JPS6317790B2 - - Google Patents

Info

Publication number
JPS6317790B2
JPS6317790B2 JP54022196A JP2219679A JPS6317790B2 JP S6317790 B2 JPS6317790 B2 JP S6317790B2 JP 54022196 A JP54022196 A JP 54022196A JP 2219679 A JP2219679 A JP 2219679A JP S6317790 B2 JPS6317790 B2 JP S6317790B2
Authority
JP
Japan
Prior art keywords
alumina
graphite
nozzle
particle size
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54022196A
Other languages
Japanese (ja)
Other versions
JPS55116660A (en
Inventor
Seiichi Sato
Yukifumi Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2219679A priority Critical patent/JPS55116660A/en
Publication of JPS55116660A publication Critical patent/JPS55116660A/en
Publication of JPS6317790B2 publication Critical patent/JPS6317790B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルミナ−黒鉛系鋳造ノズルの製造方
法に関し、とくにノズル原料を改質したアルミナ
−黒鉛系鋳造ノズルの製造方法に係る。 従来、この種の鋳造ノズルを製造するには、ア
ルミナ、黒鉛等の原料を所定の混合比で十分混粉
し、これにバインダーを加え混練し、成形した
後、焼成せしめる方法が行なわれている。しかし
ながら、この方法にあつては一般に比重が大きい
(3.98)上に粒径の小さいアルミナ粉と、比重が
小さい(2.2)上に粒径の大きい黒鉛粉とを主ノ
ズル原料とし、これらを混ぜ合わせるため、それ
らの比重差及び粒度差によつて不可避的に偏析が
生じ、その結果混練、成形、焼成により得たノズ
ルは強度が低く、しかも耐熱スポーリング性が劣
るものとなる不都合さを生じる。 このようなことから、本発明者は上記欠点を克
服するために鋭意研究を重ねた結果、微細なアル
ミナ粉末を熱硬化性樹脂で処理して該粉末表面に
熱硬化性樹脂被膜を形成し、これらを互いに焼成
せずにまたは焼結し所定粒径のアルミナ系2次粒
子を調整することによつて、アルミナ表面に形成
される樹脂被膜または炭素質被膜によつて比重の
低減化、粒径の増大化がなされ、比重及び粒径が
このアルミナと共に配合される黒鉛粒子と近くな
り、さらに2次粒子表面の樹脂または炭素質被膜
によりこの2次粒子と黒鉛粒子間のなじみが改善
され、これらをバインダーの共存下で混練する
際、粒子の偏析を生じることなく均一に混合で
き、均質な混練物を調整できることがわかつた。
その結果、この混練物を成形、焼成せしめること
により高強度で耐熱スポーリング性の優れたアル
ミナ−黒鉛系鋳造ノズルを製造し得る方法を見出
だした。 また、アルミナ−黒鉛系鋳造ノズルの別の問題
点として該ノズルがスラグライン部と接触する場
合、そのノズル外側での溶損反応において、ノズ
ルの構成成分である黒鉛が空気中の酸素により酸
化消耗すること、黒鉛の熱伝導性のよさにより溶
融金属の鋳込み時においてノズル孔内で溶融金属
中の非金属介在物がノズル孔内面に付着してノズ
ル閉塞を起こすこと、が挙げられる。これに対
し、本発明者はアルミナ粉末の2次粒子化ととも
に黒鉛粉末をリン酸塩系あるいはホウ酸塩系の結
合剤で処理して結合剤の被膜を形成することによ
つて、上記アルミナ系2次粒子との比重差をさら
に近似化して均一な混練を可能にするとともに、
黒鉛粉末表面の無機系被膜によりスラグライン部
の外側での空気中の酸素による黒鉛の酸化消耗を
抑制でき、黒鉛の消失後のアルミナあるいはアル
ミナ−シリカ間の溶損を阻止でき、さらに鋳込み
時、ノズル孔内での非金属介在物の付着を該黒鉛
粉末表面のリン酸塩系あるいはホウ酸塩系被膜に
より抑制できることがわかつた。その結果、この
混練物を成形、焼成することにより、強度及び耐
熱スポーリング性が優れているほか、スラグライ
ン部に対する耐蝕性が高く、ノズル閉塞を防止し
た極めて高寿命のアルミナ−黒鉛系鋳造ノズルを
製造し得ることを見出だした。 すなわち、本発明のアルミナ−黒鉛系鋳造ノズ
ルの製造方法はアルミナ及び黒鉛を主成分として
含む原料を用いてノズルを製造する方法におい
て、 A:リン酸塩系あるいはホウ酸塩系の結合剤で処
理し表面に1〜25μmの前記結合剤の被膜を形
成した黒鉛粒子と、 B:熱硬化性樹脂で処理し、表面に1〜25μmの
前記樹脂被膜を形成した粒径0.5mm以下のアル
ミナ粉末を、前記黒鉛粒子に近似させるように
粒径および比重を調整して得た、表面に樹脂被
膜あるいは炭素質被膜を有するアルミナ系2次
粒子と、 を混練、成形、焼成することを特徴とするもので
ある。 本発明で用いる熱硬化性樹脂としては、フエノ
ール樹脂、エポキシ樹脂等を挙げることができ
る。この熱硬化性樹脂によるアルミナ粉末への被
膜形成厚さは1〜25μmにすることが必要であ
る。1μm未満では粒径、比重の調整効果が充分
でなく、25μmを越えるとアルミナ粒子どうしの
結合を妨げ強度の低下を生じる。ただし、熱硬化
性樹脂による一様な被膜形成が困難な場合には必
ずしもアルミナ粉末の全部に一様に行わなくとも
良く、該アルミナ粉末の大部分に被膜を形成すれ
ば本発明の目的を充分達成し得る。 本発明における熱硬化性樹脂被膜付きアルミナ
の焼結はカーボンブリーズ等を使用した非酸化性
雰囲気中で行うことが望ましい。ここで得られた
アルミナ系2次粒子の粒径は他のノズル原料であ
る黒鉛粒子の粒径に近似させるよう適宜選定すれ
ばよいが、通常0.01〜0.5mmφ程度にすれば充分
である。 また、本発明においては黒鉛原料として、リン
酸塩系あるいはホウ酸塩系の結合剤で処理し、表
面に前記結合剤の被膜を形成した黒鉛粒子を用い
る。この結合剤の被膜形成厚さは該被膜が黒鉛粉
末の保護及び非金属介在物の付着防止を目的とす
ることから、1〜25μmにすることが必要であ
る。ただし、この結合剤による被膜形成は前述の
熱硬化性樹脂の場合と同様、必ずしも黒鉛粉末の
全部に一様に行わなくともよい。 本発明におけるノズル原料は熱硬化性樹脂被覆
アルミナ系2次粒子及びリン酸塩系あるいはホウ
酸塩系結合剤被覆黒鉛粒子を必須成分とするもの
であり、これら2成分のみで構成してもよいし、
この2成分にシリカ、ジルコニア、炭化珪素、窒
化珪素、金属シリコン(フエロシリコンも含む)
のうちの1種以上を配合した3成分以上の構成に
してもよい。 本発明における成形手段はノズル製造に採用さ
れる通常の方法で行えばよいが、とくにラバープ
レス法を採用すると緻密でより高強度の鋳造ノズ
ルを製造し得るために有利である。 次に本発明の実施例を説明する。 実施例 1 平均粒径44μm以上の黒鉛粉末に3%濃度のホ
ウ酸を10重量%加えて混練し加熱処理して粒径
0.1〜1mmφのホウ酸被膜付き黒鉛粒子を調整し
た。 次いで、平均粒径44μmのアルミナ粉末にフエ
ノール樹脂を加えて混練して平均厚さ15μmのフ
エノール樹脂被膜を形成した後焼結して0.01〜
0.5mmφのアルミナ系2次粒子を調整した。 このアルミナ系2次粒子60重量%と、上記ホウ
酸被膜付き黒鉛粒子25重量%と、平均粒径250μ
mのシリカ粒子13重量%と、金属シリコン粉末2
重量%とを配合して得たノズル原料100重量部に
ピツチ20重量部を添加混練した後、この混練物を
ラバープレス(圧力1000Kg/cm2)で成形した。そ
の後、この成形体をカーボンブリーズ中にて1000
℃の温度下で焼成せしめてアルミナ−黒鉛系鋳造
ノズルを製造した。 比較例 平均粒径44μmのアルミナ粉末60重量%、黒鉛
粒子25重量%、シリカ粒子13重量%、及び金属シ
リコン粉末2重量%から成るノズル原料100重量
部にピツチ20重量部を添加混練した後、前記実施
例と同条件下で成形、焼成せしめてアルミナ−黒
鉛系鋳造ノズルを製造した。 しかして、本実施例及び比較例のアルミナ−黒
鉛系鋳造ノズルの諸物性及び1400℃に加熱した
後、水で冷却する急熱急冷を繰返した場合の亀裂
発生回数(耐熱スポーリング性)並びにスラグラ
イン部と接触する外側部分の溶損度合い(耐蝕
性)を調べたところ、下記表のごとき結果となつ
た。
The present invention relates to a method for producing an alumina-graphite cast nozzle, and particularly to a method for producing an alumina-graphite cast nozzle by modifying the nozzle raw material. Conventionally, in order to manufacture this type of casting nozzle, the method used was to thoroughly mix raw materials such as alumina and graphite at a predetermined mixing ratio, add a binder to this, knead it, shape it, and then fire it. . However, in this method, the main nozzle raw materials are generally alumina powder, which has a large specific gravity (3.98) and a small particle size, and graphite powder, which has a small specific gravity (2.2) and a large particle size, and these are mixed together. Therefore, segregation inevitably occurs due to the difference in specific gravity and particle size, resulting in the inconvenience that the nozzle obtained by kneading, molding, and firing has low strength and poor heat spalling resistance. For these reasons, the inventor of the present invention has conducted extensive research to overcome the above-mentioned drawbacks, and as a result, treated fine alumina powder with a thermosetting resin to form a thermosetting resin coating on the powder surface, By adjusting the alumina-based secondary particles of a predetermined particle size by sintering or sintering these together, the resin coating or carbonaceous coating formed on the alumina surface can reduce the specific gravity and particle size. The specific gravity and particle size are similar to those of the graphite particles mixed with this alumina, and the resin or carbonaceous coating on the surface of the secondary particles improves the compatibility between the secondary particles and the graphite particles. It was found that when kneading in the presence of a binder, it was possible to mix uniformly without causing particle segregation, and a homogeneous kneaded product could be prepared.
As a result, we have discovered a method for producing an alumina-graphite cast nozzle with high strength and excellent heat spalling resistance by molding and firing this kneaded product. Another problem with alumina-graphite casting nozzles is that when the nozzle comes into contact with the slag line, the graphite, which is a component of the nozzle, is oxidized and consumed by the oxygen in the air in the erosion reaction on the outside of the nozzle. Another problem is that due to the good thermal conductivity of graphite, non-metallic inclusions in the molten metal adhere to the inner surface of the nozzle hole during casting of the molten metal, causing nozzle blockage. On the other hand, the present inventor has developed an alumina-based method by forming secondary particles of alumina powder and treating graphite powder with a phosphate-based or borate-based binder to form a binder film. In addition to further approximating the specific gravity difference with secondary particles to enable uniform kneading,
The inorganic coating on the surface of the graphite powder can suppress the oxidative consumption of graphite by oxygen in the air outside the slag line, and can prevent alumina or alumina-silica melting after the graphite has disappeared, and furthermore, during casting, It has been found that the adhesion of non-metallic inclusions within the nozzle hole can be suppressed by a phosphate-based or borate-based coating on the surface of the graphite powder. As a result, by molding and firing this kneaded material, an alumina-graphite casting nozzle with excellent strength and heat spalling resistance, high corrosion resistance to the slag line, and an extremely long lifespan that prevents nozzle clogging is created. We have discovered that it is possible to produce That is, the method for manufacturing an alumina-graphite cast nozzle of the present invention is a method for manufacturing a nozzle using a raw material containing alumina and graphite as main components, A: treatment with a phosphate-based or borate-based binder. B: Graphite particles with a binder coating of 1 to 25 μm on the surface; B: Alumina powder with a particle size of 0.5 mm or less that has been treated with a thermosetting resin and has a resin coating of 1 to 25 μm on the surface. , alumina-based secondary particles having a resin coating or a carbonaceous coating on the surface obtained by adjusting the particle size and specific gravity to approximate the graphite particles, and kneading, molding, and firing. It is. Examples of the thermosetting resin used in the present invention include phenol resins and epoxy resins. The thickness of the film formed on the alumina powder by this thermosetting resin must be 1 to 25 μm. If it is less than 1 μm, the effect of adjusting the particle size and specific gravity will not be sufficient, and if it exceeds 25 μm, the bond between alumina particles will be hindered, resulting in a decrease in strength. However, if it is difficult to form a uniform coating with the thermosetting resin, it is not necessarily necessary to apply the coating uniformly to all of the alumina powder, and it is sufficient to form a coating on most of the alumina powder to achieve the purpose of the present invention. It can be achieved. Sintering of the thermosetting resin coated alumina in the present invention is preferably carried out in a non-oxidizing atmosphere using carbon breeze or the like. The particle size of the alumina-based secondary particles obtained here may be appropriately selected so as to approximate the particle size of graphite particles, which is another nozzle raw material, but it is usually sufficient to set the particle size to about 0.01 to 0.5 mmφ. Further, in the present invention, graphite particles treated with a phosphate-based or borate-based binder to form a coating of the binder on the surface are used as the graphite raw material. The thickness of the binder film needs to be 1 to 25 μm since the film is intended to protect the graphite powder and prevent non-metallic inclusions from adhering. However, as in the case of the thermosetting resin described above, the film formation with this binder does not necessarily have to be uniformly performed on the entire graphite powder. The nozzle raw material in the present invention has thermosetting resin-coated alumina secondary particles and graphite particles coated with a phosphate or borate binder as essential components, and may be composed of only these two components. death,
These two components include silica, zirconia, silicon carbide, silicon nitride, and metal silicon (including ferrosilicon).
A composition of three or more components containing one or more of these may also be used. The forming means in the present invention may be carried out by any ordinary method employed in nozzle manufacture, but it is particularly advantageous to employ a rubber press method, since it is possible to manufacture a dense and stronger cast nozzle. Next, examples of the present invention will be described. Example 1 10% by weight of 3% boric acid was added to graphite powder with an average particle size of 44 μm or more, kneaded, and heated to reduce the particle size.
Graphite particles coated with boric acid and having a diameter of 0.1 to 1 mm were prepared. Next, phenolic resin was added to alumina powder with an average particle size of 44 μm and kneaded to form a phenolic resin coating with an average thickness of 15 μm, and then sintered to form a phenolic resin film with an average thickness of 0.01 μm.
Alumina-based secondary particles with a diameter of 0.5 mm were prepared. 60% by weight of these alumina-based secondary particles, 25% by weight of the above-mentioned boric acid coated graphite particles, and an average particle size of 250μ
m silica particles 13% by weight and metal silicon powder 2
After adding and kneading 20 parts by weight of pitch to 100 parts by weight of the nozzle raw material obtained by blending % by weight, the kneaded product was molded using a rubber press (pressure: 1000 Kg/cm 2 ). After that, this molded body was heated to 1000°C in a carbon breeze.
An alumina-graphite based cast nozzle was manufactured by firing at a temperature of .degree. Comparative Example After adding and kneading 20 parts by weight of pitch to 100 parts by weight of a nozzle raw material consisting of 60% by weight of alumina powder with an average particle size of 44 μm, 25% by weight of graphite particles, 13% by weight of silica particles, and 2% by weight of metal silicon powder, An alumina-graphite based cast nozzle was manufactured by molding and firing under the same conditions as in the previous example. Therefore, the various physical properties of the alumina-graphite casting nozzles of the present example and comparative example, the number of cracks (heat spalling resistance) when heating to 1400°C and then repeatedly cooling with water, and the slag When we investigated the degree of corrosion damage (corrosion resistance) of the outer part that comes into contact with the line part, the results are shown in the table below.

【表】【table】

【表】 以上詳述したごとく、本発明によれば黒鉛粒子
にリン酸塩系あるいはホウ酸塩系の結合剤の被膜
を形成することにより、アルミナ粒子と黒鉛粒子
とのなじみを改善すると共に、使用時における黒
鉛粒子の酸化消耗を抑制し、鋳込み時に非金属介
在物の付着を防止できるという効果に加え、アル
ミナに熱硬化性樹脂被膜を形成して2次粒子と
し、該アルミナの比重、粒径を他のノズル原料で
ある黒鉛粒子に近似させたことにより、原料粒子
の混練において偏析のない均質な混練物の調整が
可能となり、もつて成形、焼成により高強度で耐
熱スポーリング性の優れたアルミナ−黒鉛系鋳造
ノズルを製造できる等顕著な効果を有する。
[Table] As detailed above, according to the present invention, by forming a coating of a phosphate-based or borate-based binder on graphite particles, the compatibility between alumina particles and graphite particles is improved, and In addition to suppressing oxidative consumption of graphite particles during use and preventing the adhesion of non-metallic inclusions during casting, a thermosetting resin coating is formed on alumina to form secondary particles, and the specific gravity and particle size of the alumina are reduced. By making the diameter similar to graphite particles, which is another nozzle raw material, it is possible to prepare a homogeneous kneaded product without segregation when kneading the raw material particles, and it has high strength and excellent heat spalling resistance when molded and fired. It has remarkable effects such as being able to manufacture alumina-graphite based cast nozzles.

Claims (1)

【特許請求の範囲】 1 アルミナ及び黒鉛を主成分として含む原料を
用いてノズルを製造する方法において、 A:リン酸塩系あるいはホウ酸塩系の結合剤で処
理し表面に1〜25μmの前記結合剤の被膜を形
成した黒鉛粒子と、 B:熱硬化性樹脂で処理し、表面に1〜25μmの
前記樹脂被膜を形成した粒径0.5mm以下のアル
ミナ粉末を、前記黒鉛粒子に近似させるように
粒径および比重を調整して得た、表面に樹脂被
膜あるいは炭素質被膜を有するアルミナ系2次
粒子と、 を混練、成形、焼成することを特徴とするアルミ
ナ−黒鉛系鋳造ノズルの製造方法。
[Claims] 1. A method for manufacturing a nozzle using a raw material containing alumina and graphite as main components, A: treated with a phosphate-based or borate-based binder to form a 1-25 μm layer of the above-mentioned material on the surface. Graphite particles with a binder coating formed thereon; B: Alumina powder with a particle size of 0.5 mm or less that has been treated with a thermosetting resin and has a resin coating of 1 to 25 μm on its surface, so as to approximate the graphite particles. A method for producing an alumina-graphite casting nozzle, comprising: kneading, molding, and firing alumina secondary particles having a resin coating or a carbonaceous coating on the surface obtained by adjusting the particle size and specific gravity. .
JP2219679A 1979-02-27 1979-02-27 Aluminaagraphite casting nozzle and its manufacture Granted JPS55116660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2219679A JPS55116660A (en) 1979-02-27 1979-02-27 Aluminaagraphite casting nozzle and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2219679A JPS55116660A (en) 1979-02-27 1979-02-27 Aluminaagraphite casting nozzle and its manufacture

Publications (2)

Publication Number Publication Date
JPS55116660A JPS55116660A (en) 1980-09-08
JPS6317790B2 true JPS6317790B2 (en) 1988-04-15

Family

ID=12076037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2219679A Granted JPS55116660A (en) 1979-02-27 1979-02-27 Aluminaagraphite casting nozzle and its manufacture

Country Status (1)

Country Link
JP (1) JPS55116660A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756145A (en) * 1980-09-17 1982-04-03 Toshiba Ceramics Co Ltd Soaking nozzle for continuous casting
JPS63172721A (en) * 1987-01-10 1988-07-16 Minoru Sugisawa Process comprising mixing large amount of inorganic fine powder with binder formed by mixing curable formaldehyde polycondensate epoxy resin with water, forming the mixture at normal temperature and forming carbon-carbon bond of the binder by heating
DE3715178C2 (en) * 1987-05-07 1998-04-09 Vaw Ver Aluminium Werke Ag Process for the production of a refractory, iron and slag resistant oxide-carbon stone
JPS6418971A (en) * 1987-07-10 1989-01-23 Toshiba Tungaloy Co Ltd Aluminum oxide composite and production thereof

Also Published As

Publication number Publication date
JPS55116660A (en) 1980-09-08

Similar Documents

Publication Publication Date Title
CN108017376A (en) A kind of magnesia carbon brick and its production method
US4280844A (en) Refractory brick for molding molten steel
JPS583992B2 (en) Lenzokuchiyuzoyoushinseki nozzle
JPS6029664B2 (en) Manufacturing method of plate bricks for sliding nozzles
JPS6317790B2 (en)
JPH0118828B2 (en)
JPS6246951A (en) Manufacture of plate refractories for sliding nozzle
JPS6348828B2 (en)
JPS6119584B2 (en)
JPS5842144B2 (en) graphite casting nozzle
JPS605547B2 (en) Immersion nozzle for continuous casting
JPS62182156A (en) Refractory composition for sliding nozzle and formation thereof
JPH0556306B2 (en)
JP2727266B2 (en) Nozzle for continuous casting for steelmaking
JP2001505176A (en) Ceramic composition
JPS624355B2 (en)
JPS5919071B2 (en) Immersion nozzle for continuous steel casting
JP3035858B2 (en) Graphite-containing refractory and method for producing the same
JPS6324945B2 (en)
JPS60191049A (en) Metal mixing car and metal refining furnace
JPH08217550A (en) Carbon-containing spray repairing material and its production
JPS6346023B2 (en)
JPS6152099B2 (en)
JPS62197360A (en) Refractories for lining
JPH0543662B2 (en)