a laminated film with an iNx film.

このゲート絶縁!IIB中の原子水素濃度を測定したと
ころ第5図に示すような結果が得られた。すなわち、4
つの絶縁膜からなるゲート絶縁膜13中の膜厚方向の水
素濃度分布は、それぞれの絶縁膜中では一定濃度で、活
性層に近い絶縁膜程濃度が低くなる分布を呈している。
This gate insulation! When the atomic hydrogen concentration in IIB was measured, the results shown in FIG. 5 were obtained. That is, 4
The hydrogen concentration distribution in the thickness direction of the gate insulating film 13, which is made up of two insulating films, is such that each insulating film has a constant concentration, and the concentration becomes lower as the insulating film is closer to the active layer.

参考までに、SiOx膜中の水素濃度と内部応力の関係
は第6図に示すようになる。
For reference, the relationship between hydrogen concentration and internal stress in the SiOx film is shown in FIG.

この実施例のような構成の薄膜トランジスタでも、第1
の実施例と同様にa−St膜4は、4つのゲート絶縁膜
中で最も内部応力の差が小さい第1のゲート絶縁膜13
dと接する。その結果、活性層とゲート絶縁膜3との接
合面での膜剥離は起こり難くなり、さらに第2.第3.
第4のゲート絶縁膜13b、13c、13dにより絶縁
膜として強化されている。
Even in a thin film transistor configured as in this example, the first
Similarly to the embodiment, the a-St film 4 is the first gate insulating film 13 which has the smallest difference in internal stress among the four gate insulating films.
Contact with d. As a result, film peeling at the bonding surface between the active layer and the gate insulating film 3 becomes less likely to occur. Third.
The fourth gate insulating films 13b, 13c, and 13d strengthen the insulating film.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、上記実施例のように水素濃度分布を段階的
に変化させるのではなく連続的に変化させても良い。す
なわち、第7図に示すように活性層から膜厚方向に対し
て遠ざかるにしたがい濃度が高くなるようにゲート絶縁
膜中の水素濃度分布を設定をしても良い。
Note that the present invention is not limited to the embodiments described above. For example, the hydrogen concentration distribution may be changed continuously instead of being changed stepwise as in the above embodiment. That is, as shown in FIG. 7, the hydrogen concentration distribution in the gate insulating film may be set so that the concentration increases as the distance from the active layer in the film thickness direction increases.

また、ゲート絶縁膜中の水素濃度を制御するために用い
られる方法は上記実施例で用いた原料ガスの希釈法に限
らず、例えば、反応時の紫外線。
Further, the method used to control the hydrogen concentration in the gate insulating film is not limited to the method of diluting the source gas used in the above embodiments, but also, for example, using ultraviolet rays during reaction.

赤外線などの光照射量の増減、膜形成後のH2プラズマ
処理等で行なっても良い。
This may be carried out by increasing or decreasing the amount of light irradiation such as infrared rays, or by H2 plasma treatment after film formation.

さらにまた、ゲート絶縁膜の形成方法は光CVD法に限
らず、例えばプラズマCVD法、熱CVD法、もしくは
スパッタリング法を用いてもかまわない。
Furthermore, the method for forming the gate insulating film is not limited to the photo-CVD method, and for example, a plasma CVD method, a thermal CVD method, or a sputtering method may be used.

なお、本発明はゲート絶縁膜のみならず、例えば保護膜
に適用しても良い。要するに本発明は、S iNx膜ま
たはSiOx膜とそれらの膜の内部応力と異なる膜との
接合箇所であれば種々変形して実施することができる。
Note that the present invention may be applied not only to the gate insulating film but also to, for example, a protective film. In short, the present invention can be implemented with various modifications as long as it is a joint between an SiNx film or a SiOx film and a film that has a different internal stress.

[発明の効果コ 以上述べたように本発明によれば、内部応力差に起因す
る膜剥離が防止できるので信頼性が向上して優れた特性
のTPTを得ることができる。
[Effects of the Invention] As described above, according to the present invention, film peeling caused by internal stress differences can be prevented, so reliability can be improved and a TPT with excellent characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例に係る薄膜トランジスタ
の断面図、第2図は第1実施例に係るゲート絶縁膜中の
水素濃度を示す図、第3図はSiNx膜の内部応力と水
素濃度との関係を示す図、第4図は第2の実施例に係る
薄膜トランジスタの断面図、第5図は第2実施例に係る
ゲート絶縁膜中の水素濃度を示す図、第6図はSiNx
膜の内部応力と水素濃度との関係を示す図、第7図はゲ
ート絶縁膜中の水素濃度を示す図、第8図は従来の薄膜
トランジスタの断面図である。 1・・・透光性絶縁基板、2・・・ゲート電極、3゜3
a、3b、3c、13,13a、13b。 13c、13d−・・ゲート絶縁膜、4 ・= a −
S i膜、5.5a、5b−・・保護膜、6−n” a
 −S i膜。 7・・・ソース電極、8・・・ドレイン電極。
FIG. 1 is a cross-sectional view of a thin film transistor according to the first embodiment of the present invention, FIG. 2 is a diagram showing the hydrogen concentration in the gate insulating film according to the first embodiment, and FIG. 3 is a diagram showing the internal stress of the SiNx film. 4 is a cross-sectional view of the thin film transistor according to the second embodiment, FIG. 5 is a diagram showing the hydrogen concentration in the gate insulating film according to the second embodiment, and FIG. 6 is a diagram showing the relationship with hydrogen concentration. SiNx
FIG. 7 is a diagram showing the relationship between internal stress of a film and hydrogen concentration, FIG. 7 is a diagram showing hydrogen concentration in a gate insulating film, and FIG. 8 is a cross-sectional view of a conventional thin film transistor. 1... Transparent insulating substrate, 2... Gate electrode, 3゜3
a, 3b, 3c, 13, 13a, 13b. 13c, 13d--gate insulating film, 4.=a-
Si film, 5.5a, 5b--protective film, 6-n"a
-Si membrane. 7... Source electrode, 8... Drain electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)基板と、この基板上に所定パターンをもって形成
された非晶質シリコン膜と、この非晶質シリコン膜にコ
ンタクトするソースおよびドレイン電極と、前記非晶質
シリコン膜の上部または下部にゲート絶縁膜を介して配
設されたゲート電極とを有する薄膜トランジスタにおい
て、前記ゲート絶縁膜は少くとも前記非晶質シリコン膜
に近い部分が窒化シリコン膜により形成され、かつその
窒化シリコン膜は前記非晶質シリコン膜側では水素濃度
が低くなる膜厚方向の水素濃度分布を有することを特徴
とする薄膜トランジスタ。
(1) A substrate, an amorphous silicon film formed in a predetermined pattern on the substrate, source and drain electrodes in contact with the amorphous silicon film, and a gate on the top or bottom of the amorphous silicon film. In a thin film transistor having a gate electrode disposed through an insulating film, at least a portion of the gate insulating film close to the amorphous silicon film is formed of a silicon nitride film, and the silicon nitride film is A thin film transistor characterized by having a hydrogen concentration distribution in the film thickness direction where the hydrogen concentration is lower on the silicon film side.
(2)前記ゲート絶縁膜は、膜厚方向に水素濃度分布を
有する窒化シリコン膜と酸化シリコン膜との積層膜を有
することを特徴とする請求項1記載の薄膜トランジスタ
(2) The thin film transistor according to claim 1, wherein the gate insulating film has a laminated film of a silicon nitride film and a silicon oxide film having a hydrogen concentration distribution in the film thickness direction.
JP4449490A 1990-02-27 1990-02-27 Thin film transistor Expired - Fee Related JP2885458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4449490A JP2885458B2 (en) 1990-02-27 1990-02-27 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4449490A JP2885458B2 (en) 1990-02-27 1990-02-27 Thin film transistor

Publications (2)

Publication Number Publication Date
JPH03248569A true JPH03248569A (en) 1991-11-06
JP2885458B2 JP2885458B2 (en) 1999-04-26

Family

ID=12693110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4449490A Expired - Fee Related JP2885458B2 (en) 1990-02-27 1990-02-27 Thin film transistor

Country Status (1)

Country Link
JP (1) JP2885458B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134712A (en) * 2005-11-07 2007-05-31 Samsung Electronics Co Ltd Semiconductor device and manufacturing method of the same
JP2012099847A (en) * 2012-01-13 2012-05-24 Sony Corp Method for manufacturing thin film transistor substrate
JP2013254950A (en) * 2012-05-10 2013-12-19 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2017228800A (en) * 2012-05-10 2017-12-28 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134712A (en) * 2005-11-07 2007-05-31 Samsung Electronics Co Ltd Semiconductor device and manufacturing method of the same
JP2012099847A (en) * 2012-01-13 2012-05-24 Sony Corp Method for manufacturing thin film transistor substrate
JP2013254950A (en) * 2012-05-10 2013-12-19 Semiconductor Energy Lab Co Ltd Semiconductor device
US9711652B2 (en) 2012-05-10 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2017126794A (en) * 2012-05-10 2017-07-20 株式会社半導体エネルギー研究所 Semiconductor device
JP2017228800A (en) * 2012-05-10 2017-12-28 株式会社半導体エネルギー研究所 Semiconductor device
US9966475B2 (en) 2012-05-10 2018-05-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2018201047A (en) * 2012-05-10 2018-12-20 株式会社半導体エネルギー研究所 Semiconductor device
JP2019125809A (en) * 2012-05-10 2019-07-25 株式会社半導体エネルギー研究所 Semiconductor device

Also Published As

Publication number Publication date
JP2885458B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
JP4332263B2 (en) Thin film transistor manufacturing method
JP2002246605A (en) Method of manufacturing thin film transistor for liquid crystal display device
TW201327643A (en) A method for manufacturing a liquid crystal display panel array substrate
WO2020177516A1 (en) Array substrate, and display panel and preparation method therefor
US5696387A (en) Thin film transistor in a liquid crystal display having a microcrystalline and amorphous active layers with an intrinsic semiconductor layer attached to same
JP4693759B2 (en) Thin film deposition equipment
JPH03248569A (en) Thin-film transistor
KR101399214B1 (en) Liquid crystal display and method of manufacturing the same
CN109935551B (en) Manufacturing method of array substrate and array substrate
JPH08254680A (en) Semiconductor device and its production
CN105702622B (en) The production method and low temperature polycrystalline silicon TFT substrate of low temperature polycrystalline silicon TFT substrate
JP3452679B2 (en) Method of manufacturing thin film transistor, thin film transistor and liquid crystal display
JP2536230B2 (en) Active matrix liquid crystal display device
US20130016298A1 (en) Liquid crystal display device and method of manufacturing the same
JP3283919B2 (en) Method for manufacturing thin film transistor
KR20010015320A (en) Liquid crystal display capable of reducing amount of return light to TFT and manufacturing method therefor
JP2001188255A (en) Liquid crystal display element and manufacturing method therefor
JPH0667197A (en) Liquid crystal display device and its manufacture
JPH02196470A (en) Thin film transistor and manufacture thereof
CN111487826A (en) Display panel, manufacturing method thereof and display terminal
JPH09258200A (en) Liquid crystal display device and its production
JPH06281923A (en) Liquid crystal display device
JP2001183703A (en) Liquid crystal cell
JPH02297968A (en) Film transistor for plate display
JPH04305626A (en) Production of thin-film laminated device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees