JP3770412B2 - Manufacturing method of high strength quartz glass foam - Google Patents
Manufacturing method of high strength quartz glass foam Download PDFInfo
- Publication number
- JP3770412B2 JP3770412B2 JP20508395A JP20508395A JP3770412B2 JP 3770412 B2 JP3770412 B2 JP 3770412B2 JP 20508395 A JP20508395 A JP 20508395A JP 20508395 A JP20508395 A JP 20508395A JP 3770412 B2 JP3770412 B2 JP 3770412B2
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- foam
- producing
- base material
- multilayer structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/08—Other methods of shaping glass by foaming
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Laminated Bodies (AREA)
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、石英ガラス発泡体の製造方法、更に詳しくは疎密な層を複数層有し高強度の石英ガラス発泡体の製造方法に関する。
【0002】
【従来技術】
従来、石英ガラス発泡体は、軽量で断熱性に優れ、しかも低膨張性であるところから炉の保温断熱構造材や軽量反射鏡の基体等に幅広く利用されてきた。前記石英ガラス発泡体は、石英粉又はガラス粉にカーボン粉やSi3N4等の発泡剤を添加混合し、発泡させる方法、或は多孔質石英ガラス母材とアンモニアとを反応させ、それを高温下で加熱発泡させる方法(特公平6−24999号公報)等で製造されてきた。ところが、前記製造方法等で製造された石英ガラス発泡体は、軽量で断熱性に優れているが、元来ガラス質の多孔質構造体であるため、局部的な力や、大きな曲げ負荷で簡単に破損したり、或はセルが潰れて発泡体が崩壊したりし、構造材料として機械的強度が不十分であった。また前記石英ガラス発泡体を炉の構造材として使用すると、例えば1200℃以上の高温で軟化変形し、形状安定性にも欠ける等の欠点があった。
【0003】
【発明が解決しようとする課題】
こうした現状に鑑み、本発明者等は鋭意研究を続けた結果、珪素ハロゲン化物を酸水素火炎バーナー中で酸化加水分解して生成したすす状シリカ微粒子を、例えば水酸基の量や密度等の物性値の不連続層となるようにターゲット上に堆積させ、それを加熱発泡させたところ、高強度の石英ガラス発泡体が得られることを見出し、本発明を完成したものである。
【0004】
すなわち、本発明は、軽量で、高強度の石英ガラス発泡体の製造方法を提供することを目的とする。
【0005】
また、本発明は、疎密な層を複数層有する均一な気泡を含有する石英ガラス発泡体の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成する本発明は、珪素ハロゲン化物を酸化加水分解して生成したすす状シリカ微粒子を物性値が不連続的に異なる層状にターゲット上に堆積して多層構造の多孔質石英ガラス母材を製造したのち、アンモニアガスで処理して発泡体前駆体を形成し、それを加熱発泡することを特徴とする高強度石英ガラス発泡体の製造方法法に係る。
【0007】
上記珪素ハロゲン化物としては、モノシラン(SiH4)、トリクロルシラン(SiHCl3)、ジクロルシラン(SiH2Cl2)等を挙げることができる。本発明は、前記珪素ハロゲン化物を酸素、水素とともに加水分解用バーナーに供給し、酸水素火炎で加水分解してすす状シリカ微粒子を生成し、それをアルミナ等からなるターゲット上に物性値が層状に異なるように堆積させて多孔質シリカ母材を製造し、次いで前記多孔質シリカ母材をアンモニア処理したのち加熱発泡する製造方法からなる。前記多孔質シリカ母材の物性値を層状に異ならせる堆積方法としては、バーナーの移動速度を変動させる方法(以下バーナー移動法という)、供給原料の流量を変化させる方法(以下原料供給変化法という)、前二者を併用する方法、或はターゲット上に堆積したすす状シリカ微粒子を酸水素火炎で周期的に加熱する方法等が挙げられる。他方、前記多孔質シリカ母材を形成する各堆積層はその物性値が一定であるのが好ましい。前記堆積層に物性値の変動があると、高温発泡に際し、発生したガスにバラツキが生じ、それが原因で発泡体の各堆積層に平行な方向にコントロールされない疎密な部位や空洞が生じ、発泡体全体の機械的強度が低下する。そのため各堆積層の形成には、バーナー移動法では移動速度を±15%以下の変動率に、また原料ガス供給法では供給流量を±10%以下の変化率にするのがよい。
【0008】
上記多孔質シリカ母材の製造で使用するターゲットとしては、種々の形状のもの例えば、円筒状、多角形、円盤状、多角錐等が使用できる。ターゲットの任意選択により任意の形状の多孔質シリカ母材を形成でき、それを発泡させれば、利用目的に応じた形状の構造材が製造できる。
【0009】
さらに、多層構造の多孔質シリカガラス母材の製造において加水分解用バーナーの角度又は配置を変えることで図1(a)〜(c)に示すような多孔質シリカ母材が製造できる。この加水分解用バーナーの変位とターゲットの形状を組合せることにより任意の疎密層角度を有する石英ガラス発泡体が製造でき、最終的に利用される石英ガラス発泡体構造材が最も強度を発揮できるように形状を選択でき工業的に極めて有利である。
【0010】
本発明では、上記製造方法で得られた多孔質シリカ母材を、次いでアンモニアガスで処理して発泡体前駆体を形成するが、アンモニアガス処理方法としては、多孔質シリカ母材をアンモニアガス雰囲気中で600〜1300℃に加熱保持するのがよい。アンモニア処理温度が600℃より低いと反応が遅過ぎて実用的でなく、また1300℃を超えると、置換反応によって結合したアンモニア又は窒素含有ガスが再び遊離し、続く発泡工程に悪影響を与えて不都合である。
【0011】
上記アンモニア処理されて形成された発泡体前駆体は1350〜1800℃、好ましくは1600℃以上で30〜120分間加熱処理されて発泡成形され、主に独立気泡からなる石英ガラス発泡体が製造される。前記発泡成形は減圧下でも又大気圧下でもよいが、大気圧が異常発泡が抑制でき好ましい。好ましい発泡度は、見掛け密度0.25〜1.7g/cm3の範囲にある。見掛け密度が0.25g/cm3未満では圧縮及び曲げ強度に劣り、また見掛け密度が1.7g/cm3を超えると、層状構造が消失し断熱性、軽量性が損なわれる。前記範囲の見掛け密度を有する発泡体は、疎な層の密度が0.1〜1.4g/cm3、密な層の密度が0.5〜2.2g/cm3の範囲になる。
【0012】
上記発泡成形で得られた発泡体は、疎密な層を複数層有する多層構造で、空洞の発生がほとんどみられない均一な気泡を有する石英ガラス発泡体である。そしてその発泡度は、層に垂直方向では高く、平行方向では低い。そのため一方向のみを考慮すれば良いところから、発泡成形に当っては密閉性の型をとくに必要とせず、上下方向に発泡するようにセットすればよい。前記発泡成形で得られた石英ガラス発泡体の疎な層厚が密な層厚より1以上で、かつ密な層の密度が疎な層の密度より0.3g/cm3以上大きいと、軽量化が保持されたまま曲げ破壊強度、圧縮強度及び高温曲げ強度等の機械的強度が向上し、さらに高温における形状安定性も向上する。そのため前記石英ガラス発泡体は、各種構造材として有用である。前記発泡成形における発泡温度が1350℃未満では、十分な発泡が行われないばかりでなく、独立気泡内に活性なアンモニアガスが熱分解されずに残留し、また1800℃を超えると発泡が進行し過ぎて連通気泡の発泡体が形成され不都合である。
【0013】
上記本発明の製造方法では、発泡方向以外はほとんど寸法が変わらないところから、後工程での加工を考慮し、多孔質シリカ母材を少し大きめのサイズに形成し、それを所期の寸法に加工すれば寸法精度の高い高純度の石英ガラス発泡体が製造できる。
【0014】
【実施の形態】
次に具体例に基づいて本発明を詳細に説明するが、本発明はそれにより限定されるものではない。
【0016】
実施例1
酸水素火炎バーナーに酸素0.4Nm3/h、水素1.8Nm3/h及び酸素0.2Nm3/hをキャリアガスとする気体四塩化珪素1500g/hを供給してすす状シリカ微粒子を生成し、それを高純度の平面円盤状の厚さ30mm、直径400mmφのアルミナプレートターゲットに堆積させた。前記ターゲットは65rpmで回転し、その回転軸を通るようにバーナーが300mm/minの移動速度で振幅100mmで往復運動した。また、四塩化珪素を供給するのを3分、非供給を1分とし交互に繰り返し堆積させた。その結果、厚さ150mm、直径350mmφの多孔質シリカ母材が製造された。この多孔質シリカ母材に、窒素ガス0.5Nm3/hをキャリアガスとして、アンモニアガス0.2Nm3/hを流しながら、電気炉内で1200℃に4.5時間加熱保持し発泡体体前駆体を形成した。得られた発泡体前駆体を1750℃で30分間加熱保持したところ、厚さ280mm、直径370mmφで見掛け密度0.4g/cm3の層状構造の石英ガラス発泡体が得られた。前記発泡体を2等分したところ、どの切り口にも空洞の発生がなく、平行な層状模様が観察された。またその発泡体について密度の密な層を切り出して調べたところ、厚みが約1〜2mmでその密度は1.02g/cm3(サンプル平均)であった。
【0017】
上記石英ガラス発泡体について2点曲げ破壊試験、圧縮試験及び高温曲げ試験を行った。その結果を表1に示す。各試験のうち2点曲げ破壊試験は、層に平行な方向に長さ150mm、幅50mm、垂直方向の高さ50mmの角柱をサンプルとし、スパン140mmで試験を行った。また、圧縮試験は、層に平行な方向に長さ20mm、幅20mm、層に垂直な方向の高さ20mmの立方体をサンプルとして試験を行った。さらに、高温曲げ試験は、層に平行な方向に長さ210mm、幅30mm、垂直方向の高さ30mmの角柱をサンプルとし、スパン200mm、1280℃、20時間の加熱試験を行った。
【0018】
〈比較例〉
比較例1
酸水素火炎バーナーに酸素0.4Nm3/h、水素1.8Nm3/h及び酸素0.2Nm3/hをキャリアガスとする気体四塩化珪素1500g/hを供給して生成したすす状シリカ微粒子を集めて石英ガラス容器(内径400×深さ300)の中に入れ、窒素ガス0.5Nm3/hをキャリアガスとしてアンモニアガスを0.2Nm3/hを流しながら、電気炉で850℃で4.5時間加熱し発泡体前駆体を形成した。次いで前記発泡体前駆体を内径370mmのカーボン型中で100g/cm2の圧力でプレスしたのち同型内で1750℃に30分間加熱保持し発泡した。得られた石英ガラス発泡体は厚さ300mm、直径370mmの見掛け密度0.4g/cm3の発泡体であった。この発泡体について実施例2と同様に2等分し観察したところ、層構造がなく、10〜20mmの空洞が多数みられた。さらに、曲げ破壊試験、圧縮試験及び高温曲げ試験について実施例2と同様んい行った。その結果を表1に示す。
【0019】
【表1】
【0020】
上記表1から明らかなように実施例2の発泡体は、比較例1の発泡体に比べて曲げ強度が約2〜3倍、圧縮強度が層に垂直な方向で約2倍向上している。さらに高温における撓み量が比較例1の発泡体の約1/2と高温形状安定性が優れていることがわかる。
【0021】
【発明の効果】
本発明の製造方法では、疎密な層を複数層有し、疎密な層に垂直の曲げ強度が高く、かつ平行の方向の引張り強度が高い上に、高温における形状安定性が優れ各種構造材、特に炉の構造材として有用である。
図面の簡単な説明】
【図1】図1は、加水分解バーナーの配置による各種形状の多孔質シリカ母材を製造する概略図を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a quartz glass foam, and more particularly to a method for producing a high strength quartz glass foam having a plurality of dense layers.
[0002]
[Prior art]
Conventionally, quartz glass foam has been widely used as a heat insulating and heat insulating structural material of a furnace, a base of a lightweight reflector, and the like because of its light weight, excellent heat insulation, and low expansion. The quartz glass foam is a method in which a foaming agent such as carbon powder or Si 3 N 4 is added to and mixed with quartz powder or glass powder, or a porous quartz glass base material and ammonia are reacted, It has been produced by a method of heating and foaming at a high temperature (Japanese Patent Publication No. 6-24999). However, the quartz glass foam manufactured by the above-described manufacturing method is lightweight and excellent in heat insulation, but is originally a vitreous porous structure, so it can be easily applied with local force or a large bending load. Or the cell collapses and the foam collapses, resulting in insufficient mechanical strength as a structural material. Further, when the quartz glass foam is used as a structural material for a furnace, for example, there is a drawback that it is softened and deformed at a high temperature of 1200 ° C. or more and lacks in shape stability.
[0003]
[Problems to be solved by the invention]
In view of the present situation, the present inventors have conducted intensive research. As a result, soot-like silica fine particles produced by oxidative hydrolysis of silicon halides in an oxyhydrogen flame burner are obtained, for example, physical property values such as the amount and density of hydroxyl groups. The present invention has been completed by finding that a high-strength quartz glass foam can be obtained by depositing on a target so as to form a discontinuous layer and heating and foaming it.
[0004]
That is, an object of the present invention is to provide a method for producing a lightweight, high-strength quartz glass foam.
[0005]
Another object of the present invention is to provide a method for producing a quartz glass foam containing uniform bubbles having a plurality of dense layers.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a porous quartz glass base material having a multilayer structure in which soot-like silica fine particles produced by oxidative hydrolysis of silicon halide are deposited on a target in layers having discontinuous physical property values. And a method for producing a high-strength quartz glass foam, characterized in that a foam precursor is formed by treatment with ammonia gas and then heated and foamed.
[0007]
Examples of the silicon halide include monosilane (SiH 4 ), trichlorosilane (SiHCl 3 ), dichlorosilane (SiH 2 Cl 2 ), and the like. The present invention supplies the silicon halide together with oxygen and hydrogen to a hydrolysis burner, and hydrolyzes it with an oxyhydrogen flame to produce soot-like silica fine particles, which have a layered physical property value on a target made of alumina or the like. The porous silica base material is manufactured by depositing differently, and then the porous silica base material is treated with ammonia and then heated and foamed. As a deposition method for varying the physical property values of the porous silica base material in layers, a method of changing the moving speed of the burner (hereinafter referred to as a burner moving method), a method of changing the flow rate of the feedstock (hereinafter referred to as a raw material supply change method) ), A method in which the former two are used together, or a method in which soot-like silica fine particles deposited on a target are periodically heated with an oxyhydrogen flame. On the other hand, it is preferable that each deposited layer forming the porous silica base material has a constant physical property value. When the physical property value of the deposited layer varies, the generated gas varies during high-temperature foaming, resulting in a dense portion or cavity that is not controlled in a direction parallel to each deposited layer of the foam, and foaming occurs. The mechanical strength of the whole body is reduced. Therefore, for the formation of each deposited layer, it is preferable that the moving speed is a fluctuation rate of ± 15% or less in the burner moving method, and the supply flow rate is a changing rate of ± 10% or less in the source gas supply method.
[0008]
As a target used in the production of the porous silica base material, those having various shapes, for example, a cylindrical shape, a polygonal shape, a disk shape, a polygonal pyramid, and the like can be used. By selecting a target, a porous silica base material having an arbitrary shape can be formed. If the porous silica base material is foamed, a structural material having a shape corresponding to the purpose of use can be produced.
[0009]
Furthermore, a porous silica preform as shown in FIGS. 1 (a) to 1 (c) can be produced by changing the angle or arrangement of the hydrolysis burner in the production of a porous silica glass preform having a multilayer structure. By combining the displacement of the hydrolysis burner and the shape of the target, it is possible to produce a quartz glass foam having an arbitrary density layer angle, so that the quartz glass foam structural material to be finally used can exhibit the most strength. Therefore, it is extremely advantageous industrially.
[0010]
In the present invention, the porous silica base material obtained by the above production method is then treated with ammonia gas to form a foam precursor. As the ammonia gas processing method, the porous silica base material is treated with an ammonia gas atmosphere. Among them, it is preferable to heat and hold at 600 to 1300 ° C. If the ammonia treatment temperature is lower than 600 ° C., the reaction is too slow and impractical, and if it exceeds 1300 ° C., the ammonia or nitrogen-containing gas bound by the substitution reaction is liberated again, which adversely affects the subsequent foaming process. It is.
[0011]
The foam precursor formed by the ammonia treatment is heat-treated at 1350 to 1800 ° C., preferably 1600 ° C. or more for 30 to 120 minutes, and foam-molded to produce a quartz glass foam mainly composed of closed cells. . The foam molding may be performed under reduced pressure or atmospheric pressure, but atmospheric pressure is preferable because abnormal foaming can be suppressed. The preferred degree of foaming is in the range of an apparent density of 0.25 to 1.7 g / cm 3 . When the apparent density is less than 0.25 g / cm 3 , the compression and bending strength are poor, and when the apparent density exceeds 1.7 g / cm 3 , the layered structure disappears and the heat insulation and lightness are impaired. The foam having an apparent density in the above range has a density of a sparse layer of 0.1 to 1.4 g / cm 3 and a density of a dense layer of 0.5 to 2.2 g / cm 3 .
[0012]
The foam obtained by the above foam molding is a quartz glass foam having a multi-layered structure having a plurality of dense layers and having uniform bubbles in which almost no voids are observed. The degree of foaming is high in the direction perpendicular to the layer and low in the parallel direction. Therefore, since only one direction needs to be considered, a sealing mold is not particularly required for foam molding, and the foam may be set so as to foam in the vertical direction. Light weight when the sparse layer thickness of the quartz glass foam obtained by the foam molding is 1 or more than the dense layer thickness and the density of the dense layer is 0.3 g / cm 3 or more larger than the density of the sparse layer. The mechanical strength such as bending fracture strength, compressive strength, and high temperature bending strength is improved while maintaining stability, and shape stability at high temperature is also improved. Therefore, the quartz glass foam is useful as various structural materials. When the foaming temperature in the foam molding is less than 1350 ° C., not only sufficient foaming is performed, but also active ammonia gas remains in the closed cells without being thermally decomposed, and when it exceeds 1800 ° C., foaming proceeds. This is inconvenient because a foam having open cells is formed.
[0013]
In the manufacturing method of the present invention, since the dimensions are almost the same except in the foaming direction, considering the processing in the subsequent process, the porous silica base material is formed in a slightly larger size, and the desired dimensions are obtained. If processed, a high-purity quartz glass foam with high dimensional accuracy can be produced.
[0014]
Embodiment
Next, the present invention will be described in detail based on specific examples, but the present invention is not limited thereto.
[0016]
Example 1
Soot-like silica fine particles are produced by supplying gaseous silicon tetrachloride 1500 g / h containing oxygen 0.4 Nm 3 / h, hydrogen 1.8 Nm 3 / h and oxygen 0.2 Nm 3 / h to an oxyhydrogen flame burner. Then, it was deposited on an alumina plate target having a thickness of 30 mm and a diameter of 400 mm. The target was rotated at 65 rpm, and the burner reciprocated with an amplitude of 100 mm at a moving speed of 300 mm / min so as to pass through the rotation axis. Further, silicon tetrachloride was repeatedly deposited alternately for 3 minutes and non-supply for 1 minute. As a result, a porous silica base material having a thickness of 150 mm and a diameter of 350 mmφ was produced. The porous silica base material is heated and held at 1200 ° C. for 4.5 hours in an electric furnace while flowing ammonia gas 0.2 Nm 3 / h using nitrogen gas 0.5 Nm 3 / h as a carrier gas, and a foamed body A precursor was formed. When the obtained foam precursor was heated and held at 1750 ° C. for 30 minutes, a quartz glass foam having a layered structure having a thickness of 280 mm, a diameter of 370 mmφ, and an apparent density of 0.4 g / cm 3 was obtained. When the foam was divided into two equal parts, no cavities were generated at any of the cut edges, and parallel layered patterns were observed. Moreover, when the dense layer was cut out and investigated about the foam, the thickness was about 1-2 mm and the density was 1.02 g / cm < 3 > (sample average).
[0017]
The quartz glass foam was subjected to a two-point bending fracture test, a compression test, and a high temperature bending test. The results are shown in Table 1. Of each test, the two-point bending fracture test was performed with a 140 mm span as a sample of a rectangular column having a length of 150 mm, a width of 50 mm, and a vertical height of 50 mm in a direction parallel to the layer. In addition, the compression test was performed using a cube having a length of 20 mm in a direction parallel to the layer, a width of 20 mm, and a height of 20 mm in a direction perpendicular to the layer as a sample. Further, in the high temperature bending test, a rectangular column having a length of 210 mm, a width of 30 mm, and a vertical height of 30 mm was used as a sample in a direction parallel to the layer, and a heating test was performed at a span of 200 mm, 1280 ° C. for 20 hours.
[0018]
<Comparative example>
Comparative Example 1
Soot-like silica fine particles generated by supplying gaseous silicon tetrachloride 1500 g / h using oxygen 0.4 Nm 3 / h, hydrogen 1.8 Nm 3 / h and oxygen 0.2 Nm 3 / h as carrier gases to an oxyhydrogen flame burner And put in a quartz glass container (inner diameter 400 × depth 300), and nitrogen gas 0.5Nm 3 / h as a carrier gas and ammonia gas 0.2Nm 3 / h while flowing in an electric furnace at 850 ° C. The foam precursor was formed by heating for 4.5 hours. Next, the foam precursor was pressed in a carbon mold having an inner diameter of 370 mm at a pressure of 100 g / cm 2 , and then heated and held at 1750 ° C. for 30 minutes in the same mold for foaming. The obtained quartz glass foam was a foam having a thickness of 300 mm and a diameter of 370 mm and an apparent density of 0.4 g / cm 3 . When this foam was divided into two equal parts and observed in the same manner as in Example 2, there was no layer structure and many cavities of 10 to 20 mm were observed. Further, the bending fracture test, compression test and high temperature bending test were carried out in the same manner as in Example 2. The results are shown in Table 1.
[0019]
[Table 1]
[0020]
As is clear from Table 1 above, the foam of Example 2 has a bending strength that is about 2 to 3 times that of the foam of Comparative Example 1 and a compressive strength that is about 2 times higher in the direction perpendicular to the layer. . Furthermore, it can be seen that the amount of warping at high temperature is about 1/2 that of the foam of Comparative Example 1 and the high temperature shape stability is excellent.
[0021]
【The invention's effect】
The production method of the present invention has a plurality of dense layers, high bending strength perpendicular to the dense layers, and high tensile strength in the parallel direction, and excellent structural stability at high temperatures. It is particularly useful as a structural material for furnaces.
Brief Description of Drawings]
FIG. 1 shows a schematic diagram for producing porous silica preforms of various shapes by arrangement of hydrolysis burners.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20508395A JP3770412B2 (en) | 1995-07-20 | 1995-07-20 | Manufacturing method of high strength quartz glass foam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20508395A JP3770412B2 (en) | 1995-07-20 | 1995-07-20 | Manufacturing method of high strength quartz glass foam |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0930835A JPH0930835A (en) | 1997-02-04 |
JP3770412B2 true JP3770412B2 (en) | 2006-04-26 |
Family
ID=16501147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20508395A Expired - Fee Related JP3770412B2 (en) | 1995-07-20 | 1995-07-20 | Manufacturing method of high strength quartz glass foam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3770412B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5124214B2 (en) * | 2007-09-06 | 2013-01-23 | 日立アプライアンス株式会社 | Vacuum heat insulating material and refrigerator using the same |
CN115279705A (en) * | 2020-02-28 | 2022-11-01 | Agc株式会社 | Silica glass, high-frequency device using silica glass, and method for producing silica glass |
WO2024190630A1 (en) * | 2023-03-15 | 2024-09-19 | Agc株式会社 | Silica glass porous body and manufacturing method therefor |
-
1995
- 1995-07-20 JP JP20508395A patent/JP3770412B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0930835A (en) | 1997-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10843954B2 (en) | Synthetic opaque quartz glass and method for producing the same | |
CN1012641B (en) | Method for fabricating articles which include high silica glass bodies and articles formed thereby | |
US20090139265A1 (en) | Method and device for manufacturing silica glass | |
JP3578357B2 (en) | Method for producing heat-resistant synthetic quartz glass | |
US5229336A (en) | Method of producing oxynitride glass | |
JP3770412B2 (en) | Manufacturing method of high strength quartz glass foam | |
JPH0686300B2 (en) | Soot-like silica body and method for producing the same | |
JP3883233B2 (en) | Method for producing quartz glass foam | |
JPS6071590A (en) | Manufacture of reactor for crystal growth | |
JPS59146947A (en) | Manufacture of preform for light conductive body | |
TW202239736A (en) | Silica glass porous body and manufacturing method therefor | |
JP2875686B2 (en) | High purity silica glass foam and method for producing the same | |
JPH0920531A (en) | High-strength quartz glass foam | |
EP1127857A3 (en) | Fluorine-containing synthetic quartz glass and method of production | |
JPH11240729A (en) | Foaming of high-purity quartz glass | |
KR100281793B1 (en) | Method of light block with waste glass of soda-lime glass silicate | |
JPH04224135A (en) | Foamed glass and its manufacture | |
JPH0218291B2 (en) | ||
JPH05270848A (en) | Production of synthetic quartz glass molding | |
JP2007238419A (en) | Opaque sintered compact | |
JPH0517180A (en) | Production of silica foam | |
JPS63215526A (en) | Production of silica glass | |
JPH07267660A (en) | Foamed quartz glass structure and its production | |
JPS58223622A (en) | Preparation of porous glass member | |
JPH01226799A (en) | Production of alpha quartz whisker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041020 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050915 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060202 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100217 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |