JP2727266B2 - Nozzle for continuous casting for steelmaking - Google Patents
Nozzle for continuous casting for steelmakingInfo
- Publication number
- JP2727266B2 JP2727266B2 JP26732891A JP26732891A JP2727266B2 JP 2727266 B2 JP2727266 B2 JP 2727266B2 JP 26732891 A JP26732891 A JP 26732891A JP 26732891 A JP26732891 A JP 26732891A JP 2727266 B2 JP2727266 B2 JP 2727266B2
- Authority
- JP
- Japan
- Prior art keywords
- sio
- nozzle
- cao
- weight
- refractory material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Continuous Casting (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は鋼の連続鋳造法において
取鍋から、タンディッシュ及びタンディッシュからモー
ルド間に使用されるロングノズル、浸漬ノズルで、特に
鋳造中に非金属介在物がノズル孔内に付着、堆積してノ
ズル孔を細くし、または閉塞することを防ぐようにした
製鋼用連続鋳造用ノズルに関するものである。
【0002】
【従来技術】従来一般に鋼の連続鋳造法は取鍋からタン
ディッシュへ、タンディッシュからモールドへと溶湯を
順次移送して鋳造して行く。この間、溶湯の酸化を防ぐ
ためにこれらの間を被覆接続するために用いられている
のがロングノズルであり、浸漬ノズルである。これらノ
ズルには注湯時間が長くなるにつれ、溶湯中に介在する
非金属介在物が孔内表面にしだいに付着し、堆積が徐々
に進み、ノズル孔内が狭められ、鋳造速度を低下させ
て、ついには正常な鋳造が出来なくなり、操業が不可能
と成る。また鋳造作業がどうにか出来ても、2孔以上の
吐出口を有する浸漬ノズルなどにおいては、吐出孔毎へ
の非金属介在物の付着,堆積量が異ることにより、均等
な流量の維持が出来ず、偏流を生じモールド内での流れ
に乱れが生じ、モールド内の側壁によって形成される凝
固殻の均一性に欠けることやこの付着堆積した非金属介
在物が溶湯の流れにより剥され流出して鋼片中に巻き込
まれて砂キズとして現われるなど操業面,品質面および
歩留り面等々悪影響をおよぼし重大な問題へと発展して
行く。
【0003】
【発明が解決しようとする課題】これらの問題点を解決
するため、現在タンディッシュストッパーの先端部やノ
ズル本体の孔内面に細孔またはノズル本体内側にスリッ
トを設け、これらの部分を介して不活性ガスを吹き込
み、このガスの作用効果により付着堆積をおさえる等の
方策の構造的な改善や、また材質面においても従来の高
アルミナ−黒鉛材からジルコニア−黒鉛材又カルシア−
ジルコニア質材の一部使用等高耐食性を維持でき、かつ
付着性をも少なく出来る素材等をノズル孔内壁面に配
し、多層式とする等の改善策が採り入れられて来ている
が、まだまだ不充分であり、現在の問題点を解決する迄
に至っていないのが現状である。尚この方式を取り入れ
ることにより操業の良し悪しにより時には吸込みガスに
よるモールド内でバブリング現象が生じ湯面が異状変動
を起こし操業上,品質上にも問題を起こしていること
や、ガス導入のための設備もしなければならないこと、
この導入のための作業が必要となり、設備費,人件費を
高め、ガス代等製造コストを高めているので、これらの
問題点解決が強く求められている。
【0004】
【課題が解決するための手段】本発明は、前述の如き現
状に鑑み、長時間連続操業してもノズル孔内壁面への非
金属介在物の付着堆積も無く安全な操業,品質の維持が
出来、しかも製造コスト高も招かない連続鋳造用ノズル
を造るため、非金属介在物との間で高い反応性を持ち、
この反応主成物が低融点物となる素材を採用することに
着目して、本発明品を完成させたものである。
【0005】本発明は付着物の主成分がAl2O3(ア
ルミナ)であることより、Al2O3(アルミナ)と反
応性の高いCaO−SiO2−B2O3系耐火材料を連
続鋳造用ノズル材料の一部として用いるものである。
【0006】即ちノズル孔の内壁で少なくとも吐出孔部
にCaO−SiO2−B2O3系耐火材料でCaO:S
iO2の含有量がモル比で2:1〜3:1の素材にB2
O3を1〜5重量%で構成され、CaO、SiO2、B
2O3の3成分の合量が95重量%以上である耐火材料
を5〜50重量%を配合させて成る黒鉛質材とすること
により非金属介在物の主成分であるAl2O3(アルミ
ナ)と反応させ低融物として流出させてノズル孔内壁へ
の付着、堆積をおさえることに有効なノズル材を見い出
したものである。
(限定理由)
CaO−SiO2−B2O3系耐火材料でCaO:S
iO2の含有量がモル比で2:1〜3:1とした理由。
CaO:SiO2のモル比が2:1以下となると、耐火
性がおとり、耐食性に問題が生じ、また3:1以上とな
ると遊離CaO所謂遊離石灰(ライム)を含有すること
となり、製造上、貯蔵上水和反応を生ずるために大きな
問題が出るためである。またB2O3(硼酸)の含有量
を1〜5重量%としたのはB2O3を含有させる目的が
CaO−SiO2系材料が加熱冷却工程で725℃で主
成分である2CaO・SiO2結晶がβ型から容易にγ
型へと転移しγ2CaO−SiO2結晶となり約12%
の容積増を伴うことにより粉化現象を生じ崩壊してしま
うこの転移現象を抑制するために含有させるものであ
り、
1重量%以内では効果小さく不安定である。
5重量%以上では耐熱性をそこない問題が生ずる。
CaO−SiO2−B2O3系耐火材料でCaO、S
iO2、B2O3の3成分を必須とし合量が95重量%
以上である耐火材料を5〜50重量%添加について
a 5重量%以下の場合は反応は反応量が少なく付着、
堆積現象の改善効果が少ない。
b 50重量%以上の場合は耐食性が低くなり耐用度が
低下するためである。
炭素および黒鉛質材料10〜35重量%
炭素および黒鉛質材料の添加目的は▲イ▼耐食性、▲ロ
▼耐熱スポーリング性を高めることにある。
a 10重量%以下では耐食性及び耐熱スポーリング性
におとる。
b 35重量%以上となるとノズル自体の強度が低くな
る。
等この範囲を外れると使用上の必要特性を充分に満たせ
ない結果となるためである。また、これらの原料以外に
焼結して炭素材料の酸化防止を計るために炭化物や窒化
物の材料を添加することも有効である。
【表1】【表3】
【0007】
【実施例】実施例に用いる原料中、CaO−SiO2 −
B2O3系耐火材料及びCaO−ZrO2系耐火材料を
製造する素材の化学成分値を表1に、又原料のの配合比
率を表2に示す。表3には実施例に用いる原料の化学成
分値を示す。表3に示す原料中、CaO−SiO2 −B
2O3系耐火材料およびCaO−ZrO2系耐火材料の
製造は、表1に示す原料をそれぞれ74μ以下の粒度に
粉砕し、表2に示す配合比率で配合を行いウェットパン
にて非水素樹脂を加え混練後、ブリケットマシンで6m
m×6mm×8mmの大きさに造粒した後、乾燥し、こ
れを電気炉を用い溶解し、炉を傾動させて取鍋に移し、
冷却して本試験材を造り使用に供する。
【0008】
【発明の効果】本発明の範囲内の耐火材料は実施例表2
に示されるように溶鋼中の非金属介在物の主成分である
アルミナとの反応性の高いCaO、SiO2、B2O3
の3成分を必須成分として構成して居る。しかもCa
O:SiO2の比をモル比で2:1〜3:1とし、B2
O3 1〜5%と限定したことにより耐熱性、耐消化性お
よび結晶形の安定性にもすぐれ加熱、冷却の繰り返しに
おいても、2CaO・SiO2 結晶等も結晶形の転移が
なくγ2CaO・SiO2 結晶等の異結晶体は全く生成
が認められない等耐火材として特性を充分に備え持ちア
ルミナとの接触面での反応性も非常に高い等の機能性を
有する。また本発明に用いるCaO−SiO 2 −B 2 O
3 系耐火材料は電気溶融したのち、冷却して製造してい
るため、均質なる素材を得ることが出来ると共に高い結
晶度を有しており、素材の安定度も高く、耐火材として
の品質及び品質の安定性が高い材料を得ることが出来
る。
【0009】以上の試作材料中C材を用いてハイアルミ
ナ−黒鉛質材の浸漬ノズル材の電融アルミナとの置換試
験結果を表4に、また表5には表2C材を25重量%添
加した材料を基準として黒鉛質材の添加量についての試
験結果を示す。また表6にはCaO−SiO2−B2O
3 系耐火材料の成分値差の比較および従来材、と比較材
との比較試験結果を示す。尚、本試験材の製造は、表
4,5,6に示される配合比率に基づき材料を混合し、
30℃に加熱し混練後、室内で放置、冷却した後、ホグ
しを行いラバープレスにて1000kg/cm2の圧力
で加圧成形し、トンネル窯で最高温度1350℃サヤ中
でコークブリーズ中に埋め焼成後、機械加工を行い、所
定の形状の浸漬ノズルを製出する。浸食試験および、付
着試験は製出した浸漬ノズル材より、40×40×25
0mmの試料を切り出し、高周波誘導炉の溶湯中に12
回/分の回転をさせながら浸漬し、120分間保持して
行う。浸食試験は溶湯(鋼)中にAlを3%添加し溶湯
温度1580℃±10に制御した条件であった。尚実機
による実用試験結果を表7に示す。これらの一連の基礎
試験および実機での実用試験結果に示されるように本発
明に用いる安定したCaO−SiO2−B2O3系耐火
材料により非金属介在物の付着も非常に少なく良好であ
る。特に実機による実用試験結果に示されるように従来
品として表6の比較品と本発明として表6とをそ
れぞれ同一タンディッシュの浸漬ノズルとして使用した
結果、付着物の付着量は従来品が表面に凹凸があり、1
2〜20mmに対して本発明品はそれぞれ1〜3mm、
1.5〜3.5mmと非常に少なく表面も滑らかで付着
した非金属介在物の剥落流出もなく、また付着物の堆積
による偏流も無く、作業上及び鋼の品質面、歩留等々に
大きな改善効果が得られる。なお表2において、
(耐水和性)
電気溶融物を粉砕して3〜2mmに調整して試料とす
る。この試料を水中に入れ、煮沸時間後、約105℃の
恒温槽中で10時間乾燥を行う。
a.重量増加量(消化量)
b.粉化率(2mm以下となった量(重量パーセン
ト))
(耐熱性)
所定温度で3時間保持炉内冷却後の状態を示す。
試料は溶融物から30×30×30mmの大きさに切り
出し造る。
(機能性試験)
溶融材料を粉砕し、3〜1mm45%、1〜0.1mm
15%、0.1mm以下40%と配合し樹脂5%を添加
混練後、1000kg/cm2の圧力で加圧成形した
後、1550℃で焼成し、試料とする。試料の大きさ5
0×50×20mmに44μm以下の粒度のアルミナを
厚み2mmに塗布して30分間1550℃で保持し炉内
冷却後の状態を示す。
実機による比較試験結果を表7に示す。
使用条件
1.鋼種、低炭素アルミキルド鋼
2.スラブの大きさ 220×1150〜1500mm
使用に供した材質
表6 比較例
表6 本発明品
【表1】
【表2】
【表3】【表4】【表5】【表6】【表7】 BACKGROUND OF THE INVENTION [0001] BACKGROUND OF THE INVENTION This invention is a Oite <br/> ladle in the continuous casting of steel, long nozzle which is used between the mold from a tundish and tundish More particularly, the present invention relates to a continuous casting nozzle for steelmaking which prevents non-metallic inclusions from adhering and accumulating in the nozzle hole during casting, thereby narrowing or closing the nozzle hole. 2. Description of the Related Art Conventionally, in the conventional continuous casting method of steel, molten metal is sequentially transferred from a ladle to a tundish and from a tundish to a mold and cast. During this time, a long nozzle and an immersion nozzle are used to cover and connect the molten metal to prevent oxidation of the molten metal. As the pouring time of these nozzles increases, non-metallic inclusions intervening in the molten metal gradually adhere to the inner surface of the hole, the deposition gradually progresses, the inside of the nozzle hole is narrowed, and the casting speed is reduced. Eventually, normal casting cannot be performed, and operation becomes impossible. Even if the casting operation can be managed, even if the immersion nozzle has two or more discharge ports, the uniform flow rate can be maintained due to the difference in the amount of non-metallic inclusions deposited and deposited on each discharge hole. Instead, a drift occurs and the flow in the mold is disturbed, and the uniformity of the solidified shell formed by the sidewalls in the mold is lacking, and the non-metallic inclusions deposited and separated by the flow of the molten metal flow out. It becomes entangled in the billet and appears as sand flaws, which adversely affects the operation, quality and yield, and develops into serious problems. [0003] In order to solve these problems, a hole is formed in the tip of the tundish stopper or the inside of the hole of the nozzle body, or a slit is formed inside the nozzle body. Inert gas is blown through the gas to suppress the adhesion and deposition by the effect of the gas, and the structure is improved. Also, in terms of material, conventional high alumina-graphite material to zirconia-graphite material or calcia material is used.
Improvement measures such as the use of zirconia-based materials, such as partial use of materials that can maintain high corrosion resistance and reduce adhesion, have been adopted on the inner wall surface of the nozzle hole to adopt a multi-layer structure. At present, it is not enough to solve the current problems. By adopting this method, the bubbling phenomenon sometimes occurs in the mold due to the suction gas depending on the quality of the operation, and the level of the molten metal is changed abnormally, causing problems in operation and quality. What you have to do
Work for this introduction is required, equipment costs and labor costs are increased, and production costs such as gas costs are increased. Therefore, there is a strong demand for solving these problems. [0004] In view of the above situation, the present invention provides safe operation and quality without nonmetallic inclusions and deposits on the inner wall surface of the nozzle hole even when the operation is continuously performed for a long time. Has a high reactivity with non-metallic inclusions to produce a continuous casting nozzle that does not incur high production costs.
The present invention has been completed by paying attention to the fact that the main component of the reaction is a material having a low melting point. In the present invention, since the main component of the deposit is Al 2 O 3 (alumina), a CaO— SiO 2 —B 2 O 3 based refractory material having high reactivity with Al 2 O 3 (alumina) is continuously used. It is used as a part of a casting nozzle material. That is, at least the discharge hole portion on the inner wall of the nozzle hole is made of a CaO—SiO 2 —B 2 O 3 refractory material of CaO: S
The content of iO 2 is in a molar ratio of 2: 1~3: B 2 in 1 material
O 3, consists of 1 to 5 wt%, CaO, SiO 2, B
By using a refractory material in which the total amount of the three components of 2 O 3 is 95% by weight or more as a graphite material mixed with 5 to 50% by weight, Al 2 O 3 ( (Alumina), and found out a nozzle material that is effective as a low-melt material to flow out as a low-melt material to suppress adhesion and deposition on the inner wall of the nozzle hole. (Reasons for limitation) CaO-SiO 2 -B 2 O 3 based refractory materials CaO: S
The reason that the content of iO 2 was 2: 1 to 3: 1 in molar ratio. When the molar ratio of CaO: SiO 2 is 2: 1 or less, fire resistance is degraded, and there is a problem in corrosion resistance. When the molar ratio is 3: 1 or more, free CaO, so-called free lime, is contained. This is because a serious problem arises due to hydration reaction on storage. 2CaO The B 2 O 3 (boric acid) is desired CaO-SiO 2 based materials which contain B 2 O 3 to the content was 1 to 5% by weight of a main component at 725 ° C. in heating and cooling processes and SiO 2 crystal can be easily converted from β type to γ
Transforms into a mold and becomes γ2CaO-SiO 2 crystal, about 12%
Is contained in order to suppress this transition phenomenon, which causes a powdering phenomenon and collapses with an increase in the volume of the alloy. When the content is less than 1% by weight , the effect is small and unstable. If the content is more than 5% by weight , a problem occurs that heat resistance is not reduced. CaO-SiO 2 -B 2 O 3 system CaO in the refractory material, S
The three components of iO 2 and B 2 O 3 are essential and the total amount is 95% by weight .
When the content of the refractory material is 5% by weight or less with respect to the addition of 5 to 50% by weight, the reaction amount is small, and
Little improvement effect of sedimentation phenomenon. b When the content is 50% by weight or more, the corrosion resistance is reduced and the durability is reduced. Carbon and Graphite Material 10 to 35% by Weight The purpose of addition of carbon and graphite material is to improve (a) corrosion resistance and (b) heat spalling resistance. a When the content is 10% by weight or less, corrosion resistance and heat spalling resistance are obtained. b When the content is 35% by weight or more, the strength of the nozzle itself decreases. If the ratio is out of this range, the required characteristics in use cannot be sufficiently satisfied. It is also effective to add a carbide or nitride material other than these raw materials in order to prevent oxidation of the carbon material by sintering. [Table 1] [Table 3] [0007] in the raw materials used in EXAMPLE, CaO - SiO 2 -
Table 1 chemical composition values of the material to produce a B 2 O 3 refractory material and CaO-ZrO 2 refractory material, also shown in Table 2. blending ratio of the raw material. Table 3 shows the chemical component values of the raw materials used in the examples. In the raw materials shown in Table 3, CaO-SiO 2 - B
2 O 3 refractory material and CaO - preparation of ZrO 2 based refractory material, the raw materials shown in Table 1, respectively pulverized into a particle size of less than 74Myu, nonhydrogen resins by wet pan performs blended at ratios shown in Table 2 6m after mixing with a briquette machine
After granulating to a size of mx 6 mm x 8 mm, drying, melting this using an electric furnace, tilting the furnace and transferring to a ladle,
After cooling, produce this test material and use it. The refractory materials within the scope of the present invention are shown in Table 2 in the Examples.
As shown in the figure, CaO, SiO 2 , B 2 O 3 having high reactivity with alumina which is a main component of nonmetallic inclusions in molten steel
It has to form a three-component as an essential component. And Ca
The molar ratio of O : SiO 2 is 2: 1 to 3: 1 and B 2
By limiting the content to O 3 1 to 5%, heat resistance, digestion resistance and stability of the crystal form are excellent, and even when heating and cooling are repeated, 2CaO · SiO 2 crystal and the like have no crystal form transition and γ 2CaO · reactivity at the interface between the alumina has sufficiently provided with characteristics as such refractory material different crystal body at all generation is not observed in the SiO 2 crystals such also has the function of a very high like. The CaO-SiO 2 -B 2 O used in the present invention
Since the 3 series refractory material is produced by cooling after being melted electrically, a homogeneous material can be obtained and has high crystallinity, the stability of the material is high, and the quality as a refractory material and Materials with high quality stability can be obtained. Table 4 shows the results of the substitution test of the immersion nozzle material of the high alumina-graphite material with the fused alumina using the C material in the above-mentioned prototype materials, and Table 5 shows that the C material was 25% by weight . added material shows the test results for the addition amount of the graphite material as a reference. Table 6 shows that CaO—SiO 2 —B 2 O
Comparison and conventional materials of component value difference of 3 refractory material, and shows the comparative test results of the comparative material. The test materials were manufactured by mixing the materials based on the mixing ratios shown in Tables 4, 5, and 6,
After heating to 30 ° C , kneading, standing in a room, cooling, hogging, press-molding with a rubber press at a pressure of 1000 kg / cm 2 , in a tunnel kiln at a maximum temperature of 1350 ° C, in a coke breeze After burying and firing , machine processing is performed to produce an immersion nozzle having a predetermined shape. The erosion test and the adhesion test were carried out from the immersion nozzle material produced by 40 × 40 × 25.
A 0 mm sample was cut out and placed in a molten metal of a high frequency induction furnace.
The immersion is performed while rotating at a rate of 1 minute, and the holding is performed for 120 minutes. The erosion test was carried out under conditions in which 3% of Al was added to the molten metal (steel) and the temperature of the molten metal was controlled at 1580 ° C. ± 10. Incidentally shows the practical test results using an actual in Table 7. Stable CaO-SiO 2 -B 2 O 3 refractory used in the present invention as shown in practical tests results of the series of basic tests and actual
Depending on the material , the adhesion of nonmetallic inclusions is very small and good. In particular, as shown in the results of practical tests using actual machines, the comparative product in Table 6 as a conventional product and Table 6 as the present invention were used as immersion nozzles of the same tundish, respectively. There are irregularities, 1
The present invention product is 1 to 3 mm for 2 to 20 mm,
1.5 to 3.5 mm, which is very small, the surface is smooth, and non-metallic inclusions adhered to the surface are not separated and run off. Also, there is no drift due to the accumulation of the attached matter, and it is large in terms of work, steel quality, yield, etc. An improvement effect is obtained. In Table 2, (hydration resistance) The electric melt was pulverized and adjusted to 3 to 2 mm to prepare a sample. This sample is placed in water, and after boiling time, dried in a thermostat at about 105 ° C. for 10 hours. a. Weight gain (digestion) b. Powdering ratio (amount reduced to 2 mm or less (weight percent)) (Heat resistance) The state after cooling in a holding furnace at a predetermined temperature for 3 hours is shown. A sample is cut out from the melt to a size of 30 × 30 × 30 mm and made. (Functional test) The molten material is pulverized, and 3 to 1 mm 45%, 1 to 0.1 mm
After blending with 15% and 0.1% or less of 40%, adding and kneading 5% of the resin, press-molding at a pressure of 1000 kg / cm 2 , and baking at 1550 ° C. to obtain a sample. Sample size 5
Alumina with a particle size of 44 μm or less is added to 0 × 50 × 20 mm.
This figure shows the state after coating at a thickness of 2 mm, holding at 1550 ° C. for 30 minutes and cooling in the furnace. Table 7 shows the results of the comparison test using the actual machine. Usage conditions 1. 1. Steel type, low carbon aluminum killed steel Slabs of size 220 × 1,150-1,500 mm Material Table 6 Comparative Example Table 6 present invention product is ready to use [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] [Table 6] [Table 7]
Claims (1)
CaO−SiO2−B2O3系耐火材料においてCa
O:SiO2 のモル比が2:1〜3:1の耐火材料95
〜99重量%,B2O31〜5重量%を含有し、Ca
O,SiO2,B2O3の3成分の合量が95重量%以
上を含有する耐火材料を5〜50重量%と炭素および黒
鉛質材料10〜35重量%と残部を酸化物耐火材料で構
成し、有機バインダーを添加して混練成形後、焼成する
ことを特徴とする製鋼用連続鋳造用ノズル。(57) Claims: CaO, SiO 2, B 2 and 3 components of O 3 was essential components CaO-SiO 2 -B 2 O 3 system Ca in refractory material
Refractory material 95 having a molar ratio of O: SiO 2 of 2: 1 to 3: 1
99% by weight, containing 2 O 3 1 to 5 wt% B, Ca
O, and SiO 2, B 2 5~50 wt% of the refractory material that the total amount of 3 component contains more than 95 wt.% Of O 3 and 10 to 35 weight percent carbon and graphitic material and the remainder of oxide refractory materials A nozzle for continuous casting for steelmaking, comprising: kneading and molding after adding an organic binder;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26732891A JP2727266B2 (en) | 1991-09-17 | 1991-09-17 | Nozzle for continuous casting for steelmaking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26732891A JP2727266B2 (en) | 1991-09-17 | 1991-09-17 | Nozzle for continuous casting for steelmaking |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0577005A JPH0577005A (en) | 1993-03-30 |
JP2727266B2 true JP2727266B2 (en) | 1998-03-11 |
Family
ID=17443296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26732891A Expired - Fee Related JP2727266B2 (en) | 1991-09-17 | 1991-09-17 | Nozzle for continuous casting for steelmaking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2727266B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5134516B2 (en) * | 2008-12-04 | 2013-01-30 | 黒崎播磨株式会社 | Continuous casting nozzle |
AU2010320042B2 (en) * | 2010-05-07 | 2013-10-03 | Krosakiharima Corporation | Refractory material, continuous casting nozzle using the refractory material, production method for the continuous casting nozzle, and continuous casting method using the continuous casting nozzle |
-
1991
- 1991-09-17 JP JP26732891A patent/JP2727266B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0577005A (en) | 1993-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2227962A (en) | Molten steel pouring nozzle | |
JP2727266B2 (en) | Nozzle for continuous casting for steelmaking | |
JPS6144836B2 (en) | ||
JPH0747197B2 (en) | Nozzle for continuous casting of molten steel | |
JPS6246951A (en) | Manufacture of plate refractories for sliding nozzle | |
JPS6348828B2 (en) | ||
JP4431111B2 (en) | Continuous casting nozzle | |
JPS6138153B2 (en) | ||
JPS6138152B2 (en) | ||
JP3101650B2 (en) | Nozzle for continuous casting | |
JP4960574B2 (en) | Refractory used for continuous casting nozzles to prevent alumina adhesion | |
JPH05309457A (en) | Refractory for continuous casting | |
JPS62158562A (en) | Nozzle for low-temperature casting of molten steel | |
JPH02180753A (en) | Production of immersion nozzle for continuous casting | |
JPH0987011A (en) | Production of upper nozzle for sliding nozzle device and upper nozzle produced by this method | |
JPH0556306B2 (en) | ||
JPH10202349A (en) | Nozzle for continuous casting | |
JPH0319183B2 (en) | ||
JPS639908B2 (en) | ||
JPS6214510B2 (en) | ||
JPH06298570A (en) | Casting material for lining steel-melting vessel | |
JPH0716784B2 (en) | Pouring ladle and tundish | |
JPS621345B2 (en) | ||
JPS58120569A (en) | Nozzle for casting | |
JPH11246265A (en) | High corrosion resistant fused silica-containing refractory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |