KR100281793B1 - Method of light block with waste glass of soda-lime glass silicate - Google Patents
Method of light block with waste glass of soda-lime glass silicate Download PDFInfo
- Publication number
- KR100281793B1 KR100281793B1 KR1019990001760A KR19990001760A KR100281793B1 KR 100281793 B1 KR100281793 B1 KR 100281793B1 KR 1019990001760 A KR1019990001760 A KR 1019990001760A KR 19990001760 A KR19990001760 A KR 19990001760A KR 100281793 B1 KR100281793 B1 KR 100281793B1
- Authority
- KR
- South Korea
- Prior art keywords
- glass
- temperature
- carbon
- minutes
- waste
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 55
- 239000002699 waste material Substances 0.000 title claims abstract description 10
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 title claims description 8
- 238000000034 method Methods 0.000 title description 2
- 239000005361 soda-lime glass Substances 0.000 title 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 5
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 239000011148 porous material Substances 0.000 abstract description 9
- 238000009413 insulation Methods 0.000 abstract description 8
- 238000005187 foaming Methods 0.000 abstract description 7
- 230000008014 freezing Effects 0.000 abstract description 5
- 238000007710 freezing Methods 0.000 abstract description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 4
- 239000002002 slurry Substances 0.000 abstract description 4
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 239000006082 mold release agent Substances 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000011494 foam glass Substances 0.000 description 6
- 239000005357 flat glass Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 239000004604 Blowing Agent Substances 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 241001672018 Cercomela melanura Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/02—Selection of the hardening environment
- C04B40/0263—Hardening promoted by a rise in temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/14—Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/022—Carbon
- C04B14/024—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/0481—Other specific industrial waste materials not provided for elsewhere in C04B18/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Civil Engineering (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Glass Compositions (AREA)
Abstract
(목적) 개기공이 생겨서 단열 및 방음성이 나빠지고, 또한 흡습되어 동파가 생기며 내측부의 발포가 불균일 해지고, 생산성이 좋고, 발포가 불균일 해지지 않는 폐유리를 원료로 한 발포유리의 제조방법을 제공함을 목적으로 한다.(Purpose) Provides a method for producing foamed glass based on waste glass, which has open pores, which causes poor insulation and soundproofing, moisture absorption, freezing, foaming on the inner side, non-uniform foaming, and good productivity. The purpose.
(구성) 미세한 유리분말에 탄소를 균일하게 혼합한 것을 금속형틀에 이형제로 알루미나 슬러리를 도포한 형틀에 넣고 전기머플로에서 1차 승온 속도를 5∼8℃/min로 승온시켜 730°∼780℃에 30분간 유지시킨 후 2차 승온 속도를 1°∼5℃로 하여 920°∼980℃에서 30분간 유지시켜 폐유리를 원료로 한 경량골재를 제조한다.(Composition) A uniform mixture of carbon and fine glass powder was put in a mold coated with an alumina slurry with a mold release agent on a metal mold, and the temperature was increased to 5 to 8 ° C / min in an electric muffle furnace and 730 ° to 780 ° C. After maintaining for 30 minutes at a second temperature increase rate of 1 ° ~ 5 ° C and maintained for 30 minutes at 920 ° ~ 980 ° C to produce a lightweight aggregate made of waste glass.
Description
본 발명은 소다석회 규산염의 폐유리를 원료로 한 경량골재로 쓰이는 발포(發泡)유리를 제조하는 방법에 관한 것이다. 발포유리란 기공(氣孔)을 많이 함유한 유리를 말하는데, 기공조직 때문에 단열성, 경량성, 가공성이 좋으며, 유리 본래의 물성인 내후성, 내화학성등의 성질도 갖는 유리이다.The present invention relates to a method for producing expanded glass for use as lightweight aggregates based on waste glass of soda lime silicate. Foamed glass refers to glass containing a lot of pores, and because of its pore structure, the glass has good thermal insulation, light weight, and processability, and has properties such as weather resistance and chemical resistance, which are inherent physical properties of glass.
발포유리는 적당한 입도의 유리분말과 탄소를 잘 혼합한 후에 이것을 원하는 형태의 형틀에 넣고 가열처리 하여 만들어지는데 발포유리가 생성되는 원리는 다음과 같다. 유리분말과 탄소의 혼합물을 일정온도 이상으로 가열하면 유리가 연화되어 탄소를 둘러싸게 되고 이것을 더욱 고온으로 가열하면 유리분말 내부에 가스상태로 존재하는 SO3와 탄소가 아래의 식과 같이 반응하여 가스를 발생하게 되고 이 가스는 연화된 유리를 부풀게 하여 발포유리가 생성된다.Foamed glass is made by mixing carbon powder and carbon with proper particle size and putting it in the mold of the desired form. The principle of foamed glass is as follows. When the mixture of glass powder and carbon is heated above a certain temperature, the glass softens and surrounds carbon. When the mixture is heated to a higher temperature, SO 3 and carbon, which exist in the gas state inside the glass powder, react as shown in the following formula. This gas causes the softened glass to swell, producing foamed glass.
SO3+ 2C → S2-+ CO(가스) + CO2(가스)SO 3 + 2C → S 2- + CO (gas) + CO 2 (gas)
따라서 균질한 독립기공 조직의 발포유리를 제조하기 위해서는 가열온도는Therefore, in order to manufacture homogeneous free-standing porous glass, the heating temperature is
원료로 사용된 유리의 연화온도보다 높아야 하고 탄소는 가능한 한 이때까지는 대기중의 산소와 반응하지 않아야 하며, 이후 더 고온으로의 가열에서는 유리내부의 SO3와 탄소가 반응하여 가스를 잘 발생하여야 한다. 요컨대 사용되는 유리분말의 연화온도, 가스함유량, 분말입도 등이 매우 중요하다. 이러한 이유에서 일반적으로 단열재용 발포유리는 먼저 특별히 설계된 조성의 유리를 용융하고 이를 분쇄하여 유리분말을 제조한 후에 이것을 원료로 하여 제조되는 것이다.It must be higher than the softening temperature of the glass used as a raw material, and carbon should not react with oxygen in the atmosphere until this time as possible, and then, when heated to higher temperature, SO 3 and carbon inside the glass react well to generate gas. . In short, the softening temperature, gas content, and powder particle size of the glass powder used are very important. For this reason, foamed glass for thermal insulation is generally manufactured by melting a glass of a specially designed composition and pulverizing it to prepare a glass powder and then using it as a raw material.
열처리에 있어서, 초기의 1차 승온 속도의 조절이 잘 안되어 개기공이 될 가능성이 커지고, 따라서 흡습되어 단열성 및 방음성이 나빠지고, 또한 흡수되면 동파가 되고 일단 승온된 후에도 온도의 유지 시간을 잘 조절하지 못하면 외측부는 발포되나 내측부는 발포가 불치일해지고,In the heat treatment, the initial primary temperature increase rate is poorly controlled, which increases the possibility of open pores, thus absorbing moisture, deteriorating heat insulation and sound insulation, and being absorbed, resulting in freezing and controlling temperature retention time even after the temperature is elevated. If not, the outer part is foamed, but the inner part is un foamed,
그리고, 2차 승온속도에 있어서도 낮을 때에는 생산성이 나빠지고, 높을 때에는 발포가 불치일해지며,In addition, even at the second temperature increase rate, the productivity is worse when low, and when it is high, foaming becomes incurable,
2차 승온후에 있어서도 고온의 유지시간을 잘 조절 못하면 발포성이 나빠지고 불균일 발포가 되는 문제점이 있다.Even after the second temperature rise, if the holding time of the high temperature is not well controlled, there is a problem that the foamability is poor and the non-uniform foaming.
위와 같은 종래의 문제점을 해결하기 위해서, 개기공이 생기지 않으며, 따라서 흡습되거나 동파가 않되고 내측부의 발포가 불균일 해지지 않고, 생산성이 좋은 폐유리를 원료로 한 경량골재의 제조방법을 제공함을 목적으로 한다.In order to solve the above problems, it is an object of the present invention to provide a method for producing lightweight aggregates based on waste glass with good productivity without opening pores, thus not absorbing moisture or freezing and uneven foaming of the inner part. .
도1은 본원 발명의 발포유리 제조시 열처리 스케줄1 is a heat treatment schedule when manufacturing the foam glass of the present invention
도2는 실시예 1의 발포유리의 파단면 조직 사진Figure 2 is a photograph of the fracture surface structure of the foam glass of Example 1
도3은 실시예 2의 발포유리의 파단면 조직 사진Figure 3 is a fracture surface texture photograph of the foam glass of Example 2
위와 같은 과제를 해결하기 위해서 미세한 유리분말에 탄소를 균일하게 혼합한 것을 금속형틀에 이형제로 알루미나 슬러리를 도포한 형틀에 넣고 전기머플로에서 1차 승온 속도를 5∼8℃/min로 승온시켜 730°∼780℃에 30분간 유지시킨 후 2차 승온 속도를 1°∼5℃로 하여 920°∼980℃에서 30분간 유지시켜서 된 소다석회 규산염의 폐유리를 원료로 한 경량골재의 제조한다.In order to solve the above problems, a mixture of carbon and fine glass powder uniformly was put in a mold coated with an alumina slurry with a mold release agent on a metal mold, and the temperature was raised to 5 to 8 ° C / min in an electric muffle furnace. A lightweight aggregate made from waste glass of soda-lime silicate, which is maintained at 30 ° C. for 30 minutes at a temperature of 1 ° -5 ° C. and then maintained at 920 ° C.-980 ° C. for 30 minutes, is produced.
(발명의 상세한 실시 태양)(Detailed embodiment of the invention)
1차 승온 속도에 있어서, 5°∼8℃를 벗어나면, 개기공이 생겨 단열 및 방음성이 나빠지고, 또한 동파가 되며 730°∼780℃에서 30분 미만에서는 내측부에서 발포가 불균일 해지고, 2차 승온에 있어서도, 1℃미만에서는 생산성이 나쁘고, 5℃을 초과 할 때에는 발포가 불균일 해지며, 920℃미만에서는 발포성이 나쁘고, 980℃을 초과하면 불균일 발포가 생기게 된다.When the temperature rises from 5 ° to 8 ° C., the pores are formed, the heat insulation and sound insulation are poor, and the freezing becomes less than 30 minutes at 730 ° to 780 ° C. Even at an elevated temperature, the productivity is poor at less than 1 ° C, and the foaming becomes uneven when it exceeds 5 ° C, and when the temperature is lower than 920 ° C, the foamability is bad.
본 발명은 특별히 조성 설계된 발포유리용 유리가 아닌 일반 소다석회 규산염 조성의 판유리 분쇄물을 원료로 하여 입도와 열처리공정을 엄격히 제어함으로서 균질한 독립기공 조직의 단열재용 발포를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a foam for insulation of homogeneous independent pore structure by strictly controlling the particle size and heat treatment process using the raw glass pulverized product of the general soda lime silicate composition, not the glass for the specifically designed composition.
본 실시예에서 중요한 사항은 첫째 발포제로 사용된 탄소의 결정성 여부이다. 탄소는 크게 결정질의 탄소와 비정질의 부정형 탄소로 나뉘는데 대기중에서 가열되었을 때 카본블랙과 같은 비정질 탄소는 약 300℃ 이하에서부터 산화가 개시되어 700℃가 되면 약 70%가 산화되어 소실되는 반면 결정질 탄소는 결정화 정도에 따라서 다르지만 본 실시예에서 사용된 흑연분말의 경우에는 약 720℃에서 산화가 개시되기 때문에 판유리의 연화온도보다 높은 온도에서 산화 개시되는 것이다. 두번째로 중요한 것은 유리의 입도이다. 유리는 입도에 따라서 같은 조성의 유리일지라도 연화되어 탄소를 둘러싸는 온도가 다를 뿐 만 아니라 탄소와 반응하여 내부의 황화물을 밖으로 배출하는 온도도 다르기 때문이다. 유리내부의 황화물은 탱크로에서 화석연료를 연소시켜 유리를 제조할 때 화석연료의 황성분이 비화학양론적으로 연소된 상태로 자연스럽게 유리내부로 녹아 들어가는데, 판유리의 경우 대개 0.3wt% 정도 녹아 있는 것이 일반적이다. 열처리 스케줄을 도1과 같이 한 것은 다음과 같은 이유 때문이다. 첫 번째 유지온도인 750℃까지는 분당 8℃의 속도로 승온한 것은 가능한한 탄소가 산화되기 전에 유리로 탄소를 둘러싸기 위함이고 이 온도에서 30분간 유지시킨 것은 내부까지 온도가 전달될 시간을 주는 것이다. 후에 다시 두 번째 유지온도인 950℃까지 분당 3℃로 승온한 것은 유리내부의 SO3와 탄소가 반응하여 가스를 발생하고 이 가스가 연화된 유리를 부풀릴 수 있는 충분한 시간을 주기 위한 것이고 다시 여기서 30분의 유지시간을 준 것은 첫 번째와 마찬가지로 내부까지 온도가 균일하게 될 시간을 주기 위함이었다.In this example, an important point is whether the carbon used as the blowing agent is crystalline. Carbon is largely divided into crystalline carbon and amorphous amorphous carbon. When heated in the atmosphere, amorphous carbon such as carbon black starts to oxidize at about 300 ° C. or lower, and at 70 ° C., about 70% is oxidized and lost, while crystalline carbon is lost. Depending on the degree of crystallization, in the case of the graphite powder used in the present embodiment, since oxidation starts at about 720 ° C., oxidation starts at a temperature higher than the softening temperature of the plate glass. The second important thing is the particle size of the glass. The glass is softened even if the glass is of the same composition, depending on the particle size, the glass not only has a different temperature surrounding the carbon, but also because the temperature that reacts with the carbon to release the sulfide inside. Sulfide inside glass naturally melts into the glass with non-stoichiometric combustion of sulfur components when burning fossil fuel in a tank furnace. It is common. The heat treatment schedule is as shown in FIG. 1 for the following reason. Up to 750 ° C, the first holding temperature, at a rate of 8 ° C per minute, is to surround the carbon with glass before carbon is oxidized as much as possible, and holding it at this temperature for 30 minutes gives time to transfer the temperature to the interior. . Later, the temperature was raised to 3 ° C / min until the second holding temperature, 950 ° C, to give enough time for the SO 3 and carbon inside the glass to react to produce a gas, which inflates the softened glass. The 30 minute hold time was intended to give the temperature a uniform temperature inside, as in the first.
본 발명예는 소다석회 규산염 조성의 판유리의 폐유리를 원료로 하여 균질한 독립 기공조직의 발포유리를 제조하기 위하여 많은 실험과 관찰을 통하여 찾아낸 최적의 발포제와 열처리 스케줄의 일부이다.Example of the present invention is part of the optimum blowing agent and heat treatment schedule found through many experiments and observations in order to produce a homogeneous independent pore tissue foam glass using waste glass of the plate glass of soda lime silicate composition.
실시예를 들어 상세히 설명하면 다음과 같다.For example, it will be described in detail as follows.
실시예 1Example 1
소다석회 규산염 조성 판유리의 폐유리를 수집하여 조크라샤(Jaw Crusher)와 볼밀(Ball Mill)을 이용하여 분쇄하였다. 이때 입도는 200mesh 이하로 하였다. 이 유리분말 100 중량부에 탄소 0.5 중량부를 V-mixer를 이용하여 균일하게 혼합하였다. 이때 탄소는 원료 유리의 연화온도인 715℃ 내외에서 거의 산화되지 않는 흑연질의 중심입경 5㎛인 것을 사용하였다. 위의 혼합물을 20cm×20cm×30cm 크기의 이형제로서 알루미나(Al2O3) 슬러리를 발라 놓은 금속재 형틀에 넣고 전기머플로에서 도1과 같은 열처리스케줄로 가열소성하여 발포유리를 제조하였다. 이렇게 제조된 발포유리의 특성을 미국재료시험규격(ASTM C552-91)에 의해 측정하여 다음의 값을 얻었다. 밀도 330kg/m3, 압축강도 720kPa, 흡수율 0.5%이하, 열전도율 0.058W/m·K(38℃), 0.053W/m·K(24℃), 0.049W/m·K(10℃)이었다. 도2는 실시예 1의 발포유리의 파단면을 현미경으로 관찰한 확대조직을 나타냈다. 균질한 독립기공의 발포유리가 되었음을 알 수 있다.Waste glass of soda lime silicate composition plate glass was collected and pulverized using Jaw Crusher and Ball Mill. At this time, the particle size was 200mesh or less. 0.5 parts by weight of carbon was uniformly mixed with 100 parts by weight of this glass powder using a V-mixer. In this case, carbon having a central particle diameter of 5 µm that is hardly oxidized at about 715 ° C., which is a softening temperature of the raw material glass, was used. The above mixture was put into a metal mold coated with an alumina (Al 2 O 3 ) slurry as a release agent having a size of 20 cm × 20 cm × 30 cm, and heat-fired by heat treatment as shown in FIG. The properties of the foamed glass thus prepared were measured by the American Material Test Standard (ASTM C552-91) to obtain the following values. Density of 330 kg / m 3 , compressive strength of 720 kPa, absorption of 0.5% or less, thermal conductivity of 0.058 W / m · K (38 ° C.), 0.053 W / m · K (24 ° C.), and 0.049 W / m · K (10 ° C.). Fig. 2 shows an enlarged structure in which the fracture surface of the foamed glass of Example 1 was observed under a microscope. It can be seen that it became a homogeneous free-standing foam glass.
실시예 2Example 2
판유리를 실시예 1에서와 같이 분쇄하여 150mesh 이하의 유리분말로 만들었다. 이 유리분말 100중량부에 탄소 0.7 중량부를 V-mixer를 이용하여 균일하게 혼합하였다. 이때 탄소는 원료 유리의 연화온도인 715℃ 내외에서 거의 산화되지 않는 흑연질의 중심입경 5㎛인 것을 사용하였다. 위의 혼합물을 20cm×20cm×30cm 크기의 이형제로서 알루미나(Al2O3) 슬러리를 발라 놓은 금속재 형틀에 넣고 전기머플로에서 가열소성하여 발포유리를 제조하였다. 열처리스케줄은 도1에 나타낸 것과 같이 2단계 가열이었으나 온도는 1차 유지온도 760℃, 2차 유지온도 930℃로 실시예 1과 달랐다. 이렇게 제조된Plate glass was pulverized as in Example 1 to make a glass powder of 150mesh or less. 0.7 parts by weight of carbon was uniformly mixed with 100 parts by weight of the glass powder using a V-mixer. In this case, carbon having a central particle diameter of 5 µm that is hardly oxidized at about 715 ° C., which is a softening temperature of the raw material glass, was used. The above mixture was placed in a metal mold coated with an alumina (Al 2 O 3 ) slurry as a release agent having a size of 20 cm × 20 cm × 30 cm, and heated and baked in an electric muffle to prepare a foamed glass. The heat treatment schedule was two stage heating as shown in FIG. 1, but the temperature was different from that of Example 1 at the primary holding temperature of 760 ° C and the secondary holding temperature of 930 ° C. So manufactured
발포유리의 특성을 미국재료시험규격(ASTM C552-91)에 의해 측정하여 다음의 값을 얻었다. 밀도 350kg/m3, 압축강도 730kPa, 흡수율 0.5%이하, 열전도율 0.059W/m·K(38℃), 0.055W/m·K(24℃), 0.051W/m·K(10℃)이었다.The properties of the foamed glass were measured by American Material Test Standard (ASTM C552-91) to obtain the following values. Density 350 kg / m 3 , compressive strength 730 kPa, absorption rate 0.5% or less, thermal conductivity 0.059 W / m · K (38 ° C.), 0.055 W / m · K (24 ° C.), 0.051 W / m · K (10 ° C.).
도3에 제조된 발포유리의 파단면을 현미경으로 관찰한 확대조직을 나타냈다. 균질한 독립기공의 발포유리가 되었음을 알 수 있다.3 shows an enlarged structure in which the fracture surface of the foamed glass prepared in FIG. 3 was observed under a microscope. It can be seen that it became a homogeneous free-standing foam glass.
발포유리에 개기공이 생기지 않으며, 따라서 단열 및 방음성이 좋고, 또한 동파가 되지 않으며, 생산성이 좋고, 발포가 균일해지는 등의 우수한 효과가 있다.Open pores are not formed in the foamed glass, and therefore, the heat insulating and soundproofing properties are good, and there is no freezing, the productivity is good, and the foaming is uniform.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990001760A KR100281793B1 (en) | 1999-01-21 | 1999-01-21 | Method of light block with waste glass of soda-lime glass silicate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990001760A KR100281793B1 (en) | 1999-01-21 | 1999-01-21 | Method of light block with waste glass of soda-lime glass silicate |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990064420A KR19990064420A (en) | 1999-08-05 |
KR100281793B1 true KR100281793B1 (en) | 2001-02-15 |
Family
ID=54781224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990001760A KR100281793B1 (en) | 1999-01-21 | 1999-01-21 | Method of light block with waste glass of soda-lime glass silicate |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100281793B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100357895B1 (en) * | 1999-12-28 | 2002-10-25 | 이철태 | Method for manufacturing lightweight heat insulating forming glass by direct forming |
KR20030046984A (en) * | 2001-12-07 | 2003-06-18 | 백보기 | Method Preparation of Chimney Liner Foamed Glass Block use of Waste Fiber Glass |
KR20030062939A (en) * | 2002-01-21 | 2003-07-28 | 테크앤라이프 주식회사 | Method for manufacturing of borosilicate foamed glass with low linear thermal expansion coefficient by using the waste glass and composition for the same |
KR100436203B1 (en) * | 2001-09-24 | 2004-06-16 | 김병일 | foam glass and method for manufacture of it |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030094674A (en) * | 2002-06-07 | 2003-12-18 | 백보기 | Method Preparation of Foam Glass Block for Keeping Warm Insulation Materials of Construction Using Waste Fiber Glass |
-
1999
- 1999-01-21 KR KR1019990001760A patent/KR100281793B1/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100357895B1 (en) * | 1999-12-28 | 2002-10-25 | 이철태 | Method for manufacturing lightweight heat insulating forming glass by direct forming |
KR100436203B1 (en) * | 2001-09-24 | 2004-06-16 | 김병일 | foam glass and method for manufacture of it |
KR20030046984A (en) * | 2001-12-07 | 2003-06-18 | 백보기 | Method Preparation of Chimney Liner Foamed Glass Block use of Waste Fiber Glass |
KR20030062939A (en) * | 2002-01-21 | 2003-07-28 | 테크앤라이프 주식회사 | Method for manufacturing of borosilicate foamed glass with low linear thermal expansion coefficient by using the waste glass and composition for the same |
Also Published As
Publication number | Publication date |
---|---|
KR19990064420A (en) | 1999-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100369842C (en) | Preparation method of foam glass | |
WO1983001441A1 (en) | Method and composition for making foam glass from diatomaceous earth and fly ash | |
CN101445326A (en) | High corrosion-resisting foam glass and low-temperature production method thereof | |
WO2013154499A1 (en) | A method for producing a foam glass with high open pore content | |
KR100281793B1 (en) | Method of light block with waste glass of soda-lime glass silicate | |
KR100952225B1 (en) | Method for manufacturing multi-cellular body by using waste basalt sullage and multi-cellular body made by the method | |
KR20110128541A (en) | Method for manufacturing foamed glass from waste glass | |
JPS62153145A (en) | Hydrogen-containing glass microfoam, glass-ceramic and manufacture | |
CN108483928A (en) | A kind of ferromagnetism foam pyroceram and the preparation method and application thereof | |
KR101437826B1 (en) | Method for manufacturing foam glass using waste glass and foam glass formed by the same | |
US20030084683A1 (en) | Foam glass and method of making | |
CN106653242A (en) | Insulator for high-voltage power transmission line and manufacturing method of insulator | |
KR100741227B1 (en) | Lightweight heat insulator of foamed glass and method for producing the same | |
KR100194107B1 (en) | New Foam Glass Manufacturing Method | |
CA1315086C (en) | Thermal insulating expanded silicate-hydrate product and method of forming | |
JPH09110549A (en) | Production of both foamed ceramic material and slag to become its raw material | |
CN109553304B (en) | Slag porous microcrystalline glass and preparation method thereof | |
KR100262623B1 (en) | Glass composition for producing heat insulating foam glass and method for preparing foam glass using the glass composition | |
KR100436203B1 (en) | foam glass and method for manufacture of it | |
JPH0324414B2 (en) | ||
CN107417073B (en) | Preparation method of building sound-insulation high-porosity foam glass | |
KR102069187B1 (en) | Methods for fabricating granular foam glass and coating layer of foam glass and flame-proof thermal insulating material using the same | |
JP2001206783A (en) | Inorganic fibrous formed body, heat insulating material and their manufacturing method | |
JP2004175576A (en) | Charcoal-composited glass ceramic and its manufacturing process | |
KR20030062939A (en) | Method for manufacturing of borosilicate foamed glass with low linear thermal expansion coefficient by using the waste glass and composition for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
G15R | Request for early publication | ||
N231 | Notification of change of applicant | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |