JPH03247568A - Heat insulating monolithic refractory - Google Patents

Heat insulating monolithic refractory

Info

Publication number
JPH03247568A
JPH03247568A JP2043360A JP4336090A JPH03247568A JP H03247568 A JPH03247568 A JP H03247568A JP 2043360 A JP2043360 A JP 2043360A JP 4336090 A JP4336090 A JP 4336090A JP H03247568 A JPH03247568 A JP H03247568A
Authority
JP
Japan
Prior art keywords
aggregate
water
heat
liq
monolithic refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2043360A
Other languages
Japanese (ja)
Inventor
Yuji Narita
成田 雄司
Masaharu Anezaki
姉崎 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2043360A priority Critical patent/JPH03247568A/en
Publication of JPH03247568A publication Critical patent/JPH03247568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To enhance strength, refractoriness, heat insulating property, work efficiency and safety by impregnating specified lightweight aggregate with a water insoluble thermosetting liq. material or coating the aggregate with the liq. material. CONSTITUTION:Magnesia-based lightweight aggregate contg. 95% MgO, <=20% Al2O3 and about 1% SiO2+B2O3 and having 0.1-4mm diameter and 10-50mum average pore diameter is prepd. A water insoluble thermosetting liq. material such as phenol resin is impregnated into the aggregate by 5-10% or the aggregate is coated with the liq. material and drying is carried out to obtain refractory lightweight aggregate. This aggregate is then mixed with castable alumina and 6-15% water.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は工業用各種窯炉の内張構造におけるパーマ層
の耐火断熱機能を高める不定形耐火物に係り、特に強度
、耐火度および断熱性に優れ、作業性と安全性を大幅に
向上できる断熱性不定形耐火物に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a monolithic refractory that enhances the fireproof and heat insulating function of a permanent layer in the lining structure of various industrial furnaces, and has particularly excellent strength, fire resistance, and heat insulation properties. , regarding a heat-insulating monolithic refractory that can significantly improve workability and safety.

従来の技術 一般に1200℃以上の窯炉では、放熱損失を防止する
ため炉壁の裏張として耐火断熱煉瓦が使用され、その熱
間吹付補修等の内張材には種々の断熱キャスタブルが用
いられている。
Conventional technology In general, in kilns at temperatures of 1200°C or higher, fireproof insulating bricks are used as the lining for the furnace walls to prevent heat radiation loss, and various types of insulating castables are used as lining materials for hot spray repairs. ing.

断熱キャスタブルに代表される不定形耐火物の断熱化は
、定形の焼成煉瓦と同様に、■起泡剤添加型と■軽量骨
材型に分類されている。
The insulation of monolithic refractories, such as insulating castables, is classified into two types: (1) Foaming agent added type and (2) Light aggregate type, similar to that of regular fired bricks.

■起泡剤添加型は、界面活性剤を添加して配合水分を発
泡させた後に固化させた材料であり、■軽量骨材型はあ
らかじめ熱処理等で発泡あるいは多孔質に改質した骨材
を用いた材料である。なお、焼成煉瓦とは異なるボード
類では雲母、ひる石等、低温で膨張性の著しいものを添
加した断熱材料がある。
■The foaming agent-added type is a material that is solidified after foaming the blended water by adding a surfactant, and ■The lightweight aggregate type is a material that is made of aggregate that has been foamed or porously modified through heat treatment, etc. This is the material used. Note that, in boards different from fired bricks, there are insulating materials to which materials that expand significantly at low temperatures, such as mica and vermiculite, are added.

これらの断熱キャスタブルは、内部に天然あるいは人工
の無数の気孔を有するため、一般に低嵩比重で、圧縮強
度が低いため、利用分野が通常の耐火物より狭く、また
多孔質の骨材の場合は融点が低いため常用温度としては
1400℃以下が主体で、利用範囲がさらに狭い。
These insulating castables have numerous natural or artificial pores inside them, so they generally have a low bulk specific gravity and low compressive strength, so their field of application is narrower than that of ordinary refractories, and in the case of porous aggregates, Due to its low melting point, it is typically used at temperatures below 1400°C, making its range of use even narrower.

また、軽量骨材型は添加水分あるいは無機系バインダー
(結合剤)を多く吸着し易いため、乾燥に長時間を要す
るばかりでなく、乾燥過程で断熱材の機能が発揮され加
熱面から内部への熱伝達が悪くなり、付着水あるいは結
晶水の脱水にむらが生じ易く、乾燥や予熱段階で水蒸気
爆発の危険性がある等、作業性および安全性に問題があ
った。
In addition, lightweight aggregate types tend to absorb a lot of added moisture or inorganic binders, which not only takes a long time to dry, but also acts as a heat insulator during the drying process, allowing heat to flow from the heating surface into the interior. There were problems with workability and safety, such as poor heat transfer, uneven dehydration of adhering water or crystallized water, and the risk of steam explosion during the drying and preheating stages.

かかる対策として、界面活性剤を併用した場合、減水効
果は得られても、活性剤とバインダーとの反応、あるい
は発泡した気泡が固化過程で集合する等により強度面に
むらが生じ、成形体としての安定を欠く場合が多い。
As a countermeasure against this, when a surfactant is used in combination, although a water-reducing effect can be obtained, the strength may be uneven due to the reaction between the surfactant and the binder or the aggregation of foamed air bubbles during the solidification process, making it difficult to form a molded product. often lacks stability.

一方、内張構造におけるパーマ層は、単なる断熱機能の
みならずウェア層が部分的に損傷を受けた場合漏鋼等の
トラブルを防止するセフティ−ライニングとしての機能
を有する。
On the other hand, the permanent layer in the lining structure has not only a simple heat insulating function but also a safety lining function to prevent problems such as steel leakage when the wear layer is partially damaged.

しかし、塩基性耐火物の場合は融点が高く熱伝導性に富
むため、耐火断熱機能に富む材質がなく、厚みでもって
断熱性を補っているのが実情である。
However, since basic refractories have a high melting point and high thermal conductivity, there are no materials with high fireproof and heat-insulating properties, and the reality is that they compensate for their heat-insulating properties with their thickness.

最近、溶鋼取鍋等では鋼質の改善、鍋寿命の延長を目的
として、高アルミナ質あるいは塩基性質の内張施工が多
用されているが、高アルミナ質や塩基性の耐火材料はい
ずれも熱伝導性に富むため放散熱量が大きく、パーマ層
の耐用温度が高く、溶鋼の温度低下も著しいという問題
がある。
Recently, high alumina or basic lining construction has been frequently used for molten steel ladles, etc., with the aim of improving steel quality and extending the life of the ladle.However, both high alumina and basic refractory materials are Due to its high conductivity, it dissipates a large amount of heat, has a high durability temperature for the permanent layer, and has the problem of significantly lowering the temperature of molten steel.

発明が解決しようとする課題 鉄鋼プロセスの中で特に断熱化の要求が高い溶鋼取鍋等
のパーマ層を不定形耐火物にて断熱施工を実施する場合
、従来の耐火軽量骨材(例えば軽量シャモット骨材)で
は多孔質のため水分、バインダーを吸着し易く、断熱性
の低下により過焼結し易くなること、すたSingを含
むため耐火性が劣ること、さらに乾燥および予熱工程に
おいて骨材自体の断熱効果により残存する付着水や結晶
水による水蒸気爆発の危険性を有する等の問題を生じる
Problems to be Solved by the Invention When using monolithic refractories to insulate the permanent layer of molten steel ladles, etc., which require particularly high insulation in the steel process, conventional fire-resistant lightweight aggregates (e.g. lightweight chamotte) Aggregate) is porous and easily adsorbs moisture and binder, which reduces its heat insulation properties and causes oversintering.It also has poor fire resistance because it contains dust, and the aggregate itself is damaged during the drying and preheating process. Due to the heat insulating effect, problems arise such as the risk of steam explosion due to residual adhered water and crystallized water.

この発明はこのような従来の問題を解決するためになさ
れたものであり、各種窯炉のパーマ層において優れた強
度と耐火断熱性を有する不定形耐火物を提供しようとす
るものである。
The present invention has been made to solve these conventional problems, and aims to provide a monolithic refractory having excellent strength and fireproof heat insulation properties in the permanent layer of various types of furnaces.

課題を解決するための手段 この発明者は水質調整用多孔質マグネシアクリンカ−に
着目し、100℃に加熱したタリン力−にパラフィンを
添加、含浸させて冷却したものと、同多孔質クリンカー
にアルミナキャスタブル(バインダー:アルミナセメン
ト)を混合し、適量の水分を添加して混練したものを養
生乾燥して得た不定形施工体より、以下のことが判明し
た。
Means for Solving the Problem The inventor focused on porous magnesia clinker for water quality adjustment, and added paraffin to talin heated to 100°C, impregnated and cooled, and porous clinker with alumina. The following was discovered from the amorphous construction body obtained by mixing castable (binder: alumina cement), adding an appropriate amount of water, kneading, curing and drying.

(1)多孔質クリンカーを非水溶性で熱可塑性の材料で
被覆すると、添加水分とバインダーの量を軽減しても同
等の強度が得られる。
(1) When porous clinker is coated with a water-insoluble thermoplastic material, equivalent strength can be obtained with reduced amounts of added water and binder.

(2)不定形耐火物の骨材は粒度1mm未満の微粒を含
まない方が強度、断熱性が安定する。
(2) The strength and heat insulation properties of the aggregate for monolithic refractories are more stable if they do not contain fine particles with a particle size of less than 1 mm.

(3)  非水溶性で熱可塑性の材料で被覆した骨材を
用いると、添加水分の乾燥が十分に行われて水蒸気爆発
の危険性がなくなる。
(3) By using aggregate coated with a water-insoluble thermoplastic material, the added moisture is sufficiently dried and the risk of steam explosion is eliminated.

(4)被覆材としては熱硬化性を有するものが効果的で
ある。
(4) A thermosetting material is effective as the covering material.

(5)骨材としては中空アルミナポールに比し上記クリ
ンカーの方が乾燥が早く、かつ耐火度に優れて高強度で
ある。
(5) As an aggregate, the clinker dries faster than hollow alumina poles, and has excellent fire resistance and high strength.

この発明は以上の知見より見い出したもので、その要旨
は粒度1nv以上4+nm以下、平均気孔径10〜50
μmの気孔を有するマグネシア系軽量骨材を、非水溶性
で熱硬化性を有する液状物にて含浸処理または被覆処理
したものを原料とした断熱性不定形耐火物であり、また
軽量骨材にはMgO含有量95%の多孔質マグネシアで
あって、Al2O3を20%以下含有するものを用いた
断熱性不定形耐火物である。
This invention was discovered based on the above findings, and its gist is that the particle size is 1 nv or more and 4+ nm or less, and the average pore size is 10 to 50 nm.
It is an insulating monolithic refractory made from magnesia lightweight aggregate with μm pores impregnated or coated with a water-insoluble thermosetting liquid. is a heat insulating monolithic refractory using porous magnesia with a MgO content of 95% and containing 20% or less of Al2O3.

作    用 この発明において使用する骨材として、多孔質のマグネ
シア系骨材に限定したのは、融点が2700℃以上(A
 I 、0 、2050℃)と高く、また低比熱(A 
l to s >M g O)であるため乾燥性が良好
であり、さらに活性に富むMgO骨材の周囲に2次スピ
ネル(MgO・AItoj)が形成されることによって
高強度となるためである。
Function The aggregate used in this invention is limited to porous magnesia-based aggregate with a melting point of 2700°C or higher (A
It has a high specific heat (I, 0, 2050℃) and a low specific heat (A
Since l to s > M g O), drying properties are good, and secondary spinel (MgO•AI toj) is formed around the highly active MgO aggregate, resulting in high strength.

多孔質のマグネシア系軽量骨材としては、海水マグネシ
アの副生品で、Mg095%で、5iQsとB、O,の
含有量がそれぞれ約1%の高耐火性を有するものが好適
である。
As the porous magnesia-based lightweight aggregate, it is preferable to use a by-product of seawater magnesia, which has high fire resistance with Mg 095% and 5iQs and B and O contents of about 1% each.

なお、AlzO3の含有量を20%以下と限定したのは
、強度の高いスピネル化を可能とするためには、化学量
論的に20%が上限であるためである。
Note that the content of AlzO3 is limited to 20% or less because 20% is the stoichiometric upper limit in order to make it possible to form spinel with high strength.

この耐火性骨材は平均気孔径10〜50μmのボアを0
.5cc/g内包したもので、嵩比重が1.5〜1.7
と極めて低く活性に富む。このため熱伝導率が低く、熱
膨張性も低いという特性を有する。
This refractory aggregate has 0 bores with an average pore diameter of 10 to 50 μm.
.. Contains 5cc/g and has a bulk specific gravity of 1.5 to 1.7
extremely low and highly active. Therefore, it has the characteristics of low thermal conductivity and low thermal expansion.

この耐火性骨材の粒度を0.1〜4mmと限定したのは
、0.1mm未満の微粒域を除外した方が強度、断熱性
が安定するからである。
The reason why the particle size of this refractory aggregate is limited to 0.1 to 4 mm is that the strength and heat insulation properties are more stable if the fine particle region of less than 0.1 mm is excluded.

すなわち、比表面積の大きい微粒の排除により、疑似粒
子を形成する時に粒子表面に付着する水分量をよりいっ
そう軽減できること、また粒度分布の上で最密充填にな
らないことにより相対的には気孔量が増加することから
、強度および断熱性が安定するのである。
In other words, by eliminating fine particles with a large specific surface area, it is possible to further reduce the amount of water that adheres to the particle surface when forming pseudoparticles, and because the particle size distribution is not closest packed, the amount of pores can be relatively reduced. This increases the strength and insulation properties.

なお、骨材の粒度の上限を4mmと限定したのは、通常
の不定形耐火物の粒度の上限を示すと共に、骨材そのも
のの耐圧壊性の点からの限界を示す。
Note that the upper limit of the particle size of the aggregate is limited to 4 mm, which indicates the upper limit of the particle size of ordinary monolithic refractories, and also indicates the limit in terms of the crush resistance of the aggregate itself.

マグネシア系軽量骨材の前処理に用いる液状物として、
非水溶性で熱硬化性を有するものに限定したのは、水溶
性バインダーと溶解しないこと、水に比し蒸気圧が低く
、蒸発に伴う劣化等がないこと、混線時の水分添加前の
前処理で骨材中に固定されマトリックス粉に浸透しない
こと等の特性を有するためである。
As a liquid material used for pre-treatment of magnesia-based lightweight aggregate,
We limited it to water-insoluble and thermosetting materials because they do not dissolve with water-soluble binders, have a lower vapor pressure than water, do not deteriorate due to evaporation, and are suitable for use before adding water during crosstalk. This is because it has properties such as being fixed in the aggregate during processing and not penetrating into the matrix powder.

非水溶性で熱硬化性を有する液状物としては、フェノー
ル樹脂、フラン樹脂等の合成樹脂、100℃以上の融点
を有するパラフィンあるいはピッチ等の有機物が好適で
ある。
As the water-insoluble thermosetting liquid material, synthetic resins such as phenol resins and furan resins, and organic substances such as paraffin or pitch having a melting point of 100° C. or higher are suitable.

軽量骨材に前記液状物を含浸させる方法、あるいは当該
骨材を液状物で被覆する方法としては、耐火性軽量骨材
に液状物を添加して混合し、乾燥させる方法を用いるこ
とができる。
As a method of impregnating the lightweight aggregate with the liquid substance or a method of coating the aggregate with the liquid substance, a method of adding the liquid substance to the fire-resistant lightweight aggregate, mixing it, and drying it can be used.

耐火性軽量骨材に対し前記液状物の含浸処理、あるいは
被覆処理を施し、これを原料として用いた場合、混線時
に当該骨材のボア中への水分、バインダーの侵入が防止
されるため、水分とバインダーの添加量を軽減しても同
等の強度が得られる。
When fire-resistant lightweight aggregate is impregnated or coated with the liquid and used as a raw material, moisture and binder are prevented from entering into the bore of the aggregate during crosstalk. The same strength can be obtained even if the amount of binder added is reduced.

また、骨材中への水分の侵入(吸収)が防止されること
により、低水分の成形体が得られ、その結果水蒸気爆裂
も起らない。
Further, by preventing moisture from entering (absorbing) into the aggregate, a molded article with low moisture content can be obtained, and as a result, steam explosion does not occur.

なお、耐火性軽量骨材に対する液状物の添加量としては
、現行市販のキャスタブルの施工水分量である5〜10
%でよい。すなわち、5%未満では含浸または被覆効果
が得られず、骨材の撥水性が確保できず、他方10%を
超えると焼成等の昇熱過程でガスが多く発生し作業に支
障をきたすためである。
The amount of liquid added to the fire-resistant lightweight aggregate is 5 to 10, which is the construction moisture content of currently commercially available castables.
% is fine. In other words, if it is less than 5%, the impregnation or coating effect cannot be obtained and the water repellency of the aggregate cannot be ensured, while if it exceeds 10%, a large amount of gas will be generated during the heating process such as firing, which will interfere with the work. be.

バインダーは水溶性の無機質系バインダーを用いる。A water-soluble inorganic binder is used as the binder.

添加水分量は6〜15%で十分であるが、主に稠度を指
標として200〜250以内で流し込みあるいは振動成
形で施工する。
It is sufficient to add an amount of moisture of 6 to 15%, but the consistency is mainly used as an index and is applied by pouring or vibration molding to a consistency of 200 to 250.

施工方法としては、各材料を混練し、鉄皮と中子間に充
填し、養生後に脱型するが、さらにウェア層を不定型耐
火物でライニングする場合は300℃程度の温風で乾燥
した後にライニングする。
The construction method is to knead each material, fill it between the steel shell and core, and remove it from the mold after curing.In addition, if the wear layer is lined with amorphous refractories, it is dried with warm air at about 300℃. Lining later.

実   施   例 実施例1 粒度2.5mmφ〜0.1mmφの多孔質マグネシア骨
材を150℃に予熱し、該骨材に軟化点75℃のノボラ
ック型フェノール樹脂を6.5%添加し、10分間攪拌
混合した後風冷乾燥させて、前記樹脂にて表面が被覆さ
れた骨材を得た。
Examples Example 1 Porous magnesia aggregate with a particle size of 2.5 mmφ to 0.1 mmφ was preheated to 150°C, 6.5% of novolac type phenolic resin with a softening point of 75°C was added to the aggregate, and heated for 10 minutes. After stirring and mixing, the mixture was air-cooled and dried to obtain an aggregate whose surface was coated with the resin.

この前処理骨材とアルミナ質骨材(コランダム粒)を9
0 : 10の比で混合し、これにアルミナセメント 
(未処理ンを7.5%(一定)添加し、水分を加えて一
定の流動性(稠度280)を持たせ、これを縦200m
mX横200mm X高さ100mmの金枠に流し込み
、24時時間先後100℃の温風で乾燥し、800℃の
温度で3時間焼成して得られた成形体の性状を調査した
。その結果を粒度配合割合と併せて第1表に示す。
This pre-treated aggregate and alumina aggregate (corundum grains)
Mix at a ratio of 0:10 and add alumina cement to this.
(Add 7.5% (constant) of untreated water, add water to give a certain fluidity (consistency 280), and spread it 200 m vertically.
The molded product was poured into a metal frame measuring 200 mm wide x 100 mm high, dried with hot air at 100° C. for 24 hours, and fired at 800° C. for 3 hours, and the properties of the obtained molded body were investigated. The results are shown in Table 1 together with the particle size blend ratio.

なお、第1表中の比較例は本発明の前処理骨材を使用し
、粒度範囲を外れた微粒を多く含んだものと、未処理骨
材のみで構成したものであり、また従来例は軽量シャモ
ットを骨材とした断熱キャスタブルで、溶銑樋等の内張
りに使用しているものである。また、圧縮強度、熱伝導
比は従来例の測定値の比で示した。
In addition, the comparative examples in Table 1 are those that used the pretreated aggregate of the present invention and contained many fine particles outside the particle size range, and those that were composed only of untreated aggregate. It is an insulating castable made of lightweight chamotte aggregate, and is used for lining hot metal gutters, etc. In addition, the compressive strength and thermal conductivity ratio are expressed as a ratio of the measured values of the conventional example.

第1表の結果より、本発明の不定形耐火物は0、1mm
未満の微粒を全く含まないものは勿論のこと、微粒を若
干含んでも圧縮強度、熱伝導比共に優れていることがわ
かる。
From the results in Table 1, the monolithic refractory of the present invention has a thickness of 0.1 mm.
It can be seen that both the compressive strength and the thermal conductivity ratio are excellent not only in cases where no fine particles are contained, but also in cases where a small amount of fine particles are contained.

これに対し、同じ前処理骨材を使用しても粒度が0.1
mm未満の微粒を多く配合した比較例Iは熱伝導比が劣
り、また前処理骨材を使用しなかった比較例2.3の場
合は、圧縮強度、熱伝導比共に劣っている。
On the other hand, even if the same pretreated aggregate is used, the particle size is 0.1
Comparative Example I, in which a large amount of fine particles less than mm in size was blended, had an inferior thermal conductivity ratio, and Comparative Examples 2.3, in which no pretreated aggregate was used, had inferior compressive strength and thermal conductive ratio.

実施例2 実施例1と同じ多孔質マグネシア骨材に軟化点128℃
の石油系ピッチを5%添加し加熱混合しながら含浸させ
て得た前処理骨材と、仮焼アルミナ骨材を第1表の供試
NO,Cの配合で混合し、リン酸アルミニウム水溶液を
バインダーとして70トン容量の取鍋底部に流し込み(
水分含有量8.7%)、15時間養生後底部ウェア煉瓦
としてA I 冨0−78%の不焼成煉瓦をライニング
し、乾燥、予熱して操業に供した。
Example 2 The same porous magnesia aggregate as Example 1 had a softening point of 128°C.
The pretreated aggregate obtained by adding 5% of petroleum pitch and impregnating it while heating and mixing, and the calcined alumina aggregate were mixed with the sample NO and C in Table 1, and an aluminum phosphate aqueous solution was mixed. Pour it into the bottom of a 70 ton capacity ladle as a binder (
After curing for 15 hours, unfired bricks with an A I depth of 0-78% were lined with unfired bricks having an A I depth of 0-78%, dried, preheated, and used for operation.

操業開始後、33〜35時間までの受鋼の鉄皮温度上昇
の最高値を測定し、その平均値をA I ! Os75
%の高アルミナ質キャスタブル(水分13%)を用いた
従来の取鍋の平均値と比較した結果、平均受鋼温度16
80℃に対し、従来取鍋の平均値は325℃であったの
に対し、本発明による取鍋底部の平均温度は312℃と
低く、大幅に熱放散量が軽減されることが確認された。
After the start of operation, the maximum value of the temperature rise of the steel skin of the receiving steel is measured for 33 to 35 hours, and the average value is A I! Os75
As a result of comparison with the average value of a conventional ladle using % high alumina castable (moisture 13%), the average receiving temperature was 16%.
Compared to 80°C, the average temperature of the conventional ladle was 325°C, whereas the average temperature of the bottom of the ladle according to the present invention was as low as 312°C, confirming that the amount of heat dissipation was significantly reduced. .

以下余白 発明の詳細 な説明したごとく、この発明の断熱性不定形耐火物は従
来の断熱キャスタブルに比し断熱性、耐火性共に優れ、
かつ水蒸気爆裂の発生しにくい安全性の高い施工が可能
となる等の効果を有し、特に断熱化の要求が高い溶鋼取
鍋等のパーマ層の断熱施工材として極めて有用性に富む
ものである。
As explained in detail below, the insulating monolithic refractory of the present invention has superior heat insulating properties and fire resistance compared to conventional insulating castables,
It also has the effect of enabling highly safe construction with less chance of steam explosion, and is extremely useful as an insulation construction material for permanent layers such as molten steel ladles, which require particularly high insulation.

Claims (1)

【特許請求の範囲】 1 マグネシア系軽量骨材を原料とした断熱性不定形耐火物
であって、粒度0.1mm以上4mm以下、平均気孔径
10〜50μmの気孔を有する軽量骨材を、非水溶性で
熱硬化性を有する液状物にて含浸処理または被覆処理し
たものを原料としたことを特徴とする断熱性不定形耐火
物。 2 軽量骨材はMgO含有量95%の多孔質マグネシアであ
って、20%以下のAl_2O_3を含有することを特
徴とする請求項1記載の断熱性不定形耐火物。
[Scope of Claims] 1. A heat-insulating monolithic refractory made from magnesia-based lightweight aggregate, which has pores with a grain size of 0.1 mm or more and 4 mm or less and an average pore diameter of 10 to 50 μm. A heat-insulating monolithic refractory characterized by being made from a material impregnated or coated with a water-soluble thermosetting liquid material. 2. The insulating monolithic refractory according to claim 1, wherein the lightweight aggregate is porous magnesia with an MgO content of 95% and contains 20% or less of Al_2O_3.
JP2043360A 1990-02-23 1990-02-23 Heat insulating monolithic refractory Pending JPH03247568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2043360A JPH03247568A (en) 1990-02-23 1990-02-23 Heat insulating monolithic refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2043360A JPH03247568A (en) 1990-02-23 1990-02-23 Heat insulating monolithic refractory

Publications (1)

Publication Number Publication Date
JPH03247568A true JPH03247568A (en) 1991-11-05

Family

ID=12661689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2043360A Pending JPH03247568A (en) 1990-02-23 1990-02-23 Heat insulating monolithic refractory

Country Status (1)

Country Link
JP (1) JPH03247568A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747507A (en) * 2016-12-13 2017-05-31 青岛万和装饰门窗工程有限公司 A kind of light weight castable refractory and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747507A (en) * 2016-12-13 2017-05-31 青岛万和装饰门窗工程有限公司 A kind of light weight castable refractory and preparation method thereof
CN106747507B (en) * 2016-12-13 2020-06-16 青岛万和装饰门窗工程有限公司 Light refractory castable and preparation method thereof

Similar Documents

Publication Publication Date Title
US5300144A (en) Binder composition
EP1089954B1 (en) Insulating refractory material
US4093470A (en) Alumina refractories
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
JP2015044734A (en) Cement-free refractory
US5036029A (en) Sprayable insulating liner compositions for metal vessels
JPH03247568A (en) Heat insulating monolithic refractory
JP4323732B2 (en) Insulating castable refractory
RU2140407C1 (en) Refractory concrete mix
JP2604310B2 (en) Pouring refractories
EP1622848B1 (en) Manufacturing method of a heat-resistant material, heat-resistant structure, structural material and dry matter composition
JP3024723B2 (en) Insulated castable
JPS63162579A (en) Thermosettable monolithic refractories
US5318277A (en) Lined ladles, linings therefor, and method of forming the same
JPH06199575A (en) Alumina-spinel castable refractory
KR100450370B1 (en) Dolomite waterless- monolithic lining material and its installation method
JP4034858B2 (en) Indeterminate refractories for casting construction
JPH02311B2 (en)
JPS6317790B2 (en)
JPH10158072A (en) Magnesia-carbon castable refractory and its applied body
JP2715300B2 (en) Ceramic fiber based heat insulating refractory composition
JPS6221752B2 (en)
JPS5886952A (en) Composition of lining material for spray molding for molten metal vessel
JP2873666B2 (en) Ladle casting material
JPS6133742A (en) Production of tundish gate