JPH0324722A - In alloy forming method of algaas semiconductor and in alloy electrode - Google Patents

In alloy forming method of algaas semiconductor and in alloy electrode

Info

Publication number
JPH0324722A
JPH0324722A JP1159329A JP15932989A JPH0324722A JP H0324722 A JPH0324722 A JP H0324722A JP 1159329 A JP1159329 A JP 1159329A JP 15932989 A JP15932989 A JP 15932989A JP H0324722 A JPH0324722 A JP H0324722A
Authority
JP
Japan
Prior art keywords
electrode
alloy
ohmic
semiconductor
contact resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1159329A
Other languages
Japanese (ja)
Other versions
JP2792674B2 (en
Inventor
Masahiro Noguchi
雅弘 野口
Toshihiko Ibuka
井深 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Kasei Corp
Priority to JP15932989A priority Critical patent/JP2792674B2/en
Publication of JPH0324722A publication Critical patent/JPH0324722A/en
Application granted granted Critical
Publication of JP2792674B2 publication Critical patent/JP2792674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an ohmic electrode of low contact resistance by depositing In and at least Pt and Au on an AlGaAs semiconductor, and performing alloy processing. CONSTITUTION:After In 2a, Au 2b, and Pt 2c are respectively deposited on the surface of an AlGaAs semiconductor 1, heat treatment at 380-610 deg.C is performed for 10 minutes or more, and the In 2a and the semiconductor 1 are alloyed, thereby forming ohmic contact 3 of low contact resistance. That is, when an electrode is formed on the AlGaAs substrate 1, Pt and Au are contained in In and heated, thereby forming an alloy electrode and obtaining superior ohmic contact. Hence an ohmic electrode of low contact resistance can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はAIGaAs基板における接触抵抗の低いオー
ミック性電極の形成方法及び形成した電極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming an ohmic electrode with low contact resistance on an AIGaAs substrate, and to the formed electrode.

〔従来の技術〕[Conventional technology]

従来、高輝度発光用LEDとしてホモ接合構造LEDに
比べて、キャリアの注入効率が高く、高出力、高応答速
度が得られるシングルへテロ接合構造LED,あるいは
ダブルへテロ接合構造LEDが用いられている。
Conventionally, single heterojunction structure LEDs or double heterojunction structure LEDs have been used as high-intensity light emitting LEDs, which have higher carrier injection efficiency, higher output, and higher response speed than homojunction structure LEDs. There is.

これらへテロ接合構造LEDに特徴的なことは、光取り
出し側にAj!As混晶比Xの大きいA1イGap−,
Asが用いられている点である。例えば、赤色発光高輝
度LED用基板のエビタキシャル或長の例を示すと、p
型GaAs基板C(100)面〕上にpクラッド層とし
て液相或長法等によりZnドーブA IlG. 75G
 a @. 2SA s層を200μm(p型)形成し
た後、pアクティブ層としてZnドープA l o. 
*sG a o. ssA S層を1〜3μm(p型)
形成し、次いでnクラッド層としてTeドーブA R 
0. 75G a o. 2SA S層を50μm程度
形或している。モしてGaAs基板選択性エッチャント
を用いて光吸収性GaAs基板を除去して高輝度LED
チップを得ており、チップの表面の混晶比Xは0.75
と高い。
The characteristic feature of these heterojunction structure LEDs is that Aj! A1 Gap-, with a large As mixed crystal ratio X,
This is because As is used. For example, to show an example of the epitaxial length of a red-emitting high-brightness LED substrate, p
Zn-doped A IlG. 75G
a@. After forming a 200 μm thick (p-type) 2SA s layer, a Zn-doped AlO.
*sG ao. ssA S layer 1 to 3 μm (p type)
and then Te dove A R as n-cladding layer.
0. 75G ao. The 2SAS layer has a thickness of about 50 μm. The light-absorbing GaAs substrate is removed using a GaAs substrate-selective etchant to produce high-brightness LEDs.
A chip is obtained, and the mixed crystal ratio X on the surface of the chip is 0.75.
That's high.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

しかしながら、このようなAfAs混晶比Xの大きなA
 1 m G a l−w+ A s基板は大気中で酸
化されやすく、その酸化物は電流の流れづらい絶縁物で
あることから、その上に電極を形成するとVf値(20
mA流すのに必要な順方向電圧)が高くなり、低電圧で
は駆動不可能となる。
However, when A with such a large AfAs mixed crystal ratio
1 m G a l-w+ A s The substrate is easily oxidized in the atmosphere, and the oxide is an insulator that makes it difficult for current to flow, so when an electrode is formed on it, the Vf value (20
The forward voltage required to flow mA becomes high, making it impossible to drive with a low voltage.

この場合表面の酸化物を完全に除去することが必要であ
るが、AIlGaΔSをエッチングすることができない
場合(例えば、Aj!GaAs薄膜等に電極を形或する
必要がある場合)には有効な手段がなかった。
In this case, it is necessary to completely remove the oxide on the surface, but this is an effective method when it is not possible to etch the AllGaΔS (for example, when it is necessary to form an electrode on the Aj!GaAs thin film, etc.). There was no.

本発明は上記課題を解決するためのもので、酸化物の形
成された表面でもエッチング処理を施すことなく、低接
触抵抗のオーミツク電極が形或できる電極形戒方法及び
電極を提供することを目的とする。
The present invention is intended to solve the above-mentioned problems, and aims to provide an electrode forming method and an electrode that can form an ohmic electrode with low contact resistance without etching even on a surface where an oxide is formed. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、Aj7GaAs基板のAJ!As混晶比が0
≦AJ!As< lであり、Inに少なくともPtとA
uの両方を含んだ合金電極を形成することを特徴とする
The present invention provides AJ! of Aj7GaAs substrate! As mixed crystal ratio is 0
≦AJ! As < l, and In contains at least Pt and A
It is characterized by forming an alloy electrode containing both u.

本発明は、第1図に示すようにAIlGaAs半導体l
の表面に、In2a,Au2b,Pt2cをそれぞれ蒸
着する。この場合蒸着の順序はどのようであってもよく
、また、必要に応じてドーバントとしてn型のAlGa
Asの場合にはTe、Sn,SbSSiを最大で5%、
通常1〜3%添加し、p型の場合にはZn,Beをl〜
8%添加する。蒸着後、380℃〜610℃で10分以
上加熱処理すると、第2図に示すようにIn2aが半導
体との界面に入り込んで合金化が生じ、低接触抵抗のオ
ーミックコンタクト3が形成される。
The present invention, as shown in FIG.
In2a, Au2b, and Pt2c are deposited on the surface of the substrate. In this case, the order of vapor deposition may be arbitrary, and if necessary, n-type AlGa may be used as a dopant.
In the case of As, Te, Sn, SbSSi at a maximum of 5%,
Usually 1 to 3% is added, and in the case of p-type, Zn and Be are added to 1 to 3%.
Add 8%. After vapor deposition, when heat-treated at 380° C. to 610° C. for 10 minutes or more, In2a enters the interface with the semiconductor and alloys occur, forming an ohmic contact 3 with low contact resistance, as shown in FIG.

この場合、InはPtとAuの存在によって酸化AIが
存在していても低接触抵抗が得られる。この、PtとA
uは合金化した界面において、それぞれ5重量%以上で
あることが望ましい。また、ドーパントを添加すると、
これが拡散されることで表面のキャリア濃度を高め、オ
ーミック接触を得やすくすることができる。ただし、ド
ーバント単体ではAlGaAs中に拡敗せず、Auおよ
びPtが存在することによってはじめて効果的に作用す
る。
In this case, due to the presence of Pt and Au in In, low contact resistance can be obtained even in the presence of oxidized AI. This, Pt and A
It is desirable that u be 5% by weight or more at each alloyed interface. Also, when dopants are added,
This diffusion increases the carrier concentration on the surface, making it easier to obtain ohmic contact. However, dopant alone does not spread into AlGaAs, and only works effectively in the presence of Au and Pt.

なお、電極のアロイ温度は380℃〜610℃の温度範
囲で可能であるが、通常は表面の平坦性と再現性とから
510℃付近で行うのが望ましい。
Note that the alloying temperature of the electrode can range from 380°C to 610°C, but it is usually desirable to perform the alloying at around 510°C from the viewpoint of surface flatness and reproducibility.

〔作用〕[Effect]

本発明は、混晶比が0≦Aj!As< 1であるAIl
GaAS基板に電極を形或する場合、InにPtとAu
の両方を含ませて加熱することにより、良好な合金電極
を形成することができ、またドーパントを添加すること
によりキャリア濃度を高めて、より良好なオーミック接
触を得ることができ、Aj!As混晶比が高く、表面層
が酸化されていてもエッチング処理を施すことなく低接
触抵抗のオーミック電極を形成することができる。勿論
、本発明はAj!As混晶比が低い場合にも適用できる
ことは言うまでもない。
In the present invention, the mixed crystal ratio is 0≦Aj! AIl with As<1
When forming electrodes on a GaAS substrate, In is combined with Pt and Au.
A good alloy electrode can be formed by adding both Aj! and heating, and by adding a dopant, the carrier concentration can be increased and better ohmic contact can be obtained. Even if the As mixed crystal ratio is high and the surface layer is oxidized, an ohmic electrode with low contact resistance can be formed without performing an etching process. Of course, the present invention is Aj! Needless to say, this method can also be applied when the As mixed crystal ratio is low.

〔実施例1] Aj!As混晶比が0.70、キャリア濃度1×IQl
ffC『3のn型AIGaAs基板上にTeを添加して
In%Pt%Auを蒸着し、窒素雰囲気中で510℃、
15分間加熱処理し、 In:  54重量% Te:   1重量% Pt: 約7重量% Au:   38・重量% の組戊の合金を110μmφの大きさで500μm間隔
で形或し、オーミック性および接触抵抗を測定した。
[Example 1] Aj! As mixed crystal ratio is 0.70, carrier concentration is 1×IQl
In%Pt%Au was vapor-deposited on an n-type AIGaAs substrate of ffC ``3'' with Te added, and heated at 510°C in a nitrogen atmosphere.
After heat treatment for 15 minutes, a composite alloy of In: 54% by weight, Te: 1% by weight, Pt: about 7% by weight, and Au: 38% by weight was formed into a shape with a size of 110 μmφ at 500 μm intervals to improve ohmic property and contact. Resistance was measured.

測定総数960中、非才一ミック性のものは0、才一ミ
ック性のものは960で100%の才−ミック性が達成
され、平均の接触抵抗は2.63X10−4Ωcdであ
った。
Out of a total of 960 measurements, 100% contact resistance was achieved with 0 for non-competitive contact and 960 for non-competitive contact, and the average contact resistance was 2.63 x 10 -4 Ωcd.

〔比較例1〕 実施例1と同様の条件で、 In:  97重量% Te:   3重量% の組或の合金を形成し、オーミック性および接触抵抗を
測定した。
[Comparative Example 1] An alloy containing 97% by weight In and 3% by weight Te was formed under the same conditions as in Example 1, and its ohmic properties and contact resistance were measured.

測定総数245中非オーミック性のものは245、オー
ミック性のものは0で、オーミック性は0%、平均の接
触抵抗は3.44X10−’ΩcrI以上であった。
Out of a total of 245 measurements, 245 were non-ohmic, 0 were ohmic, the ohmic was 0%, and the average contact resistance was 3.44×10 −′ΩcrI or more.

〔比較例2〕 実施例1と同様の条件で、 In:  97重量% Te:   3重量% の組或の合金を形威し、才−ミック性および接触抵抗を
測定した。
[Comparative Example 2] Under the same conditions as in Example 1, an alloy containing 97% by weight of In and 3% by weight of Te was tested, and the mechanical strength and contact resistance were measured.

測定総数767中非オーミック性のものは466、才一
ミック性のものは301で、オーミック性は39.2%
、平均の接触抵抗は1.53X10−lΩdであった。
Of the total number of measurements of 767, 466 were non-ohmic, 301 were unidirectional, and 39.2% were ohmic.
, the average contact resistance was 1.53×10 −1 Ωd.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、AIGaAs半導体上に
Inに少なくともPt,Auを蒸着して合金化処理する
ことにより、Aj!As混晶比が高く、酸化AIの形成
された表面でも低接触抵抗の合金電極を形成することが
でき、エッチング処理を施すことなく、低接触抵抗のオ
ーミック電極が得られる。
As described above, according to the present invention, Aj! An alloy electrode with a high As mixed crystal ratio and low contact resistance can be formed even on a surface where oxidized AI is formed, and an ohmic electrode with low contact resistance can be obtained without performing an etching process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明のIn電極形或を説明するため
の図である。 l・・・AlGaAs半導体、2・・・電極、3・・・
才一ミックコンタクト。 出  願  人 三菱モンサント化成株式会社(外l名
FIGS. 1 and 2 are diagrams for explaining the In electrode type of the present invention. l...AlGaAs semiconductor, 2... electrode, 3...
Saiichi Mick contact. Applicant: Mitsubishi Monsanto Chemicals Co., Ltd. (external name)

Claims (3)

【特許請求の範囲】[Claims] (1)AlAs混晶比が0≦AlAs<1のAlGaA
s半導体上にIn及び少なくともPt、Auを蒸着し、
合金化処理することを特徴とするAlGaAs半導体の
In合金形成方法。
(1) AlGaA with an AlAs mixed crystal ratio of 0≦AlAs<1
s Vapor depositing In and at least Pt and Au on the semiconductor,
A method for forming an In alloy in an AlGaAs semiconductor, which comprises performing an alloying treatment.
(2)AlGaAs半導体のAlAs混晶比が0≦Al
As<1であり、該半導体上に形成され、Inに少なく
ともPtとAuの両方を含んだ合金からなるAlGaA
s半導体のIn合金電極。
(2) AlAs mixed crystal ratio of AlGaAs semiconductor is 0≦Al
As<1, AlGaA is formed on the semiconductor and is made of an alloy containing both Pt and Au in In.
s semiconductor In alloy electrode.
(3)Pt及びAuの含有量は、それぞれ0.1ppm
以上である請求項2記載のIn合金電極。
(3) The content of Pt and Au is 0.1 ppm each.
The In alloy electrode according to claim 2, which is the above.
JP15932989A 1989-06-21 1989-06-21 Method for forming In alloy of GaAs semiconductor and In alloy electrode Expired - Fee Related JP2792674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15932989A JP2792674B2 (en) 1989-06-21 1989-06-21 Method for forming In alloy of GaAs semiconductor and In alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15932989A JP2792674B2 (en) 1989-06-21 1989-06-21 Method for forming In alloy of GaAs semiconductor and In alloy electrode

Publications (2)

Publication Number Publication Date
JPH0324722A true JPH0324722A (en) 1991-02-01
JP2792674B2 JP2792674B2 (en) 1998-09-03

Family

ID=15691439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15932989A Expired - Fee Related JP2792674B2 (en) 1989-06-21 1989-06-21 Method for forming In alloy of GaAs semiconductor and In alloy electrode

Country Status (1)

Country Link
JP (1) JP2792674B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068729A (en) * 1999-08-30 2001-03-16 Kyocera Corp Led array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068729A (en) * 1999-08-30 2001-03-16 Kyocera Corp Led array

Also Published As

Publication number Publication date
JP2792674B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
JP3739951B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2953468B2 (en) Compound semiconductor device and surface treatment method thereof
JP2803741B2 (en) Gallium nitride based compound semiconductor electrode forming method
JP4023121B2 (en) N-type electrode, group III nitride compound semiconductor device, method for manufacturing n-type electrode, and method for manufacturing group III nitride compound semiconductor device
JPS5932055B2 (en) Method for manufacturing a semiconductor device having contacts
JP2005340860A (en) Semiconductor light-emitting element
JP3807020B2 (en) Translucent electrode for light emitting semiconductor device and method for producing the same
JP2907452B2 (en) Electrodes for compound semiconductors
JP3665243B2 (en) Nitride semiconductor device and manufacturing method thereof
JPH0324722A (en) In alloy forming method of algaas semiconductor and in alloy electrode
JP4281569B2 (en) Method for manufacturing epitaxial wafer for semiconductor light emitting device
JPS6143846B2 (en)
JPH10308533A (en) Galium-nitride-based compound semiconductor light emitting element, its manufacture and light emitting element
JP3309745B2 (en) GaN-based compound semiconductor light emitting device and method of manufacturing the same
JP2000101134A (en) Nitride semiconductor element and manufacture thereof
JPH03184377A (en) Electrode for compound semiconductor
JP3410166B2 (en) Red light emitting diode element
JP3267480B2 (en) Method of manufacturing compound semiconductor and method of forming ohmic electrode of compound semiconductor
JPS6220383A (en) Compound semiconductor device
JPH10256184A (en) Electrode for p-type nitride semiconductor semiconductor element having electrode and fabrication thereof
JP4572430B2 (en) Method for forming ohmic electrode
JP4142958B2 (en) Metal oxide film forming method
JP2827862B2 (en) Ohmic electrode of compound semiconductor and method of forming the same
CN1039681A (en) Technology for preparing electrode of gallium phosphide led
JPH10125655A (en) Manufacture of iii-v compound semiconductor element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees