JPH03247565A - Production of carbon fiber-reinforced carbon material - Google Patents

Production of carbon fiber-reinforced carbon material

Info

Publication number
JPH03247565A
JPH03247565A JP2044032A JP4403290A JPH03247565A JP H03247565 A JPH03247565 A JP H03247565A JP 2044032 A JP2044032 A JP 2044032A JP 4403290 A JP4403290 A JP 4403290A JP H03247565 A JPH03247565 A JP H03247565A
Authority
JP
Japan
Prior art keywords
carbon
powder
resin
mesophase pitch
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2044032A
Other languages
Japanese (ja)
Inventor
Akio Shindo
進藤 昭男
Jun Takayasu
高安 潤
Kenji Taniguchi
硯士 谷口
Eiki Tsushima
栄樹 津島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP2044032A priority Critical patent/JPH03247565A/en
Publication of JPH03247565A publication Critical patent/JPH03247565A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the carbon-carbon composite material having high density and strength by impregnating the carbon fiber with a dispersion of a specified thermosetting resin, carbon powder and mesophase pitch powder in furfural or furfuryl alcohol, molding the fiber under pressure and burning the formed body. CONSTITUTION:The carbon fiber heat-treated at >=500 deg.C is impregnated with a dispersion of the soln. of a phenolic resin having tackiness or fluidity at ordinary temp., a furan resin or their mixture in furfural, furfuryl alcohol or their mixture as the solvent, carbon powder and mesophase pitch powder. The solvent is volatilized, the obtained carbon fiber contg. the precursor of base material is molded under pressure, and the formed body is burned under pressure to produce the desired carbon material. Graphite and/or coke are used for the carbon powder. Crude coke is excellently bonded to mesophase pitch, and consequently preferably used for the carbon powder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は常温において流動性もしくは粘着性を示す熱硬
化性樹脂を被覆させたメソフェーズピッチ粉末と炭素粉
末を含有する炭素繊維を成形、焼成して炭素繊維強化炭
素材料(炭素−炭素複合材)を製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention involves molding and firing carbon fiber containing mesophase pitch powder and carbon powder coated with a thermosetting resin that exhibits fluidity or stickiness at room temperature. The present invention relates to a method for producing a carbon fiber reinforced carbon material (carbon-carbon composite material).

〔従来の技術及びその解決すべき課題〕炭素−炭素複合
材は、耐熱性、耐熱衝撃性にすぐれた軽量材であって、
航空宇宙機器、核融合炉等の耐熱摺動材、高温断熱材等
にきわめて有用なものである。このような炭素−炭素複
合材としては、従来、炭素繊維間隙にフェノール樹脂、
フラン樹脂等の熱硬化性樹脂あるいはピッチを含浸させ
た炭素繊維成形体を焼成して炭化、黒鉛化処理し、更に
含浸と焼成の操作を繰返す母材先駆材含浸法や炭素繊維
集合体の繊維間隙に炭化水素等を用いる化学蒸着法によ
って炭素を充填する方法が一般的である。しかしながら
、これらの方法では炭素−炭素複合材の製造に多くの日
数を要する。
[Prior art and problems to be solved] Carbon-carbon composite materials are lightweight materials with excellent heat resistance and thermal shock resistance.
It is extremely useful for heat-resistant sliding materials for aerospace equipment, nuclear fusion reactors, etc., high-temperature insulation materials, etc. Conventionally, such carbon-carbon composite materials include phenol resin,
A base material precursor impregnation method in which a carbon fiber molded body impregnated with a thermosetting resin such as furan resin or pitch is fired, carbonized and graphitized, and the impregnation and firing operations are repeated, and fibers of carbon fiber aggregates are used. A common method is to fill the gap with carbon by chemical vapor deposition using hydrocarbon or the like. However, these methods require many days to manufacture carbon-carbon composites.

そのため、上記母材先駆材含浸法に代わるものとして炭
化収率のより高い、そして焼結能のある母材先駆材を含
有した炭素繊維の中間材(母材先駆材含有炭素繊維)を
積層成形し、次いで焼成することによって、母材先駆材
の含浸及び炭化処理を繰返すことなく、比較的高品質の
炭素−炭S複合材を製造する方法が提案されている。こ
の技術においては、コークスあるいは黒鉛等の炭素粉末
及びメソフェーズピッチ粉末を炭素繊維に混合し、又は
含有させ、積層成形した後、焼成する方法である(特開
昭62−148366号、63−40764号、63−
112463号各公報)0しかしながら、これらの方法
では、炭素粉末とピッチ粉末を素繊維にただ単に混入あ
るいは積層して加圧成形しているか、炭素粉末、ピッチ
粉末と炭素繊維を熱可塑性樹脂のスリーブに包含させた
形状のものを積層加圧成形して、焼成炭化しているため
、成形の際の操作中粉末粒子が移動し易く、その結果、
炭素繊維間隙のあらゆる個処に均一に母材の存在する炭
素−炭素複合材の製造が困難であり、強度の充分に高い
複合材が得られにくい等の問題があった。また、上記ス
リーブは、熱可塑性樹脂からなっているため、焼成初期
において分解し、多量のガスを発生し、成形、焼成工程
を煩雑なものとするなどの問題があった。
Therefore, as an alternative to the matrix precursor impregnation method described above, a carbon fiber intermediate material containing a matrix precursor with a higher carbonization yield and sintering ability (base material precursor-containing carbon fiber) is laminated and formed. A method has been proposed for producing a relatively high quality carbon-charcoal S composite material by carrying out carbonization and then firing, without repeating the impregnation and carbonization treatment of the base material precursor. In this technology, carbon powder such as coke or graphite and mesophase pitch powder are mixed or contained in carbon fibers, laminated and formed, and then fired (Japanese Patent Laid-Open Nos. 62-148366 and 63-40764). , 63-
112463) 0 However, in these methods, carbon powder and pitch powder are simply mixed or laminated into basic fibers and pressure molded, or carbon powder, pitch powder, and carbon fiber are mixed into a sleeve of thermoplastic resin. Because the shape of the powder is laminated and pressure-molded and then fired and carbonized, the powder particles tend to move during the molding operation, and as a result,
It is difficult to manufacture a carbon-carbon composite material in which the base material is uniformly present in all the carbon fiber gaps, and there have been problems such as difficulty in obtaining a composite material with sufficiently high strength. Furthermore, since the sleeve is made of thermoplastic resin, it decomposes in the early stages of firing, generating a large amount of gas, and complicating the molding and firing steps.

〔課題を解決するための手段〕[Means to solve the problem]

強度のより高い高品質炭素−炭素複合材を得るための中
間材としては、炭化収率が高く、炭化結合性のある母材
先駆材粉末が炭素繊維間のあらゆる部位に存在し、しか
も均一に分布しており、先駆材粉末が炭素繊維と付着し
、中間材の取扱いに際してその分布が片寄ることのない
こと等が望まれる。炭素粉末を炭素繊維に付着させるに
は、炭素粉末粒子に粘着性のある炭化性物質を被覆させ
る方法が望ましい。このような物質としては熱硬化性樹
脂初期反応生成物、即ち、室温において粘着性又は流動
性を示す熱硬化性樹脂が適している。
As an intermediate material for obtaining high-quality carbon-carbon composites with higher strength, a matrix precursor powder with high carbonization yield and carbonization bonding properties is present in all parts between carbon fibers and is uniformly distributed. It is desirable that the precursor powder adheres to the carbon fibers and that the distribution is not biased when handling the intermediate material. In order to attach carbon powder to carbon fibers, it is desirable to coat carbon powder particles with a sticky carbonizable substance. Suitable materials include thermosetting resin initial reaction products, that is, thermosetting resins that are tacky or fluid at room temperature.

また、炭素粉末を炭素繊維に均一に包含させるには、炭
素粉末の分散液を利用する方法が考えられる。この場合
は、熱硬化性樹脂初期反応物は溶解するが、ピッチ粉末
は溶解するこよなく、かつ炭素粉末、ピッチ粉末及び炭
素繊維をよくぬらして、良く分散させる溶媒が必要とな
る。しかしながら、このような場合に従来から使用され
ている溶媒はメタノール、エタノール等であるが、これ
らの溶媒は上北条件を充分に満たすものではない。
Further, in order to uniformly incorporate carbon powder into carbon fibers, a method using a dispersion liquid of carbon powder may be considered. In this case, it is necessary to use a solvent that dissolves the thermosetting resin initial reactant but does not dissolve the pitch powder at all, and that thoroughly wets and disperses the carbon powder, pitch powder, and carbon fibers. However, although the solvents conventionally used in such cases are methanol, ethanol, etc., these solvents do not fully satisfy the Kamikita condition.

本発明者らは、以上の観点から鋭意検討した結果、フル
フラール、フルフリルアルコール又はそれらの混合物が
上記条件をそなえた溶媒であることを見出し、また黒鉛
粉末やコークス粉末等の炭素粉末と、メソフェーズピッ
チ粉末とを常温で流動性もしくは粘着性を有する熱硬化
性樹脂で被覆し、これを炭素繊維に包含させることによ
って、取扱い性が良好な中間材が得られ、この中間材を
成形し、ついで焼成することによって高密度、高強度を
示す炭素−炭素複合材が得られること、さらにこの中間
材がフルフラール、フルフリルアルコール、又はこれら
の混合物に流動性熱硬化樹脂を溶解した溶液に、炭素粉
末とメソフェーズピッチ粉末を分散させ、得られた分散
液を炭素繊維に含浸、乾燥させることによって得られる
ことを見出し、本発明をなすに至った。即ち、本発明は
、常温において流動性又は粘稠性あるフェノール系、フ
ラン系又はそれらの混合物を被覆した炭素粉末とメソフ
ェーズピッチ粉末とを母材先駆材として含浸させた炭素
繊維を得、次いでこれを成形し、焼成して高品質炭素−
炭素複合材を製造する方法である。
As a result of intensive studies from the above viewpoint, the present inventors found that furfural, furfuryl alcohol, or a mixture thereof is a solvent that satisfies the above conditions. By coating pitch powder with a thermosetting resin that is fluid or sticky at room temperature and incorporating this into carbon fiber, an intermediate material with good handling properties can be obtained, and this intermediate material is molded and then A carbon-carbon composite material exhibiting high density and high strength can be obtained by firing, and furthermore, this intermediate material is a solution in which a fluid thermosetting resin is dissolved in furfural, furfuryl alcohol, or a mixture thereof. The present inventors have discovered that carbon fibers can be obtained by dispersing mesophase pitch powder, impregnating carbon fibers with the resulting dispersion, and drying the resulting dispersion, leading to the present invention. That is, the present invention obtains carbon fibers impregnated with carbon powder coated with phenol, furan, or a mixture thereof, which is fluid or viscous at room temperature, and mesophase pitch powder as a base material precursor, and then molded and fired to produce high quality carbon.
This is a method for manufacturing carbon composite materials.

以下、本発明について詳述する。The present invention will be explained in detail below.

本発明に使用される炭素繊維はPAN系、メソフェーズ
ピッチ系、等方性ピッチ系その他、一般に炭素繊維と称
呼されるもの全てである。但し、熱処理温度500℃以
上のものが用いられる。これより低い熱処理温度の繊維
の場合には、脆弱なものがあり、また焼成に際して分解
ガスの発生が多い等強化材として適当ではない。単繊維
径は一般に5〜15μmであるが、これより細いもので
も太いものも用い得る。形状は、例えば、1.000〜
30,000本の単繊維の東あるいは集合体である。こ
れには、例えば、糸、あるいはトウが含まれる。また、
ステープル状の炭素繊維も使用し得る。炭素繊維は一般
にサイズ材が付与されているが、この場合は使用前にこ
れを除くことが望ましい。
The carbon fibers used in the present invention are PAN-based, mesophase pitch-based, isotropic pitch-based, and all other types that are generally called carbon fibers. However, a heat treatment temperature of 500° C. or higher is used. Fibers treated at lower heat treatment temperatures may be brittle and generate a large amount of decomposition gas during firing, making them unsuitable as reinforcing materials. The single fiber diameter is generally 5 to 15 μm, but those thinner or thicker than this can also be used. The shape is, for example, 1.000~
It is an aggregate of 30,000 single fibers. This includes, for example, thread or tow. Also,
Staple carbon fibers may also be used. Carbon fibers are generally sized, but in this case it is desirable to remove this before use.

炭素粉末としては、黒鉛及び/又はコークスが用いられ
得る。黒鉛は灰分を除去した天然黒鉛粉末を使用し得る
が、コークスを公知の方法によって、例えば2,000
〜3,000℃の温度に黒鉛化熱処理して得られる人造
黒鉛粉末が好ましい。コークスは石油系、石炭系で、4
50℃以上の温度に熱処理して得られるものである。従
って、これには生コークスも含まれる。また、コークス
としては生コークス、爆燃コークスをさらに熱処理した
ものも含まれる。生コークスはメソフェーズピッチとの
炭化結合性が良好なため炭素粉末として特に好ましい。
Graphite and/or coke may be used as the carbon powder. Natural graphite powder from which ash has been removed can be used as graphite, but coke may be mixed with coke by a known method, for example,
Artificial graphite powder obtained by graphitization heat treatment at a temperature of ~3,000°C is preferred. Coke is petroleum-based and coal-based.
It is obtained by heat treatment at a temperature of 50°C or higher. Therefore, this also includes raw coke. Further, the coke includes raw coke and deflagration coke further heat-treated. Raw coke is particularly preferred as carbon powder because it has good carbonization bonding properties with mesophase pitch.

炭素粉末の平均粒径は1−15μmが好ましい。メソフ
ェーズピッチは光学的異方性相が98%以上あるいは実
質上100%であり、かつ軟化性あるいは加熱中加圧に
よって流動性を示すものが使用される。軟化点は270
℃以上が好ましく、高い場合は例えば430℃である。
The average particle size of the carbon powder is preferably 1-15 μm. The mesophase pitch used is one that has an optically anisotropic phase of 98% or more or substantially 100% and exhibits softening properties or fluidity when pressed during heating. Softening point is 270
The temperature is preferably 430°C or higher, for example, 430°C.

このようなピッチは炭化収率が高く、かつ炭素粉末及び
炭素繊維の結合材としての有用性が高い。
Such pitch has a high carbonization yield and is highly useful as a binder for carbon powder and carbon fibers.

メソフェーズピッチは石油系、石炭系の各種重質油ある
いはピッチを300〜500℃の温度で熱処理する公知
の方法によって製造できる。また、化合物系ピッチはナ
フタレン、アンスラセン、フェナンスレンその他の縮合
ベンゼン環を主構造とする芳香族系化合物の熱処理、あ
るいは触媒存在下の熱処理によって製造され得る。これ
らのピッチの製造には、必要に応じて蒸留、減圧脱気、
加熱通気等による低分子量物質の除去、溶剤抽出処理、
沈降分離等の等方性相ピッチの分離除去工程を加味する
ことができる。ピッチは粉末で使用されるが、その平均
粒径は1〜30μmが好ましく、2〜15μmがより好
ましい。揮発分は30%以下であることが望ましく、2
5%以下であることが更に望ましい。なお、ここに言う
揮発分は毎分20℃で100℃から1000℃まで不活
性雰囲気中で昇温した際の重量減少率である。
Mesophase pitch can be produced by a known method of heat treating various petroleum-based, coal-based heavy oils or pitch at a temperature of 300 to 500°C. Further, compound pitch can be produced by heat treatment of an aromatic compound having a main structure of a condensed benzene ring such as naphthalene, anthracene, phenanthrene, or the like, or by heat treatment in the presence of a catalyst. The production of these pitches involves distillation, vacuum degassing, and
Removal of low molecular weight substances by heating ventilation etc., solvent extraction treatment,
A separation and removal process of isotropic phase pitch such as sedimentation separation can be added. Pitch is used in powder form, and its average particle size is preferably 1 to 30 μm, more preferably 2 to 15 μm. It is desirable that the volatile content is 30% or less, and 2
More preferably, it is 5% or less. Note that the volatile content referred to here is the weight loss rate when the temperature is raised from 100°C to 1000°C in an inert atmosphere at 20°C per minute.

常温において流動性あるいは粘着性を示す熱硬化性樹脂
としては、フェノール樹脂、フラン樹脂又はそれらの混
合物が使用される。例えば、フェノール樹脂としては、
フェノール樹脂初期反応生成物が用いられる。これには
アルカリ触媒存在下にフェノール類とアルデヒド類の反
応によって得られるレゾールタイプ樹脂が含まれる。ま
た、酸性触媒下のフェノール類とアルデヒド類の反応に
よって生成するノボラックタイプ固体粉末状あるいは液
状樹脂をレゾールタイプ流動性樹脂に混入、溶解させる
こともできる。この場合、硬化剤、例えばヘキサメチレ
ンテトラミンを添加することができる。原料フェノール
類としては、例えばフェノール、レゾルシン、クレゾー
ル、キシレノール等が用いられ、アルデヒド類としては
、例えばホルマリン、パテホルムアルデヒド、フルフラ
ール等が用いられ得る。また、それらの混合物を使用し
てもよい。このようなフェノール樹脂としては市販品を
使用することができる。フラン樹脂としては、フルフリ
ルアルコールの縮合物あるいはフルフリルアルコールと
フルフラールの共縮合物を使用することができる。これ
らはフルフリルアルコールあるいはフルフリルアルコー
ル−フルフラール混合物に酸性触媒を添加し、加熱して
適度の粘度にした後冷却させたものである。また、酸を
揮発あるいは中和その他の方法によって触媒活性を消去
させて使用することもできる。上記フラン樹脂としても
市販品を利用することができる。また、フェノール樹脂
初期反応生成物とフラン樹脂初期反応生成物の混合物で
あるフェノール−フラン樹脂を用いることもできる。
As the thermosetting resin that exhibits fluidity or adhesiveness at room temperature, a phenol resin, a furan resin, or a mixture thereof is used. For example, as a phenolic resin,
A phenolic resin initial reaction product is used. This includes resol type resins obtained by the reaction of phenols and aldehydes in the presence of an alkali catalyst. Further, a novolac type solid powder or liquid resin produced by the reaction of phenols and aldehydes under an acidic catalyst can be mixed into and dissolved in the resol type fluid resin. In this case, hardening agents such as hexamethylenetetramine can be added. As raw material phenols, for example, phenol, resorcinol, cresol, xylenol, etc. can be used, and as aldehydes, for example, formalin, putty formaldehyde, furfural, etc. can be used. Also, mixtures thereof may be used. Commercially available products can be used as such phenol resins. As the furan resin, a condensate of furfuryl alcohol or a co-condensate of furfuryl alcohol and furfural can be used. These are made by adding an acidic catalyst to furfuryl alcohol or a mixture of furfuryl alcohol and furfural, heating it to a suitable viscosity, and then cooling it. Furthermore, the catalyst activity can be eliminated by volatilization, neutralization, or other methods before use. Commercially available products can also be used as the furan resin. It is also possible to use a phenol-furan resin which is a mixture of a phenolic resin initial reaction product and a furan resin initial reaction product.

中間材を製造するに当っては、上記溶媒に上記熱硬化性
樹脂を所定濃度に溶解させる。フェノール−フラン樹脂
の場合はフェノール樹脂とフラン樹脂を同時に溶解させ
る方法をとることもできる。
In manufacturing the intermediate material, the thermosetting resin is dissolved in the solvent to a predetermined concentration. In the case of phenol-furan resin, it is also possible to adopt a method in which the phenol resin and furan resin are dissolved at the same time.

得られた溶液に炭素粉末と、メソフェーズピッチ粉末と
を分散させる。溶媒、樹脂、粉末の添加、混入の手順は
特に問うものではない。分散に当っては、振とうあるい
は超音波分散法を適用することもできる。これらの操作
は炭素粉末とメソフェーズピッチ粉末との混合を充分に
するためにも有効である。
Carbon powder and mesophase pitch powder are dispersed in the obtained solution. There are no particular limitations on the procedures for adding and mixing the solvent, resin, and powder. For dispersion, shaking or ultrasonic dispersion can also be applied. These operations are also effective for sufficiently mixing the carbon powder and mesophase pitch powder.

炭素粉末、メソフェーズピッチ粉末、熱硬化性樹脂の最
適混合割合は、炭素粉末、メソフェーズピッチ粉末の平
均粒子径、炭化収率、分散液の粘度等にもよるが、それ
ぞれ20〜60.60〜20.30〜10重量部が好ま
しい。樹脂が10重量部以下では炭素粉末とメソフェー
ズピッチ粉末を炭素繊維に付着させることが不十分とな
り、30重量部以上では母材の炭化収率が低下する。
The optimum mixing ratio of carbon powder, mesophase pitch powder, and thermosetting resin varies depending on the average particle diameter of carbon powder and mesophase pitch powder, carbonization yield, viscosity of dispersion, etc., but is 20 to 60.60 to 20, respectively. .30 to 10 parts by weight is preferred. If the resin is less than 10 parts by weight, adhesion of carbon powder and mesophase pitch powder to carbon fibers will be insufficient, and if it is more than 30 parts by weight, the carbonization yield of the base material will decrease.

また、メソフェーズピッチが20重量部以下では母材の
焼結能が低下し、60重量部以上では樹脂と炭素粉末の
混入割合が過度に低くなる。炭素粉末は炭化収率を高く
するために60〜20重量部の混入が好ましい。また、
上記母材先駆材100重量部に対する溶媒の割合は、例
えば50〜250重量部である。
Furthermore, if the mesophase pitch is less than 20 parts by weight, the sintering ability of the base material will be reduced, and if it is more than 60 parts by weight, the mixing ratio of resin and carbon powder will be excessively low. The carbon powder is preferably mixed in an amount of 60 to 20 parts by weight in order to increase the carbonization yield. Also,
The ratio of the solvent to 100 parts by weight of the base material precursor is, for example, 50 to 250 parts by weight.

次いで上記分散液を炭素繊維に含浸させる。この場合、
連続炭素繊維の糸、トウあるいはそれらの多数本の東、
あるいはステープル状炭素繊維の集合体を分散液に浸漬
する方法が便利である。本発明で用いる溶媒は炭素繊維
をよくぬらすので、分散液中における開繊が良好である
Next, carbon fibers are impregnated with the above dispersion. in this case,
Continuous carbon fiber yarn, tow or multiple strands thereof,
Alternatively, it is convenient to immerse an aggregate of staple carbon fibers in a dispersion liquid. Since the solvent used in the present invention wets the carbon fibers well, the fibers can be opened well in the dispersion.

含浸をより容易にするために、超音波を利用することも
できる。更に、分散液の付着した炭素繊維をローラの外
周に沿って開繊するように移動させる方法をとることも
できる。
Ultrasound can also be used to make impregnation easier. Furthermore, it is also possible to use a method in which the carbon fibers to which the dispersion liquid is attached are moved along the outer periphery of a roller so as to open the fibers.

分散液を含浸させた炭素繊維は分散液槽から取出し、次
いであらかじめ幅と間隙(厚み)が調整されているスリ
ットを通過させて炭素繊維に対する含浸量を調節するこ
とができる。取出された含浸炭素繊維は、溶媒を揮発さ
せるために熱硬化性樹脂の硬化温度以下で加熱あるいは
減圧下加熱される。
The carbon fibers impregnated with the dispersion liquid are taken out from the dispersion liquid tank, and then passed through a slit whose width and gap (thickness) are adjusted in advance to adjust the amount of impregnation into the carbon fibers. The impregnated carbon fibers taken out are heated below the curing temperature of the thermosetting resin or heated under reduced pressure in order to volatilize the solvent.

加熱温度は、フェノール樹脂の場合70℃以下、フラン
樹脂の場合は60℃以下、それらの混合物の場合には6
0℃以下がが望ましい。乾燥温度の上限は熱硬化性樹脂
中の触媒の量、あるいはその存否によって変わり得る。
The heating temperature is 70℃ or less for phenolic resin, 60℃ or less for furan resin, and 60℃ or less for a mixture thereof.
It is desirable that the temperature is below 0°C. The upper limit of the drying temperature may vary depending on the amount of catalyst in the thermosetting resin or its presence or absence.

中間材、即ち炭素粉末と、メソフェーズピッチ粉末と熱
硬化性樹脂とからなる母材先駆材を包含させた炭素繊維
における炭素繊維100重量部に対する母材先駆材の量
は、期待する炭素−炭素複合材の炭素繊維含有率と炭素
繊維の熱処理温度、炭素粉末の熱処理温度、母材先部材
構成成分の配分比、その他によって変動するが、たとえ
ば70〜270重量部である。
In carbon fibers incorporating an intermediate material, i.e., a matrix precursor consisting of carbon powder, mesophase pitch powder, and thermosetting resin, the amount of matrix precursor based on 100 parts by weight of carbon fiber is determined to achieve the expected carbon-carbon composite. The amount varies depending on the carbon fiber content of the material, the heat treatment temperature of the carbon fibers, the heat treatment temperature of the carbon powder, the distribution ratio of the constituent components of the base material end member, and others, but is, for example, 70 to 270 parts by weight.

得られた中間材は集積され、加圧、加熱成形、次いで焼
成され、炭化必要に応じて更に黒鉛化される。
The obtained intermediate material is accumulated, pressurized, heat-formed, then fired, carbonized, and optionally graphitized.

成形においては、加圧下に樹脂の硬化温度まで加熱され
る。その温度はフェノール樹脂の場合は、80〜200
℃、フラン樹脂の場合は、70〜160℃が好ましいが
、この温度範囲に限定されるものではない。加熱は段階
的にあるいは連続的に昇温しで行なわれる。この際の加
圧は、1〜300 kg f / ci!が好ましく、
2〜150 kgf/cdがより好ましい。加圧が高過
ぎると、炭素繊維が損傷しやすい。一般に加熱成形は1
0分〜10時間で行なわれる。更に長時間加熱してもよ
い。
In molding, the resin is heated to its curing temperature under pressure. The temperature is 80 to 200 for phenolic resin.
In the case of furan resin, the temperature is preferably 70 to 160°C, but is not limited to this temperature range. Heating is performed by raising the temperature stepwise or continuously. The pressurization at this time is 1 to 300 kg f/ci! is preferable,
More preferably 2 to 150 kgf/cd. If the pressure is too high, the carbon fibers are likely to be damaged. Generally, heat forming is 1
It is carried out from 0 minutes to 10 hours. It may be heated for an even longer period of time.

焼成では、メソフェーズピッチが軟化流動する温度から
、熱分解が著しく進行する温度領域、例えば270〜6
50℃、特に350〜600℃の間の温度で加圧される
。この工程では、炭素繊維と炭素粉末の空隙にピッチが
充填され、充填されたピッチがコークス化して、炭素繊
維と炭素粉末を結合させる過程であり、それに応じた加
圧が要求される。その圧力は好ましくは20〜1500
kgf/CI[l、より好ましくは50〜800 kg
f/cmである。焼成の際の昇温速度は、成形体の寸法
、厚さが大きいほど遅くすることが望ましく、樹脂とピ
ッチの熱分解あるいは炭化の進行が著しい温度領域では
特に遅くすることが望ましい。400〜600℃の範囲
における昇温速度は、例えば5℃以下が好ましく、40
0〜600℃の範囲を平均して0.5〜b しい。加圧の便宜上あるいは焼成温度に応じてより遅く
、あるいはより速くすることも可能である。
During firing, the temperature range is from the temperature at which mesophase pitch softens and flows to the temperature at which thermal decomposition progresses significantly, e.g.
Pressure is applied at a temperature of 50°C, in particular between 350 and 600°C. In this process, the voids between the carbon fibers and the carbon powder are filled with pitch, the filled pitch is turned into coke, and the carbon fibers and the carbon powder are bonded together, and appropriate pressure is required. The pressure is preferably 20-1500
kgf/CI [l, more preferably 50 to 800 kg
f/cm. The temperature increase rate during firing is desirably slowed down as the size and thickness of the molded body increases, and it is particularly desirable to slow down the rate of temperature rise during firing in a temperature range where thermal decomposition or carbonization of the resin and pitch progresses significantly. The temperature increase rate in the range of 400 to 600°C is preferably 5°C or less, and 40°C or less, for example.
The average temperature in the range of 0 to 600°C is 0.5 to b. It is also possible to make it slower or faster depending on the convenience of pressurization or the firing temperature.

600℃以上では焼成温度とともに昇温速度を上げるこ
とができる。加圧加熱は、樹脂の硬化過程の成形工程に
、焼成工程を連続させることもできる。また、成形体の
焼成を等方静圧下で行なうこともできる。加圧下で焼成
された成形体は、不活性雰囲気中で更に高温に、例えば
800℃〜3000℃の間の温度に加熱される。
At 600° C. or higher, the heating rate can be increased along with the firing temperature. Pressure heating can also be performed by making a firing process follow the molding process of the resin curing process. Furthermore, the molded body can also be fired under isostatic pressure. The molded body fired under pressure is further heated in an inert atmosphere to a high temperature, for example to a temperature between 800°C and 3000°C.

〔発明の効果〕〔Effect of the invention〕

本発明における母材先駆材では、充分に混合されている
炭素粉末及びメソフェーズピッチ粉末個々の粒子に粘稠
性樹脂が被覆されており、それらが炭素繊維表面上ある
いは炭素繊維間のあらゆる個処に接着、分布しており、
成形の際の取扱いが容易である。さらに、本発明によれ
ば、ピッチの軟化温度範囲における加圧加熱に際して、
炭素繊維と炭素粉末の間隙をピッチが充分に充填され得
ることに加えて、炭素粉末、メソフェーズピッチ粉末の
炭化収率が高く、樹脂の炭化収率も比較的高いため、中
間材から得られた成形体の適度の加圧下焼成炭化処理に
よって、含浸、焼成工程を繰返すことなく、比較的短期
間で高品質炭素−炭素複合材を製造することができると
いう利点を有している。
In the base material precursor material of the present invention, individual particles of carbon powder and mesophase pitch powder that have been sufficiently mixed are coated with a viscous resin, and the viscous resin is coated on the carbon fiber surface or anywhere between the carbon fibers. Adhesive, distributed,
Easy to handle during molding. Furthermore, according to the present invention, when pressurizing and heating in the pitch softening temperature range,
In addition to the fact that pitch can sufficiently fill the gap between carbon fiber and carbon powder, the carbonization yield of carbon powder and mesophase pitch powder is high, and the carbonization yield of resin is also relatively high. It has the advantage that a high-quality carbon-carbon composite material can be produced in a relatively short period of time without repeating the impregnation and sintering steps by sintering and carbonizing the molded body under appropriate pressure.

(実施例) 以下、本発明の詳細な説明するが、それは本発明の技術
的範囲を限定するものではない。
(Example) The present invention will be described in detail below, but this is not intended to limit the technical scope of the present invention.

実施例1 石油系溶焼コークス粉末(平均粒径4.8μm)、石油
系100%メソフェーズピッチ粉末(平均粒径5.1力
m)それぞれ35.53重量部を、12重量部のレゾー
ル系フェノール樹脂液をフルフリルアルコール100重
量部に溶解した溶液に添加し、分散させた。この分散液
に、PAN系高強度タイプ6.000フイラメントの炭
素繊維糸50本を浸漬し、引上げ、均一な厚みのシート
とした。
Example 1 35.53 parts by weight of each of petroleum-based sintered coke powder (average particle size 4.8 μm) and petroleum-based 100% mesophase pitch powder (average particle size 5.1 m) were mixed with 12 parts by weight of resol-based phenol. The resin liquid was added to a solution of 100 parts by weight of furfuryl alcohol and dispersed. Fifty PAN-based high-strength type 6,000 filament carbon fiber yarns were immersed in this dispersion and pulled up to form a sheet with a uniform thickness.

これを減圧下60℃で乾燥し、厚さ0.4 mrn、幅
13吐、母材先部材含浸量49重量%の一方向強化中間
材を得た。得られた中間材を90℃で1時間加熱した後
、裁断して、直径50ma+の円形の底面を有する金型
に積層し、1kg/cm2の面圧下に100℃から13
0℃まで、10℃毎に30分づつ加熱した。ついで20
0℃まで30kg/cffIの面圧下に10℃毎に20
分加熱した。その後45kg/ cutの面圧下に毎分
1℃で350℃まで昇温し、ついで600℃まで300
kg/crlの面圧下で毎分1℃で昇温させた。成形体
を金型から脱離させ、アルゴン気流中コークス粉中で毎
分2℃で600℃から1000℃まで、その後毎分3℃
で1200℃まで加熱した。かさ密度1.79 g /
cn(、曲げ強さ84 kg/+nm2、厚さ 3.1
卸の一方向強化炭素炭素複合材を得た。
This was dried at 60° C. under reduced pressure to obtain a unidirectionally reinforced intermediate material having a thickness of 0.4 mrn, a width of 13 mrn, and an impregnated amount of 49% by weight in the tip member of the base material. The obtained intermediate material was heated at 90°C for 1 hour, then cut, stacked in a mold with a circular bottom surface of 50 m in diameter, and heated from 100°C to 13° C. under a surface pressure of 1 kg/cm2.
The mixture was heated to 0°C for 30 minutes at 10°C increments. Then 20
20°C every 10°C under a surface pressure of 30 kg/cffI up to 0°C.
It was heated for a minute. Thereafter, the temperature was raised to 350°C at a rate of 1°C per minute under a surface pressure of 45 kg/cut, and then the temperature was increased to 300°C to 600°C.
The temperature was raised at 1° C. per minute under a surface pressure of kg/crl. The compact was released from the mold and heated from 600°C to 1000°C at 2°C per minute in coke powder in an argon stream, and then at 3°C per minute.
was heated to 1200°C. Bulk density 1.79 g/
cn (, bending strength 84 kg/+nm2, thickness 3.1
A wholesale unidirectionally reinforced carbon-carbon composite was obtained.

実施例2 レゾールタイプ樹脂液6重量部とフラン樹脂液9重量部
を114重量部のフルフラールに溶解した溶液に、平均
粒径5,1μmの石油系燻焼コークス粉末23重量部と
平均粒径5.4μmの石油系人造黒鉛粉末14重量部と
平均粒径4.9μmの石油系100%メソフェーズピッ
チ粉末49重量部とを分散させた。これに石油系高弾性
タイプ連続炭素繊維の3,000フィラメント糸10本
を浸漬して含浸させた。テープ状にした含浸炭素繊維を
減圧下55℃で乾燥させた。得られた一方向強化中間材
テープから直径50mmの円板を裁断した。これを80
℃、90℃、100℃に30分間づつ加熱した後、実施
例1に使用したと同一寸法の金型に40層積層し、3 
kg / cMの面圧下に100℃から200℃まで1
0℃毎に20分間づつ、360℃まで20℃毎に30分
間づつ加熱した。次いで400kg/cutの面圧下に
600℃まで毎分2℃で昇温させた。金型から脱離させ
た成形体をアルゴン気流中で毎分3℃の速度で1200
℃まで加熱した。かさ密度1.77 g /ca!、曲
げ強さ79kg/、2厚さ2.8 mmの炭素−炭素複
合材を得た。
Example 2 23 parts by weight of petroleum-based smoked coke powder with an average particle size of 5.1 μm and 23 parts by weight of petroleum-based smoked coke powder with an average particle size of 5.1 μm were added to a solution in which 6 parts by weight of resol type resin liquid and 9 parts by weight of furan resin liquid were dissolved in 114 parts by weight of furfural. 14 parts by weight of petroleum-based artificial graphite powder of .4 μm and 49 parts by weight of petroleum-based 100% mesophase pitch powder having an average particle size of 4.9 μm were dispersed. Ten 3,000 filament threads of petroleum-based high modulus continuous carbon fiber were dipped in this to impregnate it. The impregnated carbon fibers formed into a tape were dried at 55° C. under reduced pressure. A disk with a diameter of 50 mm was cut from the obtained unidirectionally reinforced intermediate material tape. This is 80
℃, 90℃, and 100℃ for 30 minutes each, 40 layers were laminated in a mold with the same dimensions as used in Example 1, and 3
1 from 100℃ to 200℃ under surface pressure of kg/cM
Heating was performed for 20 minutes at each 0°C, and for 30 minutes at each 20°C up to 360°C. Then, the temperature was raised to 600°C at a rate of 2°C per minute under a surface pressure of 400 kg/cut. The molded product released from the mold was heated at 1200°C at a rate of 3°C per minute in an argon stream.
Heated to ℃. Bulk density 1.77 g/ca! A carbon-carbon composite material having a bending strength of 79 kg/2 and a thickness of 2.8 mm was obtained.

実施例3 石油系生コークス粉末(平均粒径4,9μm)61重量
部、100%ツメフェーズピッチ粉末(平均粒径3.5
μm)25重量部、フラン樹脂液14重量9を98重量
部のフルフラール−フルフリルアルコール混合溶媒に分
散させた。得られた分散液をPAN系高弾性炭素繊維1
2.000フィラメント糸5本に含浸させ、乾燥させた
。得られた中間材シートから、実施例1と同一の条件で
1200℃まで焼成し、次いでアルコン中で2000℃
まで加熱した。高品質の炭素−炭素複合材円板を得た。
Example 3 61 parts by weight of petroleum-based raw coke powder (average particle size 4.9 μm), 100% Tsume phase pitch powder (average particle size 3.5
(μm) and 14 parts by weight of the furan resin liquid were dispersed in 98 parts by weight of a furfural-furfuryl alcohol mixed solvent. The obtained dispersion was coated with PAN-based high modulus carbon fiber 1.
Five 2.000 filament threads were impregnated and dried. The obtained intermediate material sheet was fired to 1200°C under the same conditions as in Example 1, and then heated to 2000°C in Alcon.
heated to. High quality carbon-carbon composite discs were obtained.

Claims (7)

【特許請求の範囲】[Claims] (1)フルフラール、フルフリルアルコール又はそれら
の混合物の溶媒中に、常温で粘着性又は流動性を有する
フェノール樹脂、フラン樹脂又はそれらの混合物を溶解
し、炭素粉末とメソフェーズピッチ粉末を分散させてい
る分散液を、熱処理温度500℃以上の炭素繊維に含浸
させ、前記溶媒を揮発させ、次いでこのようにして得ら
れた母材先駆材含有炭素繊維を加圧下に成形し、成形体
を加圧下に焼成することを特徴とする炭素繊維強化炭素
材料の製造方法。
(1) In a solvent of furfural, furfuryl alcohol, or a mixture thereof, a phenolic resin, furan resin, or a mixture thereof, which is sticky or fluid at room temperature, is dissolved, and carbon powder and mesophase pitch powder are dispersed. The dispersion liquid is impregnated into carbon fibers heated at a heat treatment temperature of 500° C. or higher, the solvent is volatilized, and the carbon fibers containing the base material precursor thus obtained are then molded under pressure, and the molded body is molded under pressure. A method for producing a carbon fiber-reinforced carbon material, which comprises firing.
(2)炭素粉末が生コークス、コークスおよび黒鉛粉末
のなかの1種、2種あるいは3種である請求項(1)記
載の製造方法。
(2) The manufacturing method according to claim (1), wherein the carbon powder is one, two or three of raw coke, coke and graphite powder.
(3)メソフェーズピッチ粉末が25%以下の揮発分を
有する請求項(1)又は(2)に記載の製造方法。
(3) The manufacturing method according to claim (1) or (2), wherein the mesophase pitch powder has a volatile content of 25% or less.
(4)母材先駆材含有炭素繊維において、炭素粉末、メ
ソフェーズピッチ粉末及び樹脂が、それぞれ20〜60
重量部、60〜20重量部、30〜10重量部である請
求項(1)〜(3)のいずれかに記載の製造方法。
(4) In carbon fiber containing matrix precursor material, carbon powder, mesophase pitch powder, and resin each contain 20 to 60%
The manufacturing method according to any one of claims (1) to (3), wherein the amount is 60 to 20 parts by weight, or 30 to 10 parts by weight.
(5)加圧下の成形がメソフェーズピッチの軟化点以下
の樹脂の硬化進行温度範囲内の温度において、2〜15
0kgf/cm^2の圧力でなされる請求項(1)〜(
4)のいずれかに記載の製造方法。
(5) When molding under pressure is performed at a temperature within the curing progress temperature range of the resin below the softening point of mesophase pitch, 2 to 15
Claims (1)-(
4) The manufacturing method according to any one of 4).
(6)加圧下の焼成が450〜650℃の間の温度にお
いて50〜800kgf/cm^2の圧力下でなされる
請求項(1)〜(4)のいずれかに記載の製造方法。
(6) The manufacturing method according to any one of claims (1) to (4), wherein the firing under pressure is performed at a temperature between 450 and 650°C and under a pressure of 50 to 800 kgf/cm^2.
(7)加圧下の焼成が等方静圧でなされる請求項(1)
〜(6)のいずれかに記載の製造方法。
(7) Claim (1) in which the firing under pressure is performed under isostatic pressure.
The manufacturing method according to any one of -(6).
JP2044032A 1990-02-23 1990-02-23 Production of carbon fiber-reinforced carbon material Pending JPH03247565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2044032A JPH03247565A (en) 1990-02-23 1990-02-23 Production of carbon fiber-reinforced carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2044032A JPH03247565A (en) 1990-02-23 1990-02-23 Production of carbon fiber-reinforced carbon material

Publications (1)

Publication Number Publication Date
JPH03247565A true JPH03247565A (en) 1991-11-05

Family

ID=12680299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2044032A Pending JPH03247565A (en) 1990-02-23 1990-02-23 Production of carbon fiber-reinforced carbon material

Country Status (1)

Country Link
JP (1) JPH03247565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043536A (en) * 2012-08-29 2014-03-13 Across Corp Intermediate material for carbon/carbon composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043536A (en) * 2012-08-29 2014-03-13 Across Corp Intermediate material for carbon/carbon composite

Similar Documents

Publication Publication Date Title
US3766000A (en) Low thermal expansion composites
US7575799B2 (en) Carbon fiber containing ceramic particles
US20060177663A1 (en) Carbon-carbon composite article manufactured with needled fibers
US4041116A (en) Method for the manufacture of carbon-carbon composites
JPH08157273A (en) Unidirectional carbon fiber reinforced carbon composite material and its production
DE102006057939A1 (en) Friction-resistant discs made of fiber-reinforced ceramic
CA2489689C (en) Isotropic pitch-based materials for thermal insulation
JPH0242790B2 (en)
JPH03247565A (en) Production of carbon fiber-reinforced carbon material
JP3138718B2 (en) Method for producing carbon fiber reinforced carbon material
EP2058545B1 (en) Method for producing friction discs from fibre-reinforced ceramic materials
JPH03249268A (en) Intermediate material for carbon fiber reinforced carbon material and its production thereof
JPH03247566A (en) Production of carbon fiber-reinforced carbon material
RU2135854C1 (en) Friction composite material and method of its manufacture
JPH0551257A (en) Production of carbon fiber reinforced carbon material
JPH03247564A (en) Production of carbon fiber-reinforce carbon material
JP2625783B2 (en) Method for producing carbon fiber reinforced carbon composite
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
DE2103908A1 (en) Composite material - contg carbon fibres and carbonisable polymers
KR970008693B1 (en) Process for the preparation of carbon composite material
JPS63265863A (en) Carbon fiber reinforced composite carbon material and its production
JPH02192461A (en) Production of carbon-carbon composite material
JP2004217466A (en) Carbon fiber, carbon fiber bundle for carbon composite material and method of manufacturing the same
JP3220983B2 (en) Method for producing carbon fiber reinforced carbon material
JPH068215B2 (en) Manufacturing method of carbon fiber reinforced carbon material