JPH0553223B2 - - Google Patents

Info

Publication number
JPH0553223B2
JPH0553223B2 JP61280497A JP28049786A JPH0553223B2 JP H0553223 B2 JPH0553223 B2 JP H0553223B2 JP 61280497 A JP61280497 A JP 61280497A JP 28049786 A JP28049786 A JP 28049786A JP H0553223 B2 JPH0553223 B2 JP H0553223B2
Authority
JP
Japan
Prior art keywords
thin film
substance
amount
evaluating
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61280497A
Other languages
Japanese (ja)
Other versions
JPS63133039A (en
Inventor
Koji Muraki
Toshiaki Ito
Mitsuo Hiramatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP28049786A priority Critical patent/JPS63133039A/en
Publication of JPS63133039A publication Critical patent/JPS63133039A/en
Publication of JPH0553223B2 publication Critical patent/JPH0553223B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、薄膜の物質透過性能を評価する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for evaluating the substance permeation performance of a thin film.

(従来の技術) 薄膜やマイクロカプセルによる物質透過制御
は、化学工業、医薬品工業における基本技術のひ
とつである。
(Prior art) Controlling substance permeation using thin films and microcapsules is one of the basic technologies in the chemical and pharmaceutical industries.

目的に合致した最適の薄膜やマイクロカプセル
の設計は、この技術の使用に際して不可欠な過程
である。透過性能の評価には、実際に使用する物
質の透過量を測定する方法と、それと化学的性質
の類似したモデル化合物の透過量を測定する方法
とがある。
Designing optimal thin films and microcapsules for the purpose is an essential step in using this technology. There are two methods for evaluating permeation performance: one method is to measure the amount of permeation of the substance actually used, and the other method is to measure the amount of permeation of a model compound with similar chemical properties.

とくに、微量の透過物について、従来は、定量
が比較的容易なモデル化合物を透過させ、透過後
のモデ化合物の濃度を定量することにより、物質
透過性能を評価する方法が用いられている。
In particular, for trace amounts of permeate, conventional methods have been used to evaluate substance permeation performance by permeating a model compound, which is relatively easy to quantify, and quantifying the concentration of the model compound after permeation.

具体的には、色素をモデル化合物とする吸光度
あるいは蛍光強度の変化の測定、電解質をモデル
化合物とする電気伝導度の変化の測定などであ
る。
Specifically, this includes measuring changes in absorbance or fluorescence intensity using a dye as a model compound, and measuring changes in electrical conductivity using an electrolyte as a model compound.

(発明が解決しようとする問題点) 前述した従来の方法は、いずれも一定時間内の
透過総量を定量するもので、微少時間の膜の透過
性能を評価することはできない。
(Problems to be Solved by the Invention) The conventional methods described above all quantify the total amount of permeation within a certain period of time, and cannot evaluate the permeation performance of a membrane over a minute period of time.

また、検出できる最少の物質量は、吸光度測
定、蛍光強度測定、電導度測定でそれぞれ10-11
モル、10-12モル、10-9モル程度であり、極微量
の透過物質(毎秒10-15モル程度)を検出するの
に長時間を要する。
In addition, the minimum amount of substance that can be detected is 10 -11 for absorbance measurement, fluorescence intensity measurement, and conductivity measurement, respectively.
mol, 10 -12 mol, or 10 -9 mol, and it takes a long time to detect an extremely small amount of permeating substance (about 10 -15 mol per second).

本発明の目的は、化学発光法と光電的方法を導
入することにより、高感度かつ迅速に薄膜の物質
透過量を測定し物質透過性能を評価する方法を提
供するところである。
An object of the present invention is to provide a method of highly sensitive and rapid measurement of the amount of substance permeation through a thin film and evaluation of substance permeation performance by introducing a chemiluminescence method and a photoelectric method.

(問題点を解決するための手段) 前記目的を達成するために、本発明による薄膜
の物質透過性能を評価する方法は、相互に混合さ
れると化学発光を生じる第1および第2の物質を
当初被試験用薄膜を介して分離して配置し、前記
いずれか一方の物質が前記薄膜への浸透、透過に
より他方の物質と混合する結果生じる発光を光検
出器により面的に計測することにより薄膜の物質
透過性能を測定するように構成されている。
(Means for Solving the Problems) In order to achieve the above object, a method for evaluating the substance permeation performance of a thin film according to the present invention includes first and second substances that produce chemiluminescence when mixed with each other. Initially, they are separated through a thin film to be tested, and one of the substances mixes with the other substance by permeation and transmission through the thin film, and the resulting light emission is measured across the area using a photodetector. The device is configured to measure the substance permeation performance of a thin film.

前記一方の物質は過酸化水素、他方の物質はル
ミノールを含むものとすることができる。
One of the substances may include hydrogen peroxide and the other substance may include luminol.

前記被試験用薄膜をマイクロカプセル外皮とす
ることができる。
The thin film to be tested can be a microcapsule shell.

前記光検出器は光電子増倍管または像増強管と
することができる。
The photodetector may be a photomultiplier tube or an image intensifier tube.

(実施例) 以下、図面等を参照して本発明をさらに詳しく
説明する。
(Example) Hereinafter, the present invention will be described in more detail with reference to the drawings and the like.

第1図は、本発明による方法を実施するための
薄膜の物質透過量測定装置の実施例を示す略図で
ある。
FIG. 1 is a schematic diagram showing an embodiment of an apparatus for measuring the amount of substance permeation through a thin film for carrying out the method according to the invention.

暗箱8の内部に設けられた開口を持つ棚9の上
にガラス基板1を配置する。
A glass substrate 1 is placed on a shelf 9 having an opening provided inside a dark box 8.

ガラス基板1の上には、混合されると化学発光
を生じる一方の化学光物質を含むゼラチン薄膜2
が配置されている。
On the glass substrate 1 is a gelatin thin film 2 containing one of the chemiluminescent substances that produces chemiluminescence when mixed.
is located.

ゼラチン薄膜2は、化学発光物質であるルミノ
ールと接触ペルオキシダーゼとルミノールの溶解
度を調整するための有機溶剤ジメチルスルホキシ
ドとを適量含むゼラチン水溶液を約40℃に加温し
てガラス基板1上に展開して形成されたものであ
る。
The gelatin thin film 2 is prepared by heating an aqueous gelatin solution containing an appropriate amount of organic solvent dimethyl sulfoxide for adjusting the solubility of luminol, a chemiluminescent substance, peroxidase, and an organic solvent for adjusting the solubility of luminol, and spreading it on the glass substrate 1. It was formed.

被試験用の高分子薄膜3は前記ゼラチン薄膜2
上に形成される。
The polymer thin film 3 to be tested is the gelatin thin film 2.
formed on top.

この被試験用の高分子薄膜3は一定量のポリス
チレンを一定量のクロロホルムに溶解したものを
ゼラチン薄膜2の上に展開し、クロロホルムを蒸
発させることより形成されたものである。
The polymer thin film 3 to be tested was formed by dissolving a certain amount of polystyrene in a certain amount of chloroform and spreading it on the gelatin thin film 2, and then evaporating the chloroform.

過酸化水素溶液4はトリス(ヒドロキシメチ
ル)アミノメタンと塩酸によつて調整したPH8.5
の水溶液に過酸化水素を溶解させたもので、セル
5に収容されて一定定面積の被試験用薄膜3と接
触している。
Hydrogen peroxide solution 4 had a pH of 8.5 adjusted with tris(hydroxymethyl)aminomethane and hydrochloric acid.
Hydrogen peroxide is dissolved in an aqueous solution of , which is housed in a cell 5 and is in contact with a thin film 3 to be tested having a constant area.

暗箱8の内部に設けられた開口を持つ棚9の下
には検出開口板6が配置されており、検出開口板
6の開口を通過した光は光検出器(光電子増倍
管)7により検出される。
A detection aperture plate 6 is arranged below a shelf 9 with an opening provided inside the dark box 8, and light passing through the aperture of the detection aperture plate 6 is detected by a photodetector (photomultiplier tube) 7. be done.

薄膜3を透過した極微量の過酸化水素は、ゼラ
チン薄膜2内のルミノールと反応して460nm付近
に極大を持つ微弱光を発する。
The extremely small amount of hydrogen peroxide that has passed through the thin film 3 reacts with luminol within the gelatin thin film 2 to emit weak light having a maximum around 460 nm.

光検出器7の出力により、極微量の透過物の量
を推定することができる。
Based on the output of the photodetector 7, it is possible to estimate the amount of the extremely small amount of transmitted matter.

光検出器7として像増倍管や撮像管のような2
次元検出器を用いると、極微量の透過物の量、透
過位置の分布をリアルタイムで測定することがで
きる。
2, such as an image intensifier or an image pickup tube, as the photodetector 7.
Using a dimensional detector, it is possible to measure the amount of extremely small amount of permeate and the distribution of the permeate position in real time.

第2図は、本発明による方法でマイクロカプセ
ルの物質透過量を測定する物質透過量測定装置の
実施例を示す略図である。
FIG. 2 is a schematic diagram showing an embodiment of a substance permeation amount measuring device for measuring the amount of substance permeation through microcapsules using the method according to the present invention.

暗箱16の内部に設けられた開口を持つ棚17
にはガラス容器13が配置されている。
A shelf 17 with an opening provided inside the dark box 16
A glass container 13 is arranged.

ガラス容器13は、過酸化水素溶液12が満た
されており底に前記マイクロカプセル11が多数
個収容されている。
The glass container 13 is filled with a hydrogen peroxide solution 12, and a large number of the microcapsules 11 are housed in the bottom thereof.

ポリスチレン薄膜のマイクロカプセル11は、
ルミノールとペルオキシダーゼを内包している。
The polystyrene thin film microcapsule 11 is
Contains luminol and peroxidase.

前述した実施例と同様に過酸化水素がマイクロ
カプセル11の内部へ浸透するに伴い、マイクロ
カプセル11の内部で、極微量の過酸化水素はル
ミノールと反応して460nm付近に極大を持つ微弱
光を発する。
As in the above embodiment, as hydrogen peroxide permeates into the microcapsules 11, a very small amount of hydrogen peroxide reacts with luminol inside the microcapsules 11, producing weak light with a maximum around 460 nm. emanate.

暗箱16の内部に設けられた開口を持つ棚17
の下には検出開口板14が配置されており、検出
開口板14の開口を通過した光は光検出器(光電
子増倍管)15により検出される。
A shelf 17 with an opening provided inside the dark box 16
A detection aperture plate 14 is arranged below the detection aperture plate 14, and light passing through the aperture of the detection aperture plate 14 is detected by a photodetector (photomultiplier tube) 15.

光検出器15として像増強管や撮像管のような
2次元検出器を用いると、極微量の透過物の量、
透過位置の分布をリアルタイムで測定することが
できる。
If a two-dimensional detector such as an image intensifier tube or an image pickup tube is used as the photodetector 15, the amount of transmitted matter will be extremely small.
The distribution of transmission positions can be measured in real time.

(発明の効果) 以上詳しく説明したように、本発明による薄膜
の物質透過性能を評価する方法は、相互に混合さ
れると化学発光を生じる第1および第2の物質を
当初被試験用薄膜を介して分離して配置し、前記
いずれか一方の物質が前記薄膜への浸透、透過に
より他方の物質と混合する結果生じる微弱発光を
光検出器により面的に計測することにより薄膜の
物質透過性能を評価するように構成されている。
(Effects of the Invention) As explained in detail above, the method of evaluating the substance permeation performance of a thin film according to the present invention uses first and second substances that produce chemiluminescence when mixed with each other to form a thin film to be tested. The substance permeation performance of the thin film can be determined by measuring the weak luminescence generated as a result of one of the substances mixing with the other substance by permeation and transmission through the thin film with a photodetector. is configured to evaluate.

本発明方法によれば、薄膜(マイクロカプセル
の外皮等)の物質透過の位置分布のリアルタイム
の計測が可能となつた。
According to the method of the present invention, it has become possible to measure the positional distribution of substance permeation through a thin film (such as the outer skin of a microcapsule) in real time.

また検出器として検出感度が高いものを利用で
きるから、10-18モル程度まで極微量の透過物を
検出することが可能になり、物質透過量の測定感
度を著しく向上させることができた。
Furthermore, since a detector with high detection sensitivity can be used, it has become possible to detect extremely small amounts of permeated matter, down to about 10 -18 moles, and the sensitivity of measuring the amount of permeated substances has been significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による方法を実施するための
薄膜の物質透過量測定装置の実施例を示す略図で
ある。第2図は、本発明による方法でマイクロカ
プセルの物質透過量を測定する物質透過量測定装
置の実施例を示す略図である。 1……ガラス基板、2……ゼラチン薄膜、3…
…被試験用薄膜、4……過酸化水素溶液、5……
過酸化水素溶液セル、6……開口板、7……光検
出器、8……暗箱、9……暗箱の棚、11……マ
イクロカプセル、12……過酸化水素溶液、13
……過酸化水素溶液を収容するガラス容器、14
……開口板、15……光検出器、16……暗箱、
17……暗箱の棚。
FIG. 1 is a schematic diagram showing an embodiment of an apparatus for measuring the amount of substance permeation through a thin film for carrying out the method according to the invention. FIG. 2 is a schematic diagram showing an embodiment of a substance permeation amount measuring device for measuring the amount of substance permeation through microcapsules using the method according to the present invention. 1... Glass substrate, 2... Gelatin thin film, 3...
...Thin film to be tested, 4...Hydrogen peroxide solution, 5...
Hydrogen peroxide solution cell, 6...Aperture plate, 7...Photodetector, 8...Dark box, 9...Dark box shelf, 11...Microcapsule, 12...Hydrogen peroxide solution, 13
...Glass container containing hydrogen peroxide solution, 14
...Aperture plate, 15...Photodetector, 16...Dark box,
17...Dark box shelf.

Claims (1)

【特許請求の範囲】 1 相互に混合されると化学発光を生じる第1お
よび第2の物質を当初被試験用薄膜を介して分離
して配置し、 前記いずれか一方の物質が前記薄膜への浸透、
透過により他方の物質と混合する結果生じる発光
を光検出器により面的に計測することにより薄膜
の物質透過性能を評価する方法。 2 前記一方の物質は過酸化水素、他方の物質は
ルミノールを含むものである特許請求の範囲第1
項記載の薄膜の物質透過性能を評価する方法。 3 前記被試験用薄膜がマイクロカプセルである
特許請求の範囲第1項記載の薄膜の物質透過性能
を評価する方法。 4 前記光検出器が光電子増倍管または像増強管
である特許請求の範囲第1項記載の薄膜の物質透
過性能を評価する方法。
[Scope of Claims] 1. A first and a second substance that produce chemiluminescence when mixed with each other are initially separated and arranged via a thin film to be tested, and one of the substances is introduced into the thin film. penetration,
A method of evaluating the substance permeation performance of a thin film by measuring the luminescence generated as a result of mixing with another substance by means of a photodetector. 2. Claim 1, wherein the one substance contains hydrogen peroxide and the other substance contains luminol.
Method for evaluating the substance permeation performance of the thin film described in Section 3. 3. The method for evaluating the substance permeation performance of a thin film according to claim 1, wherein the thin film to be tested is a microcapsule. 4. The method for evaluating the substance permeation performance of a thin film according to claim 1, wherein the photodetector is a photomultiplier tube or an image intensifier tube.
JP28049786A 1986-11-25 1986-11-25 Evaluation of material permeation performance of thin film Granted JPS63133039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28049786A JPS63133039A (en) 1986-11-25 1986-11-25 Evaluation of material permeation performance of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28049786A JPS63133039A (en) 1986-11-25 1986-11-25 Evaluation of material permeation performance of thin film

Publications (2)

Publication Number Publication Date
JPS63133039A JPS63133039A (en) 1988-06-04
JPH0553223B2 true JPH0553223B2 (en) 1993-08-09

Family

ID=17625910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28049786A Granted JPS63133039A (en) 1986-11-25 1986-11-25 Evaluation of material permeation performance of thin film

Country Status (1)

Country Link
JP (1) JPS63133039A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647876B2 (en) 2010-03-31 2014-02-11 Fujifilm Corporation Oxygen permeability measuring apparatus and method, and defect inspection apparatus and method
JP5307754B2 (en) * 2010-03-31 2013-10-02 富士フイルム株式会社 Defect detection method and apparatus for oxygen barrier body
JP6464921B2 (en) * 2015-05-19 2019-02-06 日立化成株式会社 Permeability evaluation method
CN106872315A (en) * 2017-02-22 2017-06-20 江苏虹创新材料有限公司 The method of testing of milliosmolarity is returned in a kind of super absorbent resin pressurization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916513A (en) * 1972-04-17 1974-02-14
JPS553702A (en) * 1978-05-30 1980-01-11 Kazuo Tsubone Chemically illuminating float
JPS5861446A (en) * 1981-10-07 1983-04-12 Fuji Photo Film Co Ltd Quantitative determination method of hydrogen peroxide
JPS60149950A (en) * 1984-01-17 1985-08-07 Hitachi Ltd Detection of chemiluminescence

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916513A (en) * 1972-04-17 1974-02-14
JPS553702A (en) * 1978-05-30 1980-01-11 Kazuo Tsubone Chemically illuminating float
JPS5861446A (en) * 1981-10-07 1983-04-12 Fuji Photo Film Co Ltd Quantitative determination method of hydrogen peroxide
JPS60149950A (en) * 1984-01-17 1985-08-07 Hitachi Ltd Detection of chemiluminescence

Also Published As

Publication number Publication date
JPS63133039A (en) 1988-06-04

Similar Documents

Publication Publication Date Title
DE60128279T2 (en) Optical sensor for the detection of several analytes
CA1261717A (en) Method and apparatus for oxygen determination
US5266486A (en) Method and apparatus for detecting biological activities in a specimen
Werner et al. Ammonia-sensitive polymer matrix employing immobilized indicator ion pairs
US4892640A (en) Sensor for the determination of electrolyte concentrations
Lippitsch et al. Luminescence lifetime-based sensing: new materials, new devices
JP2008249696A (en) Dry optical-chemical carbon-dioxide sensor
CN103998619B (en) Method for determining analyte concentration
Mohr et al. Optical sensing of anions via polarity-sensitive dyes: A bulk sensor membrane for nitrate
Sipior et al. Phase fluorometric optical carbon dioxide gas sensor for fermentation off‐gas monitoring
Zilberman et al. Microfluidic optoelectronic sensor based on a composite halochromic material for dissolved carbon dioxide detection
Carvajal et al. Hand-held optical instrument for CO2 in gas phase based on sensing film coating optoelectronic elements
He et al. Enantioselective optodes
Fernandez-Sanchez et al. Optical CO2-sensing layers for clinical application based on pH-sensitive indicators incorporated into nanoscopic metal-oxide supports
JPH09113450A (en) Adjusting method for detection gas concentration region in gas-concentration detection method
US6455320B1 (en) Solar cell sensors, process for their manufacture and their use
JPH0553223B2 (en)
Mohr et al. Synthesis and characterization of fluorophore-absorber pairs for sensing of ammonia based on fluorescence
Buchholz et al. A fibre-optical sensor for the determination of sodium with a reversible response
Cano-Raya et al. Irreversible optical sensor for mercury determination based on tetraarylborate decomposition
Orellana Fluorescence-based sensors
JPH01307635A (en) Method of evaluating material transmission performance of thin film for testing
CN1900718B (en) Chemical light emitting method and its device for high snesitivity detecting micro albumin
DE10152994A1 (en) Method for the simultaneous optical determination of pH and dissolved oxygen
Capitan-Vallvey et al. A disposable single-use optical sensor for potassium determination based on neutral ionophore

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees