JPH03247524A - Production of quartz glass filter - Google Patents

Production of quartz glass filter

Info

Publication number
JPH03247524A
JPH03247524A JP4492990A JP4492990A JPH03247524A JP H03247524 A JPH03247524 A JP H03247524A JP 4492990 A JP4492990 A JP 4492990A JP 4492990 A JP4492990 A JP 4492990A JP H03247524 A JPH03247524 A JP H03247524A
Authority
JP
Japan
Prior art keywords
quartz glass
molded body
filter
glass
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4492990A
Other languages
Japanese (ja)
Other versions
JPH0825762B2 (en
Inventor
Fujio Iwatani
岩谷 富士雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP4492990A priority Critical patent/JPH0825762B2/en
Publication of JPH03247524A publication Critical patent/JPH03247524A/en
Publication of JPH0825762B2 publication Critical patent/JPH0825762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To obtain a high-purify filter which has required dimensional precision and the fluid permeable characteristics and is expandable and porous by ammoniating the molded body of the flaky powder of quartz glass specified in the content of OH group at the specified temp. and thereafter deammoniating this molded body. CONSTITUTION:The base material of porous synthetic quartz glass is obtained by a flame hydrolytic method or a sol-gel method. This base material is ground to obtain the flaky powder of quartz glass contg. >=100ppm OH group. This flaky powder is preliminarily molded and the obtained molded body is heated at 800-1300 deg.C in a gaseous ammonia atmosphere to perform ammoniation reaction. Then deammoniation reaction is performed for this molded body under the conditions of higher temp. of 1350-1700 deg.C. An expandable glass filter having the required continuous vent holes is obtained. In order to control the size of the pore of the expanded material, the range of particle size in the flaky powder of quartz glass for the raw material is selected. Furthermore the rate of heating and temp. rise in the ammoniation reaction and the pressure of its atmosphere are selected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば、高温流体、腐食性流体のような通常
のろ過装置では処理し難い流体類をろ過積製するための
ろ退部材として好適な発泡性多孔質の高純度石英ガラス
製フィルターの製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention can be used as a filtration member for filtering fluids that are difficult to process with ordinary filtration devices, such as high-temperature fluids and corrosive fluids. The present invention relates to a method for producing a suitable foamable porous high-purity quartz glass filter.

〔従来の技術〕[Conventional technology]

石英ガラスは、耐薬品性、耐熱性、耐熱衝撃性等に優れ
ているので、その優れた素材特性から多くの分野で広く
利用されているが、流体、特に液体分離精製用ろ材とし
ても極めて有用で、従来から各種フィルターとして用い
られている。
Quartz glass has excellent chemical resistance, heat resistance, thermal shock resistance, etc., so it is widely used in many fields due to its excellent material properties, but it is also extremely useful as a filter material for separating and purifying fluids, especially liquids. It has traditionally been used as a variety of filters.

これまでの石英ガラス製フィルターの製造方法としては
1例えば、石英ガラス粉を焼結する方法、石英ガラスフ
ァイバーを織物や不織布に加工する方法、あるいは特公
昭39−20171号公報に開示されたような分相法に
より多孔質体を形成する方法等が代表的に知られている
Conventional methods for manufacturing silica glass filters include 1, for example, a method of sintering quartz glass powder, a method of processing quartz glass fiber into woven or nonwoven fabric, or a method as disclosed in Japanese Patent Publication No. 39-20171. A method of forming a porous body by a phase separation method is typically known.

しかしながら、焼結法は、一般に、加熱焼結によって予
備成形された成形体が収縮するので、所望形状の高い寸
法精度のる材を得ることが困難で、従って、得られた成
形体を二次加工することが必要である。また、目的とす
る流体のろ過特性はそれぞれ異なるので、個々に相応す
る所望の石英ガラスフィルターを安定に製造することは
困難である。一方、石英ガラスファイバ製織物や不織布
等のる材は、その形状維持性に問題があるばかりでなく
、多くの製造工程を必要とし、そのため石英ガラスが本
来有する高純度且つ安定な素材の利点が損なわれ易いの
で工業的に好ましくない。更に、ガラス分相法によるガ
ラスフィルターの製造は、ガラスの純度が低下するので
、高純度石英ガラスフィルターとは言い難いものであり
、また得られる多孔体の孔径は極めて細く、例えば20
〜1 、000人程度であって、その使用対象や使用範
囲が限られるので実用上からは歓迎できない。
However, in the sintering method, the preformed compact generally shrinks due to heating and sintering, so it is difficult to obtain a material with a desired shape and high dimensional accuracy. It is necessary to process it. Furthermore, since the filtration characteristics of the target fluids differ, it is difficult to stably manufacture desired silica glass filters for each individual fluid. On the other hand, silica glass fiber textiles, non-woven fabrics, and other materials not only have problems with their shape retention, but also require many manufacturing steps, which eliminates the inherent advantages of quartz glass as a highly pure and stable material. It is not preferred industrially because it is easily damaged. Furthermore, the production of glass filters by the glass phase separation method reduces the purity of the glass, so it is difficult to say that it is a high-purity quartz glass filter, and the pore diameter of the resulting porous body is extremely small, for example, 20 mm.
~1,000 people, which is not acceptable from a practical point of view because the target and range of use is limited.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って、本発明の目的ないし技術的課題は、上記のよう
な不利益や不都合を伴わない所望の寸法精度と所望の流
体透過特性を有する高純度石英ガラス性フィルターを提
供することにある。
Therefore, the object or technical problem of the present invention is to provide a high-purity silica glass filter that has desired dimensional accuracy and desired fluid permeability characteristics without the disadvantages and inconveniences described above.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記技術的課題を解決する石英ガラスフ
ィルターの製造方法について、特に、塩化水素ガス、熱
硝酸等の腐食性流体や高温流体などのろ過積製に有用な
ろ過部材としての高純度石英ガラスフィルターに着目し
て研究を重ね、実用的に極めて望ましい石英ガラスフィ
ルターの製造方法を開発した。
The present inventors have developed a method for manufacturing a quartz glass filter that solves the above technical problems, particularly as a highly efficient filtration member useful for filtration of corrosive fluids such as hydrogen chloride gas and hot nitric acid, and high-temperature fluids. After repeated research focusing on high-purity silica glass filters, we have developed a manufacturing method for quartz glass filters that is highly desirable for practical use.

すなわち1本発明は、 1100pp以上のOH基を含
有する石英ガラスのフレーク状粉末を予備成形し、得ら
れた成形体をアンモニアガス雰囲気中で800〜1 、
300℃の温度に加熱してアンモニア化反応を行わせ、
これを1,350〜1,700℃の一層高い温度条件で
脱アンモニア処理することを特徴とする発泡体石英ガラ
スフィルターの製造方法を提供する。
That is, in the present invention, silica glass flake powder containing 1100 pp or more of OH groups is preformed, and the obtained molded body is heated to 800 ppm or more in an ammonia gas atmosphere.
Heating to a temperature of 300°C to carry out an ammonification reaction,
Provided is a method for producing a foamed quartz glass filter, characterized in that the filter is deammoniated at a higher temperature condition of 1,350 to 1,700°C.

本発明方法に用いられる石英ガラス素材は、可及的に高
純度で、且つOH基を1100pp以上含有するものが
用いられる。そのような素材としては、例えば、充分精
製したけい素化合物を、従来知られた火炎加水分解法に
より得られる多孔質合成石英ガラス母材、又はゾル・ゲ
ル法で得られる多孔質合成石英ガラス母材が好適である
。本発明の方法に用いられる石英ガラスフレーク状粉末
は、上記合成石英ガラス多孔質母材を、例えば、ボール
ミル等で粉砕して、好ましくは16〜150メツシュの
粒度範囲に調製される。上記の火炎加水分解法でつくら
れる石英ガラス母材は、ターゲットが棒状あるいは板状
のいずれであってもよいが、形成されるガラス微粉末が
層状に堆積していることが重要であって、溶融してイン
ゴット化したものは粉末素材として不適当である。また
アルコキシシランをアルコール溶中で酸又は塩基性触媒
の存在下で加水分解して均一なゾルを形成させるゾル・
ゲル法では、得られたゾルをスリット状ノズルから押し
出してテープ状のものにしたり、写真フィルムのように
回転ドラムの表面に付着させてシート状物をつくり、ゲ
ル化したのち乾燥し、粉砕してガラスフレーク状粉末を
調製することができる。
The quartz glass material used in the method of the present invention is one that is as pure as possible and contains 1100 pp or more of OH groups. Examples of such materials include, for example, a porous synthetic quartz glass matrix obtained by a well-known flame hydrolysis method of a sufficiently purified silicon compound, or a porous synthetic quartz glass matrix obtained by a sol-gel method. material is suitable. The quartz glass flake powder used in the method of the present invention is prepared by pulverizing the synthetic quartz glass porous base material using, for example, a ball mill or the like to preferably have a particle size in the range of 16 to 150 mesh. In the quartz glass base material produced by the above flame hydrolysis method, the target may be either rod-shaped or plate-shaped, but it is important that the glass fine powder formed is deposited in layers. Melted ingots are unsuitable as powder materials. In addition, a sol that forms a uniform sol by hydrolyzing alkoxysilane in an alcohol solution in the presence of an acid or basic catalyst.
In the gel method, the obtained sol is extruded through a slit-shaped nozzle to make a tape, or it is attached to the surface of a rotating drum like photographic film to make a sheet, which is then gelled, dried, and crushed. A glass flake-like powder can be prepared.

また、本発明の方法においては、このように調製された
石英ガラスフレーク状粉末のOH基含有濃度は、後述す
るアンモニア化及びその離脱反応と関連してガラス中に
1100pp以上含まれることが重要であって、実用的
に好ましいOH基の含有濃度は、300〜1 、500
pp+*である。
In addition, in the method of the present invention, it is important that the OH group content concentration of the silica glass flake powder prepared in this way is 1100 pp or more in the glass in connection with the ammonification and its elimination reactions described below. Therefore, the practically preferred concentration of OH groups is 300 to 1,500
It is pp+*.

粉砕調製された合成石英ガラスのフレーク状粉末は、通
常、所望のフィルター形状に近い形状に予備成形される
。その予備成形には1通常、例えば、ポリビニルアルコ
ールや水等の接着剤ないし粘着剤が添加使用される。そ
の使用量は、ガラスのフレーク状粉体粒度条件や流体透
過性を考慮して、該粉末の重量に対し、30〜90%程
度が用いられ、その成形には、例えば、押出し成形、モ
ールド充てん、ロール成形などが有利に採用されるが、
いずれの場合にも、金属製金型ではなく1石英ガラスの
純度の低下を考慮して、好ましくは、ふっ素樹脂のよう
な合成樹脂で作られたモールドが用いられる。
The pulverized synthetic quartz glass flake powder is usually preformed into a shape close to the desired filter shape. For the preforming, an adhesive or pressure-sensitive adhesive such as polyvinyl alcohol or water is usually added. The amount used is approximately 30 to 90% of the weight of the powder, taking into consideration the particle size conditions of the glass flake powder and fluid permeability. , roll forming etc. are advantageously adopted,
In either case, a mold made of synthetic resin such as fluororesin is preferably used instead of a metal mold in consideration of the reduction in purity of quartz glass.

このようにして得られた予備成形体は、好ましくは、ア
ンモニア化反応に先立って、予め、例えば、600〜8
00℃程度の比較的低い温度に加熱して有機結合剤を熱
分解させる。次いで、該成形体は。
Preferably, the preformed body obtained in this way is preliminarily treated, for example, with a
The organic binder is thermally decomposed by heating to a relatively low temperature of about 00°C. Next, the molded body.

アンモニア雰囲気中で、800〜1,300℃の温度条
件下にアンモニア化反応に供される。アンモニア雰囲気
は、加熱炉内に充分量のアンモニアを供給すればよく、
実用的には、アンモニアガスは窒素ガスをキャリアガス
として連続的に供給される。アンモニアと石英ガラスの
反応のメカニズムの詳細は不明であるが、石英ガラス中
のOH基がアンモニアとの反応に有効に作用して、効果
的に発泡体ガラスフィルターの形成に寄与するものと推
定される。このアンモニア化反応においては、アンモニ
アの反応量をガラスに対してその0.1重量%以上にす
ることが好ましく、その際5反応における温度及び時間
を選択することにより所望反応量にコントロールするこ
とができる。
It is subjected to an ammonification reaction in an ammonia atmosphere at a temperature of 800 to 1,300°C. The ammonia atmosphere can be created by supplying a sufficient amount of ammonia into the heating furnace.
Practically, ammonia gas is continuously supplied using nitrogen gas as a carrier gas. Although the details of the reaction mechanism between ammonia and silica glass are unknown, it is presumed that the OH groups in quartz glass effectively act on the reaction with ammonia and effectively contribute to the formation of a foam glass filter. Ru. In this ammonification reaction, it is preferable that the reaction amount of ammonia is 0.1% by weight or more based on the glass, and in this case, it is possible to control the reaction amount to a desired value by selecting the temperature and time in the 5 reactions. can.

アンモニア化処理を行った成形体は、次いで一層高い温
度、すなわち、1,350〜1 、700℃の高温条件
下で脱アンモニア反応を行わせ、所望の連続通気孔を有
する発泡体ガラスフィルターを得ることができる。
The ammoniated molded product is then subjected to a deammonification reaction at a higher temperature, i.e., 1,350 to 1,700°C, to obtain a foamed glass filter having the desired continuous ventilation pores. be able to.

発泡体の気孔の大きさをコントロールするには、まず原
料としての石英ガラスフレーク状粉末の粒度範囲を選択
し、更にアンモニア化反応における加熱の昇温速度(ゆ
っくり昇温すれば気孔は小さくなる)とその雰囲気の圧
力(小さければ気孔は大きくなる)を選択して、所望の
透過性フィルターを製造することができる。
To control the size of the pores in the foam, first select the particle size range of the quartz glass flake powder as the raw material, and then select the heating rate during the ammonification reaction (the pores will be smaller if the temperature is increased slowly). A desired permeability filter can be manufactured by selecting the pressure of the atmosphere and the pressure of the atmosphere (the smaller the pores, the larger the pores).

また1本発明の方法においては、アンモニアと反応させ
た発泡前駆体をカーボン製型内に充てんし、窒素ガス雰
囲気下で加熱発泡処理を行うことにより、型通りの所望
の発泡成形体を得ることができる。その成形体が単純な
円筒の場合には、円筒状発泡体として容易に二次加工を
して所望の形状を得ることができる。
In addition, in the method of the present invention, a foaming precursor reacted with ammonia is filled into a carbon mold, and a desired foamed molded product according to the mold can be obtained by heating and foaming in a nitrogen gas atmosphere. I can do it. If the molded product is a simple cylinder, it can be easily fabricated into a cylindrical foam to obtain a desired shape.

〔作用〕[Effect]

本発明の方法によれば、所望の気孔率のフィルターを容
易に製造することができ、また発泡スチロールのような
所望形状の成形が可能である。
According to the method of the present invention, a filter with a desired porosity can be easily manufactured, and it is also possible to mold the filter into a desired shape such as styrofoam.

更に、本発明方法によってフレーク状粉末から形成され
たフィルターは、単なる石英ガラス粉末を焼結して得ら
れたフィルターに比べて、流体通過性に優れ、従って単
位断面積光たりの流体通過能力が高いので、軽量且つコ
ンパクトなフィルターとして提供される。
Furthermore, the filter formed from flake powder by the method of the present invention has superior fluid permeability compared to a filter obtained by simply sintering silica glass powder, and therefore has a higher fluid permeability per unit cross-sectional area of light. Since it is expensive, it is provided as a lightweight and compact filter.

〔実施例〕〔Example〕

次に、本発明の方法に係る具体例を挙げて更に詳細に説
明する。
Next, the method of the present invention will be explained in more detail by giving specific examples.

実施例1 蒸留精製した四塩化けい素(SiCΩ4)をバブラーを
用いて気化させ、このガス体を水素ガス及び酸素ガスと
混合して酸水素バーナーに供給し、その酸水素炎中で四
塩化けい素を火炎加水分解させ、ターゲット上に堆積さ
せて直径約100閣、長さ約100mの多孔質合成石英
ガラス母材を形成させた。得られた母材ガラスのOH基
含有量は、約L100pp■であった。
Example 1 Silicon tetrachloride (SiCΩ4) purified by distillation is vaporized using a bubbler, and this gaseous body is mixed with hydrogen gas and oxygen gas and supplied to an oxyhydrogen burner. The material was flame-hydrolyzed and deposited on a target to form a porous synthetic quartz glass matrix about 100 meters in diameter and about 100 meters long. The OH group content of the obtained base material glass was about L100 pp■.

この多孔質ガラス石英ガラス母材をターゲットから抜き
取り、ボールミルで30分間粉砕して48〜16メツシ
ュのフレーク状石英ガラス粉末を得た。
This porous glass quartz glass base material was extracted from the target and ground in a ball mill for 30 minutes to obtain flaky quartz glass powder of 48 to 16 meshes.

このように調製されたガラス粉末500gにポリビニル
アルコール5%水溶液300gを加えて良く混和した後
、φ50■×長さ200mの円筒状ポリ塩化ビニル製成
形型に流し込み、良く乾燥して予備成形体を得た。
After adding 300 g of a 5% polyvinyl alcohol aqueous solution to 500 g of the glass powder thus prepared and mixing well, the mixture was poured into a cylindrical polyvinyl chloride mold with a diameter of 50 mm and a length of 200 m, and was thoroughly dried to obtain a preform. Obtained.

次いで、この予備成形体を内径1100II1の石英ガ
ラス炉管内に入れ、この炉内にキャリアガスとして窒素
ガスを約40ONcd/分、またアンモニアガスを約2
,50ONcd/分の供給速度で供給しながら。
Next, this preform was placed in a quartz glass furnace tube with an inner diameter of 1100II1, and about 40 ON cd/min of nitrogen gas and about 2 ON cd/min of ammonia gas were introduced into the furnace as carrier gas.
, while feeding at a feed rate of 50 ON cd/min.

約1,000℃の温度で2時間アンモニア化反応を行っ
た。
The ammonification reaction was carried out at a temperature of about 1,000°C for 2 hours.

次に、アンモニア化された予備成形体をカーボン製の内
径φ60i+m、長さ250■のキャビティを有する最
終成形用型内に充てんし、その型を窒素ガス雰囲気中で
10℃/winの昇温速度で1,400℃の温度まで上
げ、次いで1℃/winの割合で1 、600℃まで昇
温させ、この温度に30分保持して加熱処理を行った後
、放冷した。
Next, the ammoniated preform is filled into a final molding mold made of carbon having a cavity with an inner diameter of φ60i+m and a length of 250cm, and the mold is heated at a heating rate of 10°C/win in a nitrogen gas atmosphere. The temperature was raised to 1,400° C., and then the temperature was raised to 1,600° C. at a rate of 1° C./win, and the temperature was maintained at this temperature for 30 minutes for heat treatment, and then allowed to cool.

得られた直径φ60mmで、長さ250■の円柱状石英
ガラス発泡体を石英ガラス製鋸で20+mmの厚さに輪
切りして10枚の円盤状フィルターを得た。
The obtained cylindrical quartz glass foam with a diameter of 60 mm and a length of 250 mm was sliced into rings with a thickness of 20+ mm using a quartz glass saw to obtain 10 disc-shaped filters.

このフィルターを用いて、パーティクルを含む腐食性ガ
スを通過させたところ、圧力損失が少なく、パーティク
ルの除去も良好であった。
When corrosive gas containing particles was passed through this filter, there was little pressure loss and particles were removed well.

比較例1 実施例1と同様のスート法により作成した多孔質合成石
英ガラス母材を、粉砕することなくそのまま、内径10
0■の石英ガラス炉管内に入れ、これに、同様に窒素キ
ャリアガスを約400 N caf /分、またアンモ
ニアガスを約2,50ONcd/分の供給速度で供給し
ながら、約1 、000℃の温度で2時間アンモニア化
反応を行った。次に、これも同様に、キャリアガス及び
窒素得ガスの供給を停止し、大気条件下に温度を約1,
600℃に昇温させて10分間加熱処理を行い、発砲性
の多孔質体を得た。
Comparative Example 1 A porous synthetic quartz glass base material prepared by the same soot method as in Example 1 was used as it was without being crushed, and the inner diameter was 10.
1,000°C while similarly supplying nitrogen carrier gas at a rate of approximately 400 N caf/min and ammonia gas at a rate of approximately 2,50 ON cd/min. The ammonification reaction was carried out at temperature for 2 hours. Then, again, the carrier gas and nitrogen gas supplies are stopped and the temperature is lowered to about 1,000 ml under atmospheric conditions.
The temperature was raised to 600° C. and heat treatment was performed for 10 minutes to obtain an expandable porous body.

この発砲体からφ60m鳳×厚さ20麿閣の円盤を切り
出したフィルターをつくった。
A filter was made by cutting out a disk of 60 m in diameter and 20 mm in thickness from this foam.

しかし、この円盤には、透過性連続気孔が形成されず、
流体を通過させないのでフィルターとして機能しないも
のであった。
However, no continuous permeable pores are formed in this disk;
It did not function as a filter because it did not allow fluid to pass through.

実施例2 テトラエトキシシラン5i(Oc2H5)4と0.IN
の塩酸水溶液とを1:5の重量比で混合して加水分解さ
せ得られた均一なゾルをスリット状ノズルから押し出し
、加熱乾燥したものをボールミルで粉砕して16〜48
メツシュのフレーク状合成石英ガラス粉末を調製した。
Example 2 Tetraethoxysilane 5i (Oc2H5)4 and 0. IN
of hydrochloric acid aqueous solution at a weight ratio of 1:5, the resulting homogeneous sol is extruded through a slit-shaped nozzle, heated and dried, and then ground in a ball mill to obtain 16-48
A mesh flaky synthetic quartz glass powder was prepared.

得られたガラス粉末100gを5%ポリビニルアルコー
ル水溶液80gと均一に混和し、実施例1と同様にモー
ルド成形して予備成形体を作成した。
100 g of the obtained glass powder was uniformly mixed with 80 g of a 5% polyvinyl alcohol aqueous solution and molded in the same manner as in Example 1 to prepare a preform.

この予備成形体を乾燥し、次いで800℃の温度に5時
間加熱してポリビニルアルコール結合剤を酸化分解した
。このようにして得られた多孔性成形体を約1 、00
0℃に保持された石英ガラス管炉内で加熱し、その管内
にキャリアガスとして窒素ガスを約40ONcd/分の
割合で、またアンモニアガスを約2,50ONcd/分
の供給速度で送り込みながら、その温度で2時間アンモ
ニア化反応を行った。
The preform was dried and then heated to a temperature of 800° C. for 5 hours to oxidatively decompose the polyvinyl alcohol binder. The porous molded body thus obtained was approximately 1,000
It was heated in a quartz glass tube furnace maintained at 0°C, and nitrogen gas was fed into the tube as a carrier gas at a rate of about 40 ON cd/min, and ammonia gas was fed at a rate of about 2,50 ON cd/min. The ammonification reaction was carried out at temperature for 2 hours.

次いで、キャリアガス及び窒素ガスの供給を停止し、そ
れに引き続いて大気条件下に約1,600℃の温度に昇
温させて10分間加熱処理を行い、石英ガラス発砲多孔
質体を得た。
Next, the supply of carrier gas and nitrogen gas was stopped, and then the temperature was raised to about 1,600° C. under atmospheric conditions and heat treatment was performed for 10 minutes to obtain a porous silica glass body.

これからφ60mm X厚さ20mmの円盤を切り出し
てフィルターをつくり、このフィルターで洗浄に使用し
た濃塩酸水溶液をろ過したところ、浮遊微細固形粒子が
完全に除去された清澄な農場酸が回収された。
A filter was made by cutting out a disk with a diameter of 60 mm and a thickness of 20 mm. When the concentrated aqueous hydrochloric acid solution used for cleaning was filtered through this filter, clear farm acid from which suspended fine solid particles had been completely removed was recovered.

比較例2 テトラエトキシシランSi (OC2Hs )4と0.
INの塩酸水溶液とを1:5の重量比に混合して加水分
解させ、得られた均一なゾルを加熱、乾燥し、ボールミ
ルで粉砕して16〜48メツシュの粒状合成石英ガラス
粉末を調製した。この粉末100gを5%ポリビニルア
ルコール水溶液80gと混和し、モールド成形により予
備成形体を作成した。得られたあ成形体を800℃で5
時間加熱し1次いで大気雰囲気中で1 、600℃に昇
温させ、10分間保持したところ、若干収縮した石英ガ
ラス多孔質体が得られた。
Comparative Example 2 Tetraethoxysilane Si (OC2Hs) 4 and 0.
IN and an aqueous solution of hydrochloric acid were mixed at a weight ratio of 1:5 and hydrolyzed, the resulting homogeneous sol was heated, dried, and ground in a ball mill to prepare granular synthetic quartz glass powder with a mesh size of 16 to 48. . 100 g of this powder was mixed with 80 g of a 5% polyvinyl alcohol aqueous solution, and a preform was prepared by molding. The obtained molded body was heated at 800℃ for 5 minutes.
After heating for a period of time, the temperature was then raised to 1,600° C. in the air, and the temperature was maintained for 10 minutes, resulting in a slightly shrunken silica glass porous body.

この多孔質体は、フィルターとしての機能は有していな
いものであった。
This porous body had no function as a filter.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によって製造された高純度石英ガラスフィ
ルターは、素材の本来有する耐熱性、耐薬品性及び耐熱
衝撃性を保有し、ろ過清浄が困難な高温流体や腐食性の
強い流体等の取扱いが困難な流体を何らの不都合もなく
ろ過することができ、その実用的価値は極めて高い、ま
た、円筒状フィルターでは、フィルターとしての機能の
ほかに、側面の加熱、冷却を行えば、その大きな表面積
を利用して通過する流体の効果的な熱交換を行うことも
できる。
The high-purity quartz glass filter manufactured by the method of the present invention retains the inherent heat resistance, chemical resistance, and thermal shock resistance of the material, and can handle high-temperature fluids that are difficult to filter and clean, as well as highly corrosive fluids. Difficult fluids can be filtered without any inconvenience, and its practical value is extremely high.Also, in addition to its function as a filter, cylindrical filters can be heated and cooled on the sides to reduce their large surface area. can also be used to effectively exchange heat of the fluid passing through it.

特 許 出 願 人 信越石英株式会社Special permission Out wish Man Shin-Etsu Quartz Co., Ltd.

Claims (1)

【特許請求の範囲】 1、100ppm以上のOH基を含有する石英ガラスの
フレーク状粉末を予備成形し、得られた成形体をアンモ
ニアガス雰囲気中で800〜1,300℃の温度に加熱
してアンモニア化反応を行わせ、これを1,350〜1
,700℃の一層高い温度条件で脱アンモニア処理する
ことを特徴とする発泡体石英ガラスフィルターの製造方
法。 2、フレーク状の石英ガラス粉末が、16〜150メッ
シュの粒度範囲に調製されたものが用いられる請求項1
記載の石英ガラスフィルターの製造方法。 3、石英ガラス粉末のフレークの厚さが、1〜10μm
である請求項1又は2記載の石英ガラスフィルターの製
造方法。
[Claims] A flaky powder of quartz glass containing 1,100 ppm or more of OH groups is preformed, and the resulting molded body is heated to a temperature of 800 to 1,300°C in an ammonia gas atmosphere. Ammonification reaction is carried out, and this is 1,350 to 1
, a method for producing a foamed quartz glass filter, characterized in that deammonia treatment is carried out at higher temperature conditions of 700°C. 2. Claim 1, wherein the flaky quartz glass powder is prepared to have a particle size in the range of 16 to 150 mesh.
The method for manufacturing the quartz glass filter described. 3. The thickness of the silica glass powder flakes is 1 to 10 μm.
The method for manufacturing a quartz glass filter according to claim 1 or 2.
JP4492990A 1990-02-26 1990-02-26 Quartz glass filter manufacturing method Expired - Fee Related JPH0825762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4492990A JPH0825762B2 (en) 1990-02-26 1990-02-26 Quartz glass filter manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4492990A JPH0825762B2 (en) 1990-02-26 1990-02-26 Quartz glass filter manufacturing method

Publications (2)

Publication Number Publication Date
JPH03247524A true JPH03247524A (en) 1991-11-05
JPH0825762B2 JPH0825762B2 (en) 1996-03-13

Family

ID=12705167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4492990A Expired - Fee Related JPH0825762B2 (en) 1990-02-26 1990-02-26 Quartz glass filter manufacturing method

Country Status (1)

Country Link
JP (1) JPH0825762B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162516A (en) * 2003-12-01 2005-06-23 Tokuyama Toshiba Ceramics Co Ltd Porous silica glass
KR100872194B1 (en) * 2007-04-02 2008-12-09 (주)에스투엠코리아 Porous Quartz Block Manufacturing Method And A Gas Supply Tube Sturcture Using The Same
WO2009004756A1 (en) * 2007-06-29 2009-01-08 Shin-Etsu Quartz Products Co., Ltd. Process for producing porous photocatalyst body, porous photocatalyst body and purification apparatus
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162516A (en) * 2003-12-01 2005-06-23 Tokuyama Toshiba Ceramics Co Ltd Porous silica glass
KR100872194B1 (en) * 2007-04-02 2008-12-09 (주)에스투엠코리아 Porous Quartz Block Manufacturing Method And A Gas Supply Tube Sturcture Using The Same
WO2009004756A1 (en) * 2007-06-29 2009-01-08 Shin-Etsu Quartz Products Co., Ltd. Process for producing porous photocatalyst body, porous photocatalyst body and purification apparatus
JP2009007219A (en) * 2007-06-29 2009-01-15 Shinetsu Quartz Prod Co Ltd Method for producing porous photocatalytic body, porous photocatalytic body, and cleaning device
US10308541B2 (en) 2014-11-13 2019-06-04 Gerresheimer Glas Gmbh Glass forming machine particle filter, a plunger unit, a blow head, a blow head support and a glass forming machine adapted to or comprising said filter

Also Published As

Publication number Publication date
JPH0825762B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
CN1817792B (en) Process for treating synthetic silica powder and synthetic silica powder treated thereof
EP1088789A3 (en) Porous silica granule, its method of production and its use in a method for producing quartz glass
AU8234487A (en) Vitreous silica
JP2003252634A (en) Dispersion liquid containing silicon - titanium mixed oxide powder, its manufacturing method, molded form manufactured from it, its manufacturing method, glass molded form, its manufacturing method and its use
JPH03247524A (en) Production of quartz glass filter
JPH0940434A (en) High purity quartz glass and production thereof
Shibata et al. Fabrication of SiO2-GeO2 core optical fibers by the sol-gel method
JP3883233B2 (en) Method for producing quartz glass foam
JPS58199745A (en) Manufacture of tubular porous glass film
JPH0236293A (en) Cubic boron nitride grinding abrasive grain, production thereof and grindstone
JPH0912322A (en) High-purity transparent quartz glass and its production
JP2639114B2 (en) Method for producing porous spherical alumina particles
JPS60171220A (en) Manufacture of porous alumina body
KR0166367B1 (en) Polysilicon and process therefor
KR20010051410A (en) Polyesters
JPS6013968B2 (en) Production method of boron trichloride
JP2002068727A (en) Method for manufacturing high purity silica
JP3770412B2 (en) Manufacturing method of high strength quartz glass foam
JP4497333B2 (en) Method for producing synthetic quartz glass powder
JP3484611B2 (en) Method for producing fine spherical silica
JPH0717731A (en) Production of quartz glass foame
JPS60239338A (en) Preparation of parent material for optical fiber
JPH0343205B2 (en)
JPS62265127A (en) Production of silica glass
US6988378B1 (en) Light weight porous structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees