JPH03248039A - Method for evaluating material-permeability performance of film under test - Google Patents

Method for evaluating material-permeability performance of film under test

Info

Publication number
JPH03248039A
JPH03248039A JP4653190A JP4653190A JPH03248039A JP H03248039 A JPH03248039 A JP H03248039A JP 4653190 A JP4653190 A JP 4653190A JP 4653190 A JP4653190 A JP 4653190A JP H03248039 A JPH03248039 A JP H03248039A
Authority
JP
Japan
Prior art keywords
substance
light
membrane
film
tested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4653190A
Other languages
Japanese (ja)
Other versions
JP2966874B2 (en
Inventor
Mitsuo Hiramatsu
光夫 平松
Toru Kawai
徹 河合
Hisanobu Takagi
高木 尚宜
Koji Muraki
村木 広次
Toshiaki Ito
利昭 伊藤
Shinichi Fujisaka
藤坂 紳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP4653190A priority Critical patent/JP2966874B2/en
Publication of JPH03248039A publication Critical patent/JPH03248039A/en
Application granted granted Critical
Publication of JP2966874B2 publication Critical patent/JP2966874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To measure the permeability of diversified materials through a film at high sensitivity by measuring light emissions before and after the permeability of first and second materials through a film under test with a photodetector, and evaluating the material permeability property of the film under test based on the difference in light emissions before and after the through the film. CONSTITUTION:A container 1 made of glass as a testing jig is filled with a solution 2 of permeable material comprising the aqueous solution of CaCO3 which is second material. The upper surface of the solution 2 is covered with a film under test 3 comprising polyvinilidene chloride. A fluorescent reagent 4 which is the first material is further dropped and spread on the film 3. A cover glass 5 is mounted on the reagent. The light from a light source 11 comprising a mercury light and the like is reflected from a dichroic mirror DM through a condenser lens 12 and an exciting filter 13. The light is projected on a testing jig 15 through an objective lens 14. The fluorescence formed in this way is detected with a photodetector 18 through the lens 14, the mirror DM, an absorption filter 16 and an eyepiece 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は被試験用膜の物質透過性能を評価する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for evaluating the substance permeation performance of a membrane to be tested.

〔従来の技術〕[Conventional technology]

膜の物質透過制御は化学工業、医薬品工業等における基
本技術の一つであり、目的に合致した最適の膜の設計は
、この技術の使用に際して不可欠の課題である。
Control of substance permeation through membranes is one of the basic technologies in the chemical industry, pharmaceutical industry, etc., and designing an optimal membrane that meets the purpose is an essential issue when using this technology.

膜の物質透過性を評価する方法には、ガスクロマトグラ
フィーによる分析、透過気体の体積測定、透過水分によ
り変化する乾燥剤の重量測定等がある。また、色素を透
過させて色素の吸光度や蛍光強度を測定する方法もあり
、電解質のものを透過させて液抵抗の変化により微量の
透過量を測定する方法もある。しかしながら、従来のこ
れらの方法はいずれも一定時間内の透過総量を定量する
ものであるので、微小時間の膜の透過性能を評価するこ
とはできない。また、膜の欠陥、ピンホールあるいは均
一性などの二次元的情報を入手したくても、上記゛方法
では全く無力であった。
Methods for evaluating the substance permeability of membranes include analysis by gas chromatography, measurement of the volume of permeated gas, and measurement of the weight of a desiccant that changes depending on permeated moisture. There is also a method of transmitting a dye and measuring the absorbance or fluorescence intensity of the pigment, and another method of transmitting an electrolyte and measuring a minute amount of transmission based on changes in liquid resistance. However, since all of these conventional methods quantify the total amount of permeation within a certain period of time, it is not possible to evaluate the permeation performance of a membrane over a short period of time. Further, even if one wanted to obtain two-dimensional information such as film defects, pinholes, or uniformity, the above method was completely powerless.

そこで本発明者らは、微小時間の膜の透過性能を実時間
で測定でき、かつ、膜の二次元的情報をも測定する方法
として、先に化学発光を利用する方法を提案した(特開
昭63−133039号、特開平1−307635号)
。この方法は、膜を介して2種類以上の物質を配置し、
一方の物質が膜に浸透、透過して他方の物質と混合した
ときの発光を、光検出器で計測することを基本とする。
Therefore, the present inventors previously proposed a method that uses chemiluminescence as a method that can measure the permeation performance of a membrane in real time over a short period of time and also measure two-dimensional information of the membrane (Unexamined Japanese Patent Publication No. (Sho 63-133039, Japanese Unexamined Patent Publication No. 1-307635)
. This method places two or more types of substances through a membrane,
The basic method is to use a photodetector to measure the light emitted when one substance permeates through the membrane and mixes with the other substance.

この方法によれば、微小時間単位で透過性能を評価でき
るだけでなく、二次元情報も得ることができる。
According to this method, not only can the transmission performance be evaluated in minute time units, but also two-dimensional information can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記先願の方法では、双方の物質の反応生成物
自体の発光性を利用することを原理としている関係上、
化学発光に結びつけられない多様な物質については、膜
の透過性能を評価することができない。
However, in the method of the above-mentioned prior application, the principle is to utilize the luminescence of the reaction product itself of both substances;
It is not possible to evaluate the permeation performance of membranes for various substances that are not associated with chemiluminescence.

したがって本発明は、化学発光に結びつけられない多様
な物質について膜の透過性能を評価でき、しかも高感度
かつ迅速に膜の物質透過性能を評価することのできる方
法を提供することを目的としている。
Therefore, an object of the present invention is to provide a method that can evaluate the permeation performance of a membrane for various substances that are not associated with chemiluminescence, and can also evaluate the permeation performance of a membrane with high sensitivity and speed.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明は、第1の物質と、これと反応したと
き励起光照射下で光を生成する第2の物質とを、被試験
用膜を介して対向させて配置し、その膜の第1の物質側
の界面または第2の物質側の界面に第1の物質、第2の
物質および反応生成物の蛍光励起スペクトルを考慮して
紫外光、可視光または近赤外光からなる励起光を照射し
、第1の物質あるいは第2の物質が膜を透過する前と後
の発光を第1の物質、第2の物質および反応生成物の蛍
光スペクトルを考慮して光検出器により計測し、膜透過
前後の発光の差から被試験用膜の物質透過性能を評価す
ることを特徴とするものである。
To this end, the present invention arranges a first substance and a second substance, which generates light under excitation light irradiation when reacting with the first substance, facing each other with a film to be tested interposed therebetween, and Excitation light consisting of ultraviolet light, visible light, or near-infrared light is applied to the interface on the side of the first substance or the interface on the side of the second substance, taking into account the fluorescence excitation spectra of the first substance, the second substance, and the reaction product. , and the luminescence before and after the first substance or the second substance passes through the membrane is measured by a photodetector, taking into account the fluorescence spectra of the first substance, the second substance, and the reaction product. This method is characterized by evaluating the substance permeation performance of the membrane under test from the difference in luminescence before and after membrane permeation.

具体的には、例えば膜のイオン透過性能(−例としてカ
ルシウムイオン透過の場合)を評価するときには、次の
ようにする。第1の物質としてフラー2(fura−2
)と称される蛍光色素を用い、第2の物質としてカルシ
ウムイオン源である炭酸カルシウムを用いる。被試験用
薄膜を介して第1および第2の物質を溶解させた水溶液
を対向させて配置し、膜のフラー2側の界面に紫外光を
照射する。そして、カルシウムイオンが膜を透過する前
と後の蛍光を高感度イメージングカメラにより計測し、
膜透過前後の発光の差から被試験用膜のカルシウム透過
性能を評価する。
Specifically, when evaluating the ion permeation performance of a membrane (for example, in the case of calcium ion permeation), the following procedure is performed. Fuller-2 (fura-2) is used as the first substance.
), and calcium carbonate, which is a source of calcium ions, is used as the second substance. Aqueous solutions in which the first and second substances are dissolved are placed facing each other through the thin film to be tested, and the interface of the film on the Fuller 2 side is irradiated with ultraviolet light. Then, a high-sensitivity imaging camera measures the fluorescence before and after the calcium ions pass through the membrane.
The calcium permeation performance of the membrane under test is evaluated from the difference in luminescence before and after membrane permeation.

〔作用〕[Effect]

本発明によれば、第1の物質もしくは第2の物質の一方
が被試験用膜を透過すると、双方の物質により双方の物
質とは異なる蛍光励起スペクトルあるいは蛍光スペクト
ルをもった反応生成物が界面に現れる。このとき、上記
界面には励起光が照射されているので、螢光等によって
光が生成され、このため膜透過の前後で検出光が異なる
。従って、透過性能をこれら検出光により評価できる。
According to the present invention, when either the first substance or the second substance passes through the membrane to be tested, reaction products with fluorescence excitation spectra or fluorescence spectra different from those of both substances are produced at the interface. appears in At this time, since the interface is irradiated with excitation light, light is generated by fluorescence or the like, and therefore the detection light is different before and after passing through the membrane. Therefore, the transmission performance can be evaluated using these detection lights.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。まず、具体的な実施例
の説明に先立ち、本発明の評匹方法で用いらる治具およ
び装置を説明する。
The present invention will be explained in detail below. First, before explaining specific examples, a jig and a device used in the animal evaluation method of the present invention will be explained.

第1図は実施例に適用可能な2つの治具の断面図である
。同図(a)に示す通り、ガラス製の容器(測定用セル
)1には、第2の物質であるカルシウムイオンを含んだ
溶液として、例えばCaCO3水溶液からなる透過物質
溶液2が満たされている。そして、透過物質溶液2の上
面は例えばポリ塩化ビニリデンからなる被試験用膜3で
覆われている。さらに、被試験用膜3の上には、第1の
物質である螢光試薬4が垂らして広げられ、その上にカ
バーグラス5が載せられている。なお、励起光はカバー
グラス5側から照射され、螢光は上方の光検出器(図示
せず)で検出される。
FIG. 1 is a sectional view of two jigs applicable to the embodiment. As shown in Figure (a), a glass container (measuring cell) 1 is filled with a permeable substance solution 2, such as a CaCO3 aqueous solution, as a solution containing calcium ions as a second substance. . The upper surface of the permeable substance solution 2 is covered with a test membrane 3 made of polyvinylidene chloride, for example. Further, on the membrane to be tested 3, a fluorescent reagent 4, which is a first substance, is dripped and spread, and a cover glass 5 is placed on top of the fluorescent reagent 4. Note that the excitation light is irradiated from the cover glass 5 side, and the fluorescent light is detected by an upper photodetector (not shown).

第1図(b)は治具の他の例を示している。中央に貫通
孔の形成されたスライドグラス6の下側には、ワセリン
7によってカバーグラス5が固着され、その上が螢光試
薬4によって満たされている。そして、螢光試薬4の上
面は被試験用膜3によって覆われ、その上には透過物質
溶液2が垂らして広げられている。なお、励起光はカバ
ーグラス5側から照射され、螢光は下方の光検出器で検
出される。
FIG. 1(b) shows another example of the jig. A cover glass 5 is fixed to the lower side of the slide glass 6 with a through hole formed in the center using petrolatum 7, and the top thereof is filled with a fluorescent reagent 4. The upper surface of the fluorescent reagent 4 is covered with the membrane 3 to be tested, and the permeable substance solution 2 is spread over it. Note that the excitation light is irradiated from the cover glass 5 side, and the fluorescent light is detected by a photodetector below.

上記の治具は、正立型顕微鏡や倒立型顕微鏡にセットさ
れるが、その−例として倒立型螢光顕微鏡を第2図に示
す。図示の通り、水銀灯などからなる光源11からの光
は、コンデンサーレンズ12を介して励起フィルタ13
に照射される。ここで、励起光として適切な波長成分の
みが透過され、ダイクロイックミラー(DM)で反射さ
れた励起光は対物レンズ14を介して試験用治具15に
照射される。これによって生成された螢光は、再び対物
レンズ14を通ってDMを透過し、更に所定波長の光の
み透過する吸収フィルタ16を通って接眼レンズ17を
透過し、光検出器18に検出される。この検出光は光電
変換され、電気信号(検出信号)として出力される。こ
の検出信号は図示しないフレームメモリに記憶され、減
算等の処理がされる。
The above jig is set in an upright microscope or an inverted microscope, and an inverted fluorescence microscope is shown in FIG. 2 as an example. As shown in the figure, light from a light source 11 such as a mercury lamp passes through a condenser lens 12 to an excitation filter 13.
is irradiated. Here, only wavelength components suitable as excitation light are transmitted, and the excitation light reflected by the dichroic mirror (DM) is irradiated onto the test jig 15 via the objective lens 14. The fluorescent light generated thereby passes through the objective lens 14 again, passes through the DM, passes through an absorption filter 16 that transmits only light of a predetermined wavelength, passes through the eyepiece lens 17, and is detected by a photodetector 18. . This detection light is photoelectrically converted and output as an electrical signal (detection signal). This detection signal is stored in a frame memory (not shown) and subjected to processing such as subtraction.

上記のような装置を用いると、膜透過の前後の光を共に
光検出器18で検出できる。このとき、検出感度を高め
るときには光検出器18として光電子増倍管が用いられ
、螢光が赤外線であるときは赤外センサーが用いられる
。また、、一次元あるい二次元の透過性能を評価すると
きには、それぞれ、一次元センサーあるいは二次元セン
サーが用いられる。また、膜透過により生成される反応
生成物の拡散が非常に遅い場合には、焦点面前後の蛍光
を充分除去できるコンフォーカル蛍光レーザ走査顕微鏡
が用いられる。
When the above-mentioned device is used, both the light before and after passing through the membrane can be detected by the photodetector 18. At this time, a photomultiplier tube is used as the photodetector 18 to increase detection sensitivity, and an infrared sensor is used when the fluorescence is infrared. Further, when evaluating one-dimensional or two-dimensional transmission performance, a one-dimensional sensor or a two-dimensional sensor is used, respectively. In addition, when the diffusion of reaction products produced by membrane permeation is very slow, a confocal fluorescence laser scanning microscope is used, which can sufficiently remove fluorescence before and after the focal plane.

次に、具体的な実施例を説明する。Next, a specific example will be described.

被試験用薄膜として、ポリ塩化ビニリデン薄膜(厚さ1
0μm)を用い、その−カ所をKrF(N6 Burf
er )エキシマレーザ−光(20KV248 rv)
により、約100μmスポット径でUV25カツトオフ
フイルター(透過率35%[248rv])を通して光
ダメージを与え、その光ダメージがカルシウムイオンの
膜透過に及ぼす影響を調べた。なお、0.1mMの炭酸
カルシウムをカルシウムイオン源とし、3mMのフラー
2を蛍光色素として用い、第1図(a)のような配置で
正立顕微鏡(図示せず)を用いて測定した。
As the thin film to be tested, polyvinylidene chloride thin film (thickness 1
0 μm), and the − part was coated with KrF (N6 Burf
er) Excimer laser light (20KV248 rv)
Using UV25 cut-off filter (transmittance 35% [248rv]) with a spot diameter of approximately 100 μm, optical damage was applied to the membrane, and the effect of the optical damage on membrane permeation of calcium ions was investigated. The measurement was carried out using an upright microscope (not shown) in the arrangement shown in FIG. 1(a) using 0.1 mM calcium carbonate as a calcium ion source and 3 mM Fuller 2 as a fluorescent dye.

まず、炭酸カルシウム水溶液2mlを測定用セル(容器
1)に採取し、その上に被試験用薄膜をはった後、フラ
ー2水溶液50μgを薄膜上に滴下して広げた。最初に
、カルシウムイオンが透過してくる前にフラー2のみの
蛍光像を測定した。
First, 2 ml of the calcium carbonate aqueous solution was collected in a measurement cell (container 1), a thin film to be tested was placed on top of the sample, and then 50 μg of the Fuller 2 aqueous solution was dropped onto the thin film and spread. First, the fluorescence image of Fuller 2 alone was measured before calcium ions were transmitted.

このときの励起光の波長は、カルシウムイオンの膜透過
後、生成するフラー2・カルシウム錯体の蛍光励起スペ
クトルのピーク波長を考慮して340nsである。次に
、カルシウムイオンが膜を透過しはじめると、カルシウ
ムイオンがフラー2と錯体を膜のフラー2側の界面に生
成する。この錯体はフラー2とは異なる蛍光特性を持ち
、蛍光励起スペクトルのピークが波長340n園にある
(第3図)。したがって、カルシウムイオンが透過しは
じめた時の像も、波長340nsの光照射により得た。
The wavelength of the excitation light at this time is 340 ns, taking into account the peak wavelength of the fluorescence excitation spectrum of the Fuller 2/calcium complex generated after calcium ions pass through the membrane. Next, when calcium ions begin to permeate through the membrane, they form a complex with Fuller 2 at the interface of the membrane on the Fuller 2 side. This complex has different fluorescence characteristics from Fuller 2, with a peak in the fluorescence excitation spectrum at a wavelength of 340 nm (Figure 3). Therefore, an image when calcium ions began to pass through was also obtained by irradiating light with a wavelength of 340 ns.

このようにして、カルシウムイオンが薄を透過する前の
遊離したフラー2の蛍光像を、イメージカメラで撮像し
て第1のフレームメモリ(図示せず)に記憶し、またカ
ルシウムイオンが薄を透過しはじめた結果としてはじめ
て生成するカルシウムイオンと錯体化したフラー2の蛍
光像を、同じイメージングカメラで撮像して別のフレー
ムメモリ(第2のフレームメモリ)に記憶した。この第
2のフレームメモリの蛍光像は、一部、遊離したフラー
2の蛍光を含んでいるが、第2のフレームメモリの螢光
像から第1のフレームメモリの蛍光像を画像解析装置に
より減算することによって、バックグラウンドとなって
いる遊離したフラー2の蛍光像を除去し、正味の錯体化
したフラー2の蛍光像を得ることができた。また、同様
にして機械的ダメージを与えたポリ塩化ビニリデン膜の
傷についても、本発明方法により蛍光像を得ることがで
きた。第4図(a)にスポット状の光ダメージを評価し
たときの螢光像を斜線で示し、同図(b)に直線状の機
械的ダメージを評価したときの螢光像を斜線で示す。
In this way, the fluorescent image of the free Fuller 2 before the calcium ions pass through the thin film is captured by the image camera and stored in the first frame memory (not shown), and the calcium ions pass through the thin film. A fluorescence image of Fuller 2 complexed with calcium ions, which are first generated as a result of the initial reaction, was captured by the same imaging camera and stored in another frame memory (second frame memory). The fluorescence image in the second frame memory partially contains the fluorescence of free Fuller 2, but the image analysis device subtracts the fluorescence image in the first frame memory from the fluorescence image in the second frame memory. By doing so, it was possible to remove the background fluorescent image of free Fuller 2 and obtain a net fluorescent image of complexed Fuller 2. In addition, fluorescent images of scratches on polyvinylidene chloride films that had been mechanically damaged in the same manner could also be obtained by the method of the present invention. In FIG. 4(a), a fluorescent image when spot-like optical damage is evaluated is shown with diagonal lines, and in FIG. 4(b), a fluorescent image when linear mechanical damage is evaluated is shown with diagonal lines.

本発明については、各種の変形態様が可能である。Various modifications of the invention are possible.

たとえば、フラー2以外にも、フィン−2(Quin−
2)やインド−1(Indo−1)などの蛍光色素もカ
ルシウムイオンの透過測定において、それぞれの色素の
蛍光特性を生かして適切に照射する光の波長を選択する
ことにより使用可能である。カルシウムイオン以外にも
、蛍光色素と錯体化することによって蛍光特性が変化す
るマグネシウムイオン、ナトリウムイオン、プロトンな
ども同様にして測定できる。
For example, in addition to Fuller 2, there is also Fin-2 (Quin-2).
Fluorescent dyes such as 2) and Indo-1 can also be used in calcium ion transmission measurements by appropriately selecting the wavelength of the irradiated light by taking advantage of the fluorescent properties of each dye. In addition to calcium ions, magnesium ions, sodium ions, protons, etc. whose fluorescence properties change when complexed with fluorescent dyes can also be measured in the same manner.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、第1の物質もしくは第2の物質の一方
が被試験用膜を透過すると、双方の物質により第1の物
質あるいは第2の物質と蛍光励起スペクトルあるいは蛍
光スペクトルの異なる反応生成物が界面に現れる。この
とき、上記界面には励起光が照射されているので、螢光
等によって光が生成され、このため膜透過の前後で検出
光が異なるので、透過性能をこれら検出光により評価で
きる。
According to the present invention, when one of the first substance or the second substance passes through the membrane to be tested, both substances produce a reaction with a fluorescence excitation spectrum or a fluorescence spectrum different from that of the first substance or the second substance. Objects appear at the interface. At this time, since the above-mentioned interface is irradiated with excitation light, light is generated by fluorescent light or the like, and therefore, the detection light is different before and after passing through the membrane, so that the transmission performance can be evaluated using these detection lights.

本発明により、極めて多様な物質の膜透過を、実時間で
しかも二次元的情報をも含めて高感度かつ迅速に計測す
ることができる。特に、イオンの二次元的膜透過性能は
本発明の膜評価法なしでは決して得られないものであり
、しかも、イオン自身は通常、膜構成物質と化学反応す
ることはなく、何ら障害にならないという利点を兼ね備
えており、逆浸透膜のような極めて小さな分子を分離す
る膜にとっては、非常に有効である。
According to the present invention, membrane permeation of extremely diverse substances can be measured in real time and with high sensitivity and quickly, including two-dimensional information. In particular, the two-dimensional membrane permeation performance of ions cannot be obtained without the membrane evaluation method of the present invention, and moreover, the ions themselves usually do not chemically react with membrane constituents and do not pose any problem. This combination of advantages makes it extremely effective for membranes that separate extremely small molecules, such as reverse osmosis membranes.

なお、一般に蛍光法では、測定系すべてのいわゆるバッ
クグラウンド蛍光が非常に大きな問題となるが、物質の
膜透過前の蛍光の中にバックグラウンド蛍光が含まれて
しまう。そこで、膜透過前の蛍光のバックグラウンドを
極力小さくするために第1の物質、第2の物質および膜
透過後に生成する反応生成物の蛍光励起スペクトル、蛍
光スペクトルを充分考慮して励起光および蛍光を波長選
択し、さらに物質の膜透過の前後でバックグラウンドが
変化しないことを条件として、膜透過前後で減算をする
ことにより、バックグラウンドを除去できるという効果
がある。
In general, in the fluorescence method, so-called background fluorescence in all measurement systems is a very big problem, and background fluorescence is included in the fluorescence of the substance before it passes through the membrane. Therefore, in order to minimize the background of fluorescence before passing through the membrane, the excitation light and fluorescence There is an effect that the background can be removed by selecting the wavelength and performing subtraction before and after the substance passes through the membrane, provided that the background does not change before and after the substance passes through the membrane.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に適用可能な治具の構成図、第
2図は倒立型顕微鏡の構成図、第3図はフラー2の励起
スペクトルを示す図、第4図は評価の結果を模式的に示
す図である。 1・・・容器、2・・・透過物質溶液、3・・・被試験
用膜、4・・・螢光試薬、5・・・カバーグラス、6・
・・スライドグラス、7・・・ワセリン、11・・・光
源、12・・・コンデンサーレンズ、13・・・励起フ
ィルタ、14・・・対物レンズ、15・・・試験用治具
、16・・・吸収フィルタ、17・・・接眼レンズ、1
8・・・光検出器。
Figure 1 is a configuration diagram of a jig applicable to the embodiment of the present invention, Figure 2 is a configuration diagram of an inverted microscope, Figure 3 is a diagram showing the Fuller 2 excitation spectrum, and Figure 4 is the evaluation result. FIG. DESCRIPTION OF SYMBOLS 1... Container, 2... Permeable substance solution, 3... Membrane to be tested, 4... Fluorescent reagent, 5... Cover glass, 6...
... Slide glass, 7 ... Vaseline, 11 ... Light source, 12 ... Condenser lens, 13 ... Excitation filter, 14 ... Objective lens, 15 ... Test jig, 16 ...・Absorption filter, 17...Eyepiece, 1
8...Photodetector.

Claims (1)

【特許請求の範囲】 1、第1の物質と、前記第1の物質と反応し、その反応
生成物が励起光の照射下で光を生成する性質をもった第
2の物質を、被試験用膜を介して対向させて配置し、前
記被試験用膜の界面に紫外光、可視光あるいは近赤外光
からなる前記励起光を照射し、前記第1あるいは第2の
物質の前記被試験用膜透過前および透過後の発光を光検
出器により計測し、当該膜透過前後の発光の差から被試
験用膜の物質透過性能を評価する方法。 2、前記第1あるいは第2の物質と前記反応生成物の蛍
光励起スペクトルあるいは蛍光スペクトルが異なること
を特徴とする請求項1記載の被試験用膜の物質透過性能
を評価する方法。 3、前記第1の物質が蛍光色素を含有する溶液であり、
前記第2の物質がイオンを含む溶液であり、発光を検出
すべき前記被試験用膜の界面が当該被試験用膜の第1の
物質側である請求項1記載の被試験用膜の物質透過性能
を評価する方法。 4、前記光検出器が、光電子増倍管、赤外センサー、一
次元センサー、二次元センサーもしくはコンフオーカル
蛍光レーザ走査顕微鏡である請求項1、2または3記載
の被試験用膜の物質透過性能を評価する方法。
[Claims] 1. A first substance and a second substance that reacts with the first substance and whose reaction product generates light under irradiation with excitation light are tested. The excitation light consisting of ultraviolet light, visible light, or near-infrared light is irradiated to the interface of the film to be tested, and the excitation light of the first or second substance to be tested is A method of measuring the luminescence before and after passing through the membrane using a photodetector, and evaluating the substance permeation performance of the membrane under test from the difference in the luminescence before and after passing through the membrane. 2. The method for evaluating the substance permeation performance of a membrane to be tested according to claim 1, wherein the first or second substance and the reaction product have different fluorescence excitation spectra or fluorescence spectra. 3. The first substance is a solution containing a fluorescent dye,
The substance of the film to be tested according to claim 1, wherein the second substance is a solution containing ions, and the interface of the film to be tested whose luminescence is to be detected is on the first substance side of the film to be tested. How to evaluate transmission performance. 4. The substance permeation performance of the membrane to be tested according to claim 1, 2 or 3, wherein the photodetector is a photomultiplier tube, an infrared sensor, a one-dimensional sensor, a two-dimensional sensor or a confocal fluorescent laser scanning microscope. How to evaluate.
JP4653190A 1990-02-27 1990-02-27 Method and apparatus for evaluating material permeation performance of membrane under test Expired - Fee Related JP2966874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4653190A JP2966874B2 (en) 1990-02-27 1990-02-27 Method and apparatus for evaluating material permeation performance of membrane under test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4653190A JP2966874B2 (en) 1990-02-27 1990-02-27 Method and apparatus for evaluating material permeation performance of membrane under test

Publications (2)

Publication Number Publication Date
JPH03248039A true JPH03248039A (en) 1991-11-06
JP2966874B2 JP2966874B2 (en) 1999-10-25

Family

ID=12749871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4653190A Expired - Fee Related JP2966874B2 (en) 1990-02-27 1990-02-27 Method and apparatus for evaluating material permeation performance of membrane under test

Country Status (1)

Country Link
JP (1) JP2966874B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013022032A1 (en) 2013-12-19 2015-06-25 Technische Universität Ilmenau Method for detecting foreign substances or degradation products in encapsulated systems and its use
WO2015159367A1 (en) * 2014-04-15 2015-10-22 日立化成株式会社 Permeability evaluation method
CN115219400A (en) * 2022-08-05 2022-10-21 太原理工大学 Slow-release film water permeability detection device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013022032A1 (en) 2013-12-19 2015-06-25 Technische Universität Ilmenau Method for detecting foreign substances or degradation products in encapsulated systems and its use
WO2015159367A1 (en) * 2014-04-15 2015-10-22 日立化成株式会社 Permeability evaluation method
JPWO2015159367A1 (en) * 2014-04-15 2017-04-13 日立化成株式会社 Permeability evaluation method
US10598622B2 (en) 2014-04-15 2020-03-24 Hitachi Chemical Company, Ltd. Permeability evaluation method
CN115219400A (en) * 2022-08-05 2022-10-21 太原理工大学 Slow-release film water permeability detection device and method
CN115219400B (en) * 2022-08-05 2024-01-30 太原理工大学 Sustained-release membrane water permeability detection device and test method

Also Published As

Publication number Publication date
JP2966874B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
CN1181334C (en) Method and device for characterizing culture liquid
US5815262A (en) Apparatus for parallelized two-photon fluorescence correlation spectroscopy (TPA-FCS), and the use thereof for screening active compounds
GB2561863A (en) Methods for colorimetric analysis
JP2975991B2 (en) Polarization measurement method and apparatus
JP2004004678A (en) Confocal microscope apparatus and observation method using confocal microscope apparatus
JPH03248039A (en) Method for evaluating material-permeability performance of film under test
JP3365474B2 (en) Polarizing imaging device
JPH07243973A (en) Detecting material for acid gas or alkaline gas, manufacture thereof, and detecting device therefor
JP3274049B2 (en) Optical measurement of liquids in porous materials.
US4992382A (en) Porous polymer film calcium ion chemical sensor and method of using the same
JPH01270644A (en) Particle analyser
Van der Ploeg et al. High-resolution scanning-densitometry of photographic negatives of human chromosomes: III. Determination of fluorescence emission intensities
JP2836859B2 (en) Three-dimensional spatial and time-resolved absorption spectrum measurement device
RU2281479C1 (en) Fluorometer-turbidimeter
JPH03221837A (en) Method and device for measuring body to be tested
JPH10104079A (en) Depolarization imaging device
JP2000241349A (en) Polarization property measuring apparatus
JPS63168543A (en) Fluorescent polarization measuring apparatus with microscope
JPH0518890A (en) Ion sensor, and method and device for measuring ion concentration using the sensor
US20230417785A1 (en) Substance separating device, analysis device, and analysis method
ATE312346T1 (en) METHOD FOR MEASURING THE VOLUME OF INDIVIDUAL RED BLOOD CELLS
JPH0553223B2 (en)
Pereira et al. Development of an image-based fluorometer with smartphone control for paper analytical devices
WO2023057735A1 (en) Apparatus and method for multi-characteristic measurement of radiation properties
CN115656127A (en) Optical fiber probe and VOCs fluorescence sensing detection device thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees