JPH03248537A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03248537A
JPH03248537A JP4768390A JP4768390A JPH03248537A JP H03248537 A JPH03248537 A JP H03248537A JP 4768390 A JP4768390 A JP 4768390A JP 4768390 A JP4768390 A JP 4768390A JP H03248537 A JPH03248537 A JP H03248537A
Authority
JP
Japan
Prior art keywords
insulating film
film
gate electrode
polycrystalline silicon
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4768390A
Other languages
Japanese (ja)
Other versions
JP2867555B2 (en
Inventor
Noriaki Kodama
児玉 典昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4768390A priority Critical patent/JP2867555B2/en
Publication of JPH03248537A publication Critical patent/JPH03248537A/en
Application granted granted Critical
Publication of JP2867555B2 publication Critical patent/JP2867555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To form wirings flat by opening a contact hole at a gate electrode in a self-alignment manner, and burying a polycrystalline silicon in the hole. CONSTITUTION:A gate electrode 6 formed with a first insulating film 4 and a first polycrystalline silicon film 5 on the upper surface is formed on the main surface of a substrate 1 through a gate insulating film 2, and with the electrode 6 as a mask an interlayer insulating film 8a is flatly deposited. Then, the film 8 existing on the contact hole 15 forming region between adjacent gate electrodes 6 is selectively removed by etching to open a self-alignment contact hole 15 at the electrode 6, a sidewall insulating film 11 is formed on the side of the hole 15, a second polycrystalline silicon 12 is deposited, and etched back to allow a second polycrystalline silicon film 13 to remain only on the buried part of the hole 15. Thus, when aluminum wirings 14 are formed, the step coverage of the wiring 14 at the part of the hole 15 is improved, and discontinuity can be eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にMOS型半
導体装置のゲート電極に自己整合的なコンタクト孔の形
成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming a self-aligned contact hole in a gate electrode of a MOS type semiconductor device.

〔従来の技術〕[Conventional technology]

ゲート電極に自己整合的なコンタクト孔の形成方法に関
する従来技術の代表例を、縦断面図第3図(a)〜(e
)を用いて説明する。
Typical examples of conventional techniques related to the method of forming self-aligned contact holes on gate electrodes are shown in longitudinal cross-sectional views in FIGS. 3(a) to 3(e).
).

まず、第3図(a>に示すように、P型半導体基板1の
一主表面上に、ゲート絶縁膜2を介してN型のゲート電
極用多結晶シリコン膜3が堆積され、ゲート電極用多結
晶シリコン膜3の上面には第1の絶縁膜4が堆積される
First, as shown in FIG. 3(a), an N-type gate electrode polycrystalline silicon film 3 is deposited on one main surface of a P-type semiconductor substrate 1 with a gate insulating film 2 interposed therebetween. A first insulating film 4 is deposited on the upper surface of the polycrystalline silicon film 3.

次に、第3図(b)に示すように、第1の絶縁膜4およ
びゲート電極用多結晶シリコン膜3を同時にパターンニ
ングしてゲート電極6を形成し、ゲート電極6をマスク
にしたイオン注入によりN型不純物拡散層7を形成する
Next, as shown in FIG. 3(b), the first insulating film 4 and the polycrystalline silicon film 3 for gate electrode are simultaneously patterned to form a gate electrode 6, and ions are formed using the gate electrode 6 as a mask. An N-type impurity diffusion layer 7 is formed by implantation.

次に、第3図(c)に示すように、全面に第2の絶縁膜
8を堆積する。
Next, as shown in FIG. 3(c), a second insulating film 8 is deposited on the entire surface.

続いて、第3図(d)に示すように、隣接する2個のゲ
ート電極6上の第2の絶縁膜8の上面に、コンタクト孔
の開口用のフォトレジスト9のパターンの縁端が乗るよ
うにフォトレジストリを形成し、これをマスクにRIE
 (反応性イオンエツチング)法によりコンタクト孔1
5を開口し、同時にコンタクト孔の側面に第2の絶縁膜
8からなる側壁絶縁膜11を形成する。
Subsequently, as shown in FIG. 3(d), the edge of the pattern of the photoresist 9 for opening the contact hole is placed on the upper surface of the second insulating film 8 on the two adjacent gate electrodes 6. Form a photoresist as shown and perform RIE using this as a mask.
Contact hole 1 is made by (reactive ion etching) method.
5 is opened, and at the same time, a sidewall insulating film 11 made of the second insulating film 8 is formed on the side surface of the contact hole.

次に、第3図(e)に示すように、フォトレジスト9を
除去した後、2個のゲート電極6に挟まれたコンタクト
孔を介してN型不純物拡散層7に接続されるアルミ配線
14を形成する。
Next, as shown in FIG. 3(e), after removing the photoresist 9, an aluminum wiring 14 is connected to the N-type impurity diffusion layer 7 through the contact hole sandwiched between the two gate electrodes 6. form.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

隣接したゲート電極の間に自己整合的にコンタクト孔を
形成する従来の方法を上述したが、従来の方法では、隣
接したゲート電極の間隔が狭くなるに従い、コンタクト
孔の底面の長さとコンタクト孔の深さとの比を表わすア
スペクト比が大きくなり、アルミ配線を形成する際に、
コンタクト孔の部分でのアルミ配線の段差被覆性が悪く
なり、断線に致るという欠点がある。
The conventional method of forming a contact hole in a self-aligned manner between adjacent gate electrodes has been described above. The aspect ratio, which represents the ratio to the depth, increases, and when forming aluminum wiring,
This has the disadvantage that the step coverage of the aluminum wiring at the contact hole becomes poor, resulting in wire breakage.

上述の従来例は、1層構造のゲート電極の例であるが、
不揮発性半導体記憶素子のように2層構造のゲート電極
を有する場合、この傾向は特に顕著になる。
The above-mentioned conventional example is an example of a gate electrode with a single layer structure, but
This tendency is particularly noticeable when the gate electrode has a two-layer structure like a nonvolatile semiconductor memory element.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のMOS型半導体装置のゲート電極に自己整合的
なコンタクト孔の形成方法は、半導体基板の主面上にゲ
ート絶縁膜を介して、上面に自己整合的に第1の絶縁膜
、第1の多結晶シリコン膜が形成されたゲート電極を形
成し、これをマスクに不純物拡散層を形成し、層間絶縁
膜を平坦に堆積してからゲート電極の上部の多結晶シリ
コン膜が露呈するまで層間絶縁膜に対してエッチバック
を行ない、続いて、隣接するゲート電極間のコンタクト
孔形成領域に存在する層間絶縁膜を選択的にエツチング
除去してゲート電極に自己整合的なコンタクト孔を開口
し、第2の絶縁膜を全面に堆積した後反応性イオンエツ
チングによりコンタクト孔の側面に第2の絶縁膜からな
る側壁絶縁膜を形成し、第2の多結晶シリコン膜を堆積
し、第2および第1の多結晶シリコン膜をエッチバック
してコンタクト孔の埋設部分のみに第2の多結晶シリコ
ン膜を残留させる工程を有している。
A method of forming a self-aligned contact hole in a gate electrode of a MOS type semiconductor device according to the present invention includes forming a first insulating film on the main surface of a semiconductor substrate via a gate insulating film, a first insulating film on the upper surface in a self-aligned manner, A gate electrode is formed with a polycrystalline silicon film formed on it, an impurity diffusion layer is formed using this as a mask, an interlayer insulating film is deposited flatly, and then an interlayer insulating film is formed until the polycrystalline silicon film above the gate electrode is exposed. Etching back the insulating film, and then selectively etching away the interlayer insulating film existing in the contact hole formation region between adjacent gate electrodes to open a self-aligned contact hole in the gate electrode; After depositing the second insulating film over the entire surface, a sidewall insulating film made of the second insulating film is formed on the side surface of the contact hole by reactive ion etching, a second polycrystalline silicon film is deposited, and a second polycrystalline silicon film is deposited. The method includes a step of etching back the first polycrystalline silicon film to leave the second polycrystalline silicon film only in the portion buried in the contact hole.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(j)は本発明の第1の実施例の縦断面
図である。
FIGS. 1(a) to 1(j) are longitudinal sectional views of a first embodiment of the present invention.

まず、第1図(a>に示すように、P型半導体基板1の
一生表面上に、ゲート絶縁膜2を介してN型のゲート電
極用多結晶シリコン膜3が堆積され、ゲート電極用多結
晶シリコン膜3の上面には第1の絶縁膜4が堆積され、
第1の絶縁膜4の上面には第1の多結晶シリコン膜5が
堆積される。
First, as shown in FIG. 1(a), an N-type gate electrode polycrystalline silicon film 3 is deposited on the entire surface of a P-type semiconductor substrate 1 with a gate insulating film 2 interposed therebetween. A first insulating film 4 is deposited on the upper surface of the crystalline silicon film 3,
A first polycrystalline silicon film 5 is deposited on the upper surface of the first insulating film 4 .

次に、第1図(b)に示すように、第1の多結晶シリコ
ン膜5.第1の絶縁膜4およびゲート電極用多結晶シリ
コン膜3を同時にパターンニングしてゲート電極6を形
成し、ゲート電極6をマスクにしたイオン注入によりN
型不純物拡散層7を形成する。
Next, as shown in FIG. 1(b), a first polycrystalline silicon film 5. The first insulating film 4 and the polycrystalline silicon film 3 for gate electrode are simultaneously patterned to form a gate electrode 6, and N is implanted by ion implantation using the gate electrode 6 as a mask.
A type impurity diffusion layer 7 is formed.

次に、第1図(c)に示すように、全面に層間絶縁膜8
aを堆積し、熱処理によりその上表面を平坦にする。
Next, as shown in FIG. 1(c), an interlayer insulating film 8 is formed over the entire surface.
A is deposited and its upper surface is made flat by heat treatment.

続いて、第1図(d)に示すように、第1の多結晶シリ
コン膜5が露呈するまで層間絶縁膜8aをエッチバ・ツ
クする。
Subsequently, as shown in FIG. 1(d), the interlayer insulating film 8a is etched back until the first polycrystalline silicon film 5 is exposed.

次に、第1図(e)に示すように、隣接する2個のゲー
ト電極6上の第1の多結晶シリコン膜5の上面に、コン
タクト孔の開口用のフォI・レジストリのパターンの縁
端が乗るようにフォトレジスト9を形成し、これをマス
クに層間絶縁膜8aのエツチングを行ない、コンタクト
孔15を開口する。
Next, as shown in FIG. 1(e), the edge of the photo resist pattern for opening the contact hole is placed on the upper surface of the first polycrystalline silicon film 5 on the two adjacent gate electrodes 6. A photoresist 9 is formed so that the end is covered, and using this as a mask, the interlayer insulating film 8a is etched to open a contact hole 15.

次に、第1図(f)に示すように、第2の絶縁膜10を
全面に堆積する。
Next, as shown in FIG. 1(f), a second insulating film 10 is deposited over the entire surface.

続いて、第1図(g)に示すように、コンタクト孔15
の底面のN型不純物拡散層7およびゲート電極6上部の
第1の多結晶シリコン膜5が露呈するまで、第2の絶縁
膜10をRIE法によりエツチングし、コンタクト孔1
5の側面に第2の絶縁膜10による側壁絶縁膜11を形
成する。
Subsequently, as shown in FIG. 1(g), the contact hole 15 is
The second insulating film 10 is etched by RIE until the N-type impurity diffusion layer 7 on the bottom surface of the contact hole 1 and the first polycrystalline silicon film 5 on the top of the gate electrode 6 are exposed.
A sidewall insulating film 11 made of a second insulating film 10 is formed on the side surface of 5.

次に、第1図(h)に示すように、コンタクト孔15の
深さ程度の膜厚の第2の多結晶シリコン膜12を全面に
堆積する。
Next, as shown in FIG. 1(h), a second polycrystalline silicon film 12 having a thickness approximately equal to the depth of the contact hole 15 is deposited over the entire surface.

続いて、第1図(i)に示すように、コンタクト孔15
内部以外の多結晶シリコン膜12およびゲート電極6上
部の第1の多結晶シリコン膜5をエツチング除去する多
結晶シリコンのエッチバックを行ない、コンタクト孔1
5の内部にのみ第2の多結晶シリコン膜12を残留させ
て埋設多結晶シリコン13を形成する。しかる後、埋設
多結晶シリコン13にN型の不純物を導入する。
Subsequently, as shown in FIG. 1(i), the contact hole 15 is
Etching back of the polycrystalline silicon is performed to remove the polycrystalline silicon film 12 other than the inside and the first polycrystalline silicon film 5 above the gate electrode 6, thereby forming the contact hole 1.
A buried polycrystalline silicon film 13 is formed by leaving the second polycrystalline silicon film 12 only inside the polycrystalline silicon film 5 . Thereafter, N-type impurities are introduced into the buried polycrystalline silicon 13.

最後に、第1図(j)に示すように、アルミ配線14を
形成する。
Finally, as shown in FIG. 1(j), aluminum wiring 14 is formed.

第2図は、本発明の第2の実施例を示す縦断面図である
FIG. 2 is a longitudinal sectional view showing a second embodiment of the invention.

第1の実施例では、ゲート電極が11層構造の場合を示
したが、本実施例では、ゲート電極が第1のゲート電極
17と第2のゲート電極19との2層からなら。第1の
ゲート電極17と第2のゲート電極19との間には第2
のゲート絶縁膜18が存在し、第1のゲート電極17は
第1のゲート絶縁膜16を介しP型半導体基板1上に形
成されている。
In the first embodiment, the gate electrode has an 11-layer structure, but in this embodiment, the gate electrode has two layers, the first gate electrode 17 and the second gate electrode 19. A second gate electrode is provided between the first gate electrode 17 and the second gate electrode 19.
A gate insulating film 18 is present, and a first gate electrode 17 is formed on the P-type semiconductor substrate 1 with the first gate insulating film 16 interposed therebetween.

第2図に致る製造方法は、P型半導体基板1上に、第1
のゲート絶縁膜16.第1のゲート電極を構成する膜、
第2のゲート絶縁膜18.第2のゲート電極を構成する
膜、第1の絶縁膜4.第1の多結晶シリコン膜を順次形
成する工程を経た後、第1の実施例の製造方法に準じて
いる。
In the manufacturing method shown in FIG. 2, a first
gate insulating film 16. A film constituting the first gate electrode,
Second gate insulating film 18. Film constituting the second gate electrode, first insulating film 4. After passing through the steps of sequentially forming the first polycrystalline silicon film, the manufacturing method of the first embodiment is followed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体基板の一主面上の
ゲート絶縁膜を介して形成されたゲート電極に対し自己
整合的にコンタクト孔を開口でき、かつ、コンタクト孔
に多結晶シリコンを埋設できるため、隣接したゲート電
極の間にコンタクト孔を形成し、そこに配線を接続して
も、コンタクト孔には埋設多結晶シリコンが存在するた
めにコンタクト孔上部での段差はきわめて少なく、この
ためそこでの配線の段差被覆性はきわめて良好になり、
さらに、配線はほとんど平坦に形成出来るため、配線の
断線が起ることはない。
As explained above, the present invention is capable of opening a contact hole in a self-aligned manner with respect to a gate electrode formed through a gate insulating film on one main surface of a semiconductor substrate, and also having polycrystalline silicon buried in the contact hole. Therefore, even if a contact hole is formed between adjacent gate electrodes and a wiring is connected thereto, the level difference at the top of the contact hole is extremely small due to the presence of buried polycrystalline silicon in the contact hole. The step coverage of the wiring there is extremely good,
Furthermore, since the wiring can be formed almost flat, disconnection of the wiring does not occur.

そのため、隣接したゲート電極の間にコンタクト孔を形
成する場合、ゲート電極の間隔はりソグラフィ技術の限
界まで狭めることが出来、半導体素子の微細化に有効で
ある。
Therefore, when forming a contact hole between adjacent gate electrodes, the gap between the gate electrodes can be narrowed to the limit of lithography technology, which is effective in miniaturizing semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(j>は本発明の第1の実施例の縦断面
図、第2図は本発明の第2の実施例の縦断面図、第3図
(a、 )〜(e)は従来技術の縦断面図である。 1・・・P型半導体基板、2・・・ゲート絶縁膜、3・
・・ゲート電極用多結晶シリコン膜、4・・・第1の絶
縁膜、5・・・第1の多結晶シリコン膜、6・・・ゲー
ト電極、7・・・N型不純物拡散層、8,10・・・第
2の絶縁膜、8a・・・層間絶縁膜、9フオトレジスト
、11・・・側壁絶縁膜、12・・・第2の多結晶シリ
コン膜、13・・・埋設多結晶シリコン、14・・・ア
ルミ配線、15・・・コンタクト孔、16・・・第1の
ゲート絶縁膜、17・・・第1のゲート電極、18・・
・第2のゲート絶縁膜、19・・・第2のゲート電極。
FIGS. 1(a) to (j>) are longitudinal sectional views of the first embodiment of the present invention, FIG. 2 are longitudinal sectional views of the second embodiment of the present invention, and FIGS. 3(a, ) to ( e) is a vertical cross-sectional view of the conventional technology. 1... P-type semiconductor substrate, 2... gate insulating film, 3...
... Polycrystalline silicon film for gate electrode, 4... First insulating film, 5... First polycrystalline silicon film, 6... Gate electrode, 7... N-type impurity diffusion layer, 8 , 10... Second insulating film, 8a... Interlayer insulating film, 9 Photoresist, 11... Sidewall insulating film, 12... Second polycrystalline silicon film, 13... Embedded polycrystalline Silicon, 14... Aluminum wiring, 15... Contact hole, 16... First gate insulating film, 17... First gate electrode, 18...
- Second gate insulating film, 19... second gate electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板の一主面上に、ゲート絶
縁膜、ゲート電極を構成する膜、第1の絶縁膜、第1の
多結晶シリコン膜を順次形成する工程、 前記第1の多結晶シリコン膜、前記第1の絶縁膜および
前記ゲート電極を構成する膜を、同時にパターンニング
して、前記ゲート電極を構成する膜からなるゲート電極
を形成する工程、 前記ゲート電極をマスクにして、イオン注入法により、
前記半導体基板表面に第2導電型の不純物拡散層を形成
する工程、 前記ゲート絶縁膜、前記ゲート電極、前記第1の絶縁膜
および前記第1の多結晶シリコン膜の露呈面全面を覆い
、上表面が平坦な層間絶縁膜を形成する工程、 前記層間絶縁膜をエッチバックして、前記ゲート電極上
部の前記第1の多結晶シリコン膜を露呈させる工程、 隣接する前記ゲート電極間のコンタクト孔形成領域に存
在する前記層間絶縁膜を選択的にエッチング除去するこ
とにより、前記ゲート電極に自己整合的なコンタクト孔
を開口する工程、 前記ゲート電極上部の前記第1の多結晶シリコン膜、前
記層間絶縁膜および前記コンタクト孔の露呈面全面を覆
う第2の絶縁膜を堆積し、反応性イオンエッチングによ
り前記コンタクト孔の側面に前記第2の絶縁膜からなる
側壁絶縁膜を形成する工程、 前記ゲート電極上部の前記第1の多結晶シリコン膜およ
び前記層間絶縁膜の露呈面全面を覆い、かつ、前記コン
タクト孔を充填する第2の多結晶シリコン膜を堆積し、
エッチバックにより前記ゲート電極上部の前記第1の多
結晶シリコン膜および前記層間絶縁膜の露呈面全面を覆
った前記第2の多結晶シリコン膜並びに前記ゲート電極
上部の前記第1の多結晶シリコン膜を完全に除去し、前
記コンタクト孔の内部のみに前記第2の多結晶シリコン
膜を埋設する工程、 を有することを特徴とする半導体装置の製造方法。
(1) A step of sequentially forming a gate insulating film, a film constituting a gate electrode, a first insulating film, and a first polycrystalline silicon film on one main surface of a semiconductor substrate of a first conductivity type; simultaneously patterning a polycrystalline silicon film, the first insulating film, and a film constituting the gate electrode to form a gate electrode made of the film constituting the gate electrode, using the gate electrode as a mask; By using ion implantation method,
forming an impurity diffusion layer of a second conductivity type on the surface of the semiconductor substrate; forming an interlayer insulating film with a flat surface; etching back the interlayer insulating film to expose the first polycrystalline silicon film above the gate electrode; forming a contact hole between adjacent gate electrodes. opening a self-aligned contact hole in the gate electrode by selectively etching and removing the interlayer insulating film existing in the region; the first polycrystalline silicon film above the gate electrode; depositing a second insulating film covering the entire exposed surface of the contact hole and forming a sidewall insulating film made of the second insulating film on the side surface of the contact hole by reactive ion etching; depositing a second polycrystalline silicon film that covers the entire exposed surface of the upper first polycrystalline silicon film and the interlayer insulating film and fills the contact hole;
The second polycrystalline silicon film that has been etched back to cover the entire exposed surface of the first polycrystalline silicon film above the gate electrode and the interlayer insulating film, and the first polycrystalline silicon film above the gate electrode. A method for manufacturing a semiconductor device, comprising the steps of: completely removing the second polycrystalline silicon film and burying the second polycrystalline silicon film only inside the contact hole.
(2)第1導電型の半導体基板の一主面上に、第1のゲ
ート絶縁膜、第1のゲート電極を構成する膜、第2のゲ
ート絶縁膜、第2のゲート電極を構成する膜、第1の絶
縁膜、第1の多結晶シリコン膜を順次形成する工程、 前記第1の多結晶シリコン膜、前記第1の絶縁膜、前記
第2のゲート電極を構成する膜、前記第2のゲート絶縁
膜および前記第1のゲート電極を構成する膜を、同時に
パターンニングして、前記第1のゲート電極を構成する
膜、前記第2のゲート絶縁膜および前記第2のゲート電
極を構成する膜からなる2層構造のゲート電極を形成す
る工程、 を有することを特徴とする請求項(1)記載の半導体装
置の製造方法。
(2) A first gate insulating film, a film forming the first gate electrode, a second gate insulating film, and a film forming the second gate electrode on one main surface of the semiconductor substrate of the first conductivity type. , a step of sequentially forming a first insulating film and a first polycrystalline silicon film; a film constituting the first polycrystalline silicon film, the first insulating film, and the second gate electrode; The gate insulating film and the film forming the first gate electrode are simultaneously patterned to form the film forming the first gate electrode, the second gate insulating film, and the second gate electrode. 2. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of forming a gate electrode having a two-layer structure made of a film comprising:
JP4768390A 1990-02-27 1990-02-27 Method for manufacturing semiconductor device Expired - Lifetime JP2867555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4768390A JP2867555B2 (en) 1990-02-27 1990-02-27 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4768390A JP2867555B2 (en) 1990-02-27 1990-02-27 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH03248537A true JPH03248537A (en) 1991-11-06
JP2867555B2 JP2867555B2 (en) 1999-03-08

Family

ID=12782077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4768390A Expired - Lifetime JP2867555B2 (en) 1990-02-27 1990-02-27 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2867555B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052999B2 (en) 2002-12-26 2006-05-30 Hynix Semiconductor Inc. Method for fabricating semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052999B2 (en) 2002-12-26 2006-05-30 Hynix Semiconductor Inc. Method for fabricating semiconductor device

Also Published As

Publication number Publication date
JP2867555B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
JP2001168306A5 (en)
JPH05304297A (en) Semiconductor power device and manufacture thereof
JPH06216125A (en) Method of forming contact hole of high integrity semiconductor device
JPH06252359A (en) Manufacture of semiconductor device
JP2536413B2 (en) Method for manufacturing semiconductor integrated circuit device
JP3321864B2 (en) Semiconductor device and its manufacturing method.
JPH09139495A (en) Semiconductor device and its manufacture
JP2544937B2 (en) Semiconductor device and manufacturing method thereof
JP2616706B2 (en) Semiconductor device and manufacturing method thereof
JPH03248537A (en) Manufacture of semiconductor device
KR100373709B1 (en) Semiconductor devices and manufacturing method thereof
JP2695812B2 (en) Semiconductor device
JPH09213949A (en) Semiconductor device manufacturing method
JP2855981B2 (en) Method for manufacturing semiconductor device
KR100451042B1 (en) Method for forming contact of semiconductor device to eliminate leakage current of contact
JP2604021B2 (en) Method for manufacturing semiconductor device
JP2641856B2 (en) Method for manufacturing semiconductor device
JPH02192724A (en) Semiconductor device and its manufacture
JPH10106973A (en) Semiconductor device and its manufacture
JP3036034B2 (en) Method for manufacturing semiconductor device
JP3064383B2 (en) Method for manufacturing semiconductor device
JPH11330457A (en) Semiconductor device and its manufacture
JPH04213860A (en) Semiconductor device
JP2900477B2 (en) Method for manufacturing semiconductor device
JP2907248B2 (en) Semiconductor device and manufacturing method thereof