JPH03246811A - Dielectric porcelain composition and laminated capacitor element - Google Patents

Dielectric porcelain composition and laminated capacitor element

Info

Publication number
JPH03246811A
JPH03246811A JP2044912A JP4491290A JPH03246811A JP H03246811 A JPH03246811 A JP H03246811A JP 2044912 A JP2044912 A JP 2044912A JP 4491290 A JP4491290 A JP 4491290A JP H03246811 A JPH03246811 A JP H03246811A
Authority
JP
Japan
Prior art keywords
dielectric
capacitor element
dielectric layer
multilayer capacitor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2044912A
Other languages
Japanese (ja)
Inventor
Hiroshi Kagata
博司 加賀田
Junichi Kato
純一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2044912A priority Critical patent/JPH03246811A/en
Priority to EP90115615A priority patent/EP0413321B1/en
Priority to DE69020260T priority patent/DE69020260T2/en
Priority to US07/569,291 priority patent/US5094987A/en
Publication of JPH03246811A publication Critical patent/JPH03246811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To make a dielectric layer thin and obtain an element of small size but large capacity by incorporating an internal electrode layer mainly composed of Cu or an alloy containing Cu into an element, and mainly composing the element of Pb perovskite ceramic. CONSTITUTION:A composition formula expressed by Pb1-x+aMex {(Zn1/3 Nb2/3)1-y-2Tiy(CubW1-b)2} O3+a where Me is one or more elements selected from Sr and Ba, the values of 'x' and 'y' are so determined as to fall within the illustrated range, and the values of 'bz', 'a' and 'b' are respectively kept as 0<=a<=0.1, 0.02<=b<=1.0 and 0.002<=bz<=0.04. As aforementioned, Cu is contained in an internal electrode, cost required for an electrode material can be substantially reduced and excellent characteristics can be displayed in a high frequency circuit. In addition, as a Pb dielectric is used, a dielectric layer can be made thin and a capacitor element of small size but large capacity can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、静電容量の温度変化がJIS規格のY級B特
性(20°Cを基準として一25°Cから+85°Cの
範囲で±10%以内)を満たすコンデンサ素子において
、CuまたはCuを含む合金を主成分とした内部電極層
を有し、Pb系ペロブスカイトセラミックを主成分とし
た誘電体層を有する積層コンデンサ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is characterized in that the capacitance changes with temperature according to the JIS standard Y class B characteristic (±10 in the range from -25°C to +85°C with 20°C as the standard). %), the multilayer capacitor element has an internal electrode layer mainly composed of Cu or an alloy containing Cu, and a dielectric layer mainly composed of Pb-based perovskite ceramic.

従来の技術 電子機器の小型化に伴う、素子の小型、大容量化への要
求から、近年セラミックコンデンサの市場において積層
型のものが主流になりつつある。
BACKGROUND OF THE INVENTION Due to the demand for smaller devices and larger capacitances as electronic devices become smaller, multilayer capacitors have become mainstream in the ceramic capacitor market in recent years.

積層セラミックコンデンサは、通常内部電極と誘電体磁
器を同時焼成することにより得る。従来より高誘電率系
セラミックコンデンサ用の誘電体材料として、チタン酸
バリウム系の磁器組成物が広く用いられている。しかし
、チタン酸バリウム系の磁器は焼成温度は1300°C
程度と高いため、積層コンデンサを製造する場合、内部
電極としてPdあるいはPt等の高価で、比較的電気抵
抗の高い金属を用いる必要があった。また、チタン酸バ
リウム系の磁器は、その直流バイアス特性や信号電圧特
性が悪いため誘電体層を薄層化して素子を小型大容量化
することができなかった。
Multilayer ceramic capacitors are usually obtained by co-firing internal electrodes and dielectric ceramics. Barium titanate-based ceramic compositions have been widely used as dielectric materials for high-permittivity ceramic capacitors. However, the firing temperature for barium titanate porcelain is 1300°C.
Therefore, when manufacturing a multilayer capacitor, it is necessary to use an expensive metal with relatively high electrical resistance, such as Pd or Pt, as the internal electrode. Furthermore, barium titanate-based porcelain has poor DC bias characteristics and signal voltage characteristics, so it has not been possible to make the dielectric layer thinner and make the device smaller and larger in capacity.

そこで、安価で、かつ電気抵抗の低いCuを内部電極に
用い、焼成温度が低く、電圧特性の良好なPb系ペロブ
スカイトセラミックを誘電体に用いた積層コンデンサ素
子に対する要求が近年急激に強まってきている。我々は
これまでにCuと同時焼成可能、すなわちCuが融解せ
ず、酸化しない焼成条件で、実用的な電気的特性を有す
る誘電体磁器組成物を提案したり、あるいは上記の積層
コンデンサ素子を量産性良く製造する方法について提案
してきた。この積層コンデンサ素子は、高いコスト力を
有し、小型大容量化が可能であり、電解コンデンサと置
換することが可能である。
Therefore, there has been a sudden increase in demand in recent years for multilayer capacitor elements that use inexpensive Cu, which has low electrical resistance, for the internal electrodes, and Pb-based perovskite ceramics, which have low firing temperatures and good voltage characteristics, for the dielectric. . We have so far proposed dielectric ceramic compositions that can be co-fired with Cu, that is, have practical electrical properties under firing conditions that do not melt or oxidize Cu, or mass-produced the above-mentioned multilayer capacitor elements. We have proposed a method for manufacturing it efficiently. This multilayer capacitor element has a high cost, can be made small and large in capacity, and can be replaced with an electrolytic capacitor.

発明が解決しようとする課題 しかし、現在まで提案されている上記の積層コンデンサ
素子における容量の温度変化率はJIS規格のY級E特
性りラス程度であるため、素子の使用できる回路は限定
されたものであった。そこで、Cuを内部電極に用い、
容量の温度変化率がY級B特性(−25°Cから+85
°Cの範囲で±10%以内)を満たす大容量の積層コン
デンサ素子の開発が待たれている。上記の素子において
CR積および電圧特性等が実用レベルにあるものは存在
しない。
Problems to be Solved by the Invention However, the temperature change rate of capacitance in the above-mentioned multilayer capacitor elements proposed to date is about the same as the JIS standard Y class E characteristic, so the circuits in which the element can be used are limited. It was something. Therefore, using Cu for the internal electrode,
Temperature change rate of capacitance is Y class B characteristic (-25°C to +85°C)
The development of a large-capacity multilayer capacitor element that satisfies the requirements (within ±10% in the range of °C) is awaited. None of the above elements has CR product, voltage characteristics, etc. at a practical level.

本発明における請求項(1)記載の発明は、上記の積層
コンデンサ素子用の誘電体磁器組成物を提供することを
課題としている。
An object of the invention as defined in claim (1) of the present invention is to provide a dielectric ceramic composition for the above-mentioned multilayer capacitor element.

本発明における請求項(2)記載の発明は、請求項(1
)記載の組成物における絶縁抵抗値を向上させることを
課題としている。
The invention described in claim (2) of the present invention is defined in claim (1).
The object of the present invention is to improve the insulation resistance value of the composition described in ).

本発明における請求項(3)記載の発明は、上記の積層
コンデンサ素子を提供することを課題としている。
An object of the invention described in claim (3) of the present invention is to provide the above-mentioned multilayer capacitor element.

本発明における請求項(4)記載の発明は、請求項(3
)記載の素子における絶縁抵抗値を向上させることを課
題としている。
The invention described in claim (4) of the present invention is based on claim (3).
The object of the present invention is to improve the insulation resistance value of the device described in ).

課題を解決するための手段 P b+−、、a Mex  ((Zn+z+ Nbz
zs)+−y−gT i 、 (Cub wl−b )
g ) 0s−aで表される組成式(ただし、MeはS
rおよびBaのうちより選ばれる一種以上の元素)にお
けるXおよびyが、下記のA、B、C,D、および已に
囲まれた範囲にあり、かつbz、a、およびbが、 0≦a≦0.1 0.02≦b≦1.0 0.002≦bz≦0.04 を満たす磁器を主成分として誘電体層を構成する。
Means for solving the problem P b+-,, a Mex ((Zn+z+ Nbz
zs)+-y-gT i , (Cub wl-b)
g) Compositional formula represented by 0s-a (where Me is S
(one or more elements selected from r and Ba), X and y are in the range surrounded by A, B, C, D, and B below, and bz, a, and b are 0≦ The dielectric layer is composed mainly of ceramic that satisfies the following: a≦0.1, 0.02≦b≦1.0, 0.002≦bz≦0.04.

X         y A     0.07   0.16 B     O,0?    0.09CO,190,
09 D       O,240,22 E       O,160,22 また、誘電体層を構成する磁器に含まれるCu成分の一
部をMnで置換する。
X y A 0.07 0.16 B O,0? 0.09CO, 190,
09 D O, 240, 22 E O, 160, 22 Further, a part of the Cu component contained in the ceramic constituting the dielectric layer is replaced with Mn.

作用 本発明における請求項(1)記載の誘電体磁器組成物に
よると、ペロブスカイト相を構成するAサイト量が過剰
であるため、低い温度で焼結し、非酸化性雰囲気下の焼
成においても高い絶縁抵抗値を有する。また、Bサイト
にCuが含まれているため、より低温で焼結し、誘電率
の温度特性が良くなる。
Effect: According to the dielectric ceramic composition according to claim (1) of the present invention, since the amount of A sites constituting the perovskite phase is excessive, it can be sintered at a low temperature and has a high temperature even when fired in a non-oxidizing atmosphere. It has an insulation resistance value. Furthermore, since Cu is included in the B site, sintering occurs at a lower temperature, resulting in better temperature characteristics of dielectric constant.

本発明における請求項(2)記載の誘電体磁器組成物に
よると、Mnが含まれているため、磁器の絶縁抵抗値が
高くなる。
According to the dielectric ceramic composition according to claim (2) of the present invention, since Mn is included, the insulation resistance value of the ceramic becomes high.

本発明における請求項(3)記載の積層コンデンサ素子
によると、誘電体セラミックのAサイト量が過剰である
ため、Cuの融点以下の低い温度で焼成が可能となり、
絶縁抵抗値も高くなった。また、BサイトにCuが含ま
れているため、より低温で焼結し、誘電率の温度特性が
良くなる。
According to the multilayer capacitor element according to claim (3) of the present invention, since the amount of A sites in the dielectric ceramic is excessive, firing can be performed at a low temperature below the melting point of Cu,
The insulation resistance value also increased. Furthermore, since Cu is included in the B site, sintering occurs at a lower temperature, resulting in better temperature characteristics of dielectric constant.

本発明における請求項(4)記載の積層コンデンサ素子
によると、誘電体セラミックにMnが含まれているため
、素子の絶縁抵抗値が高くなる。
According to the multilayer capacitor element according to claim (4) of the present invention, since the dielectric ceramic contains Mn, the insulation resistance value of the element becomes high.

実施例 実施例1 本実施例は請求項(1)、および(3)に記載の発明に
対応し、誘電体層セラミックの組成を限定することによ
り、Cuを内部電極層に持ち、容量の温度変化率がJI
S規格のY級B特性を満たす積層コンデンサ素子を作製
したものである。
Examples Example 1 This example corresponds to the invention described in claims (1) and (3), and by limiting the composition of the dielectric layer ceramic, Cu is included in the internal electrode layer and the temperature of the capacitance is The rate of change is JI
This is a multilayer capacitor element that satisfies the Y-class B characteristics of the S standard.

誘電体層セラミックの出発原料として化学的に高純度な
pbo、SrCO3、B a CO3、ZnO。
Chemically high-purity pbo, SrCO3, B a CO3, and ZnO are used as starting materials for dielectric layer ceramics.

NbzOs、Tie、、WO8およびCuOを用いた。NbzOs, Tie, WO8 and CuO were used.

これらを、純度補正を行なった上で、組成式%式% のうちより選ばれる一種以上の元素)においてX、y、
z、a、およびbが種々の値となるように所定量を秤量
した。混合はボールミルにより、17時間行なった。溶
媒は純水、ボールは直径4mmのジルコニア球を用いた
。混合物を乾燥したのち、アルミナ製のるつぼに入れ、
同質の蓋をし、750°Cから900°Cで仮焼した。
After correcting the purity of these, X, y,
Predetermined amounts were weighed so that z, a, and b had various values. Mixing was carried out using a ball mill for 17 hours. The solvent used was pure water, and the ball used was a zirconia ball with a diameter of 4 mm. After drying the mixture, place it in an alumina crucible.
It was covered with a homogeneous lid and calcined at 750°C to 900°C.

仮焼物をアルミナ乳鉢で粗砕し、ボールミルにより17
時間粉砕した。溶媒およびボールは、混合と同じものを
用いた。
The calcined product was coarsely crushed in an alumina mortar and milled by a ball mill.
Time crushed. The same solvent and ball as used for mixing were used.

十分に乾燥して得た誘電体粉末に、粉末に対して5wt
%のポリビニルブチラール樹脂、70wt%の溶剤とと
もにボールミルを用いて混合し、ドクターブレード法に
よりシート化した。
Add 5wt to the dielectric powder obtained by sufficiently drying the powder.
% of polyvinyl butyral resin and 70 wt % of a solvent were mixed using a ball mill, and formed into a sheet by a doctor blade method.

内部電極として平均粒径0.8μmのCu、Oを出発原
料に用い、Cu2Oに対して0.5w t%のエチルセ
ルロース、25%の溶剤で混練し電極ペーストを得た。
Cu and O having an average particle size of 0.8 μm were used as starting materials for the internal electrode, and were kneaded with 0.5 wt% ethyl cellulose and 25% solvent based on Cu2O to obtain an electrode paste.

この電極ペーストをスクリーン印刷法により、上記の誘
電体シートの上に印刷した。印刷したシートを電極が左
右交互に引き出されるように積層し切断した。電極には
さまれる誘電体層の数は20とした。
This electrode paste was printed on the above dielectric sheet by screen printing. The printed sheets were stacked so that the electrodes were drawn out alternately on the left and right sides, and then cut. The number of dielectric layers sandwiched between the electrodes was 20.

上記の手順で作製した積層体を、500°Cで6時間熱
処理を行ない、有機成分を飛散させた。
The laminate produced by the above procedure was heat treated at 500°C for 6 hours to scatter the organic components.

その後、1%H2を含むN2ガス流中、450°Cで8
時間処理し、内部電極を還元した。
Then, 8 hours at 450 °C in a N2 gas stream containing 1% H2
The internal electrode was reduced.

焼成は、マグネシア磁器容器の中に積層体を大量の誘電
体の仮焼粉中と共に入れ、CO□、C01H2,08、
およびN2等のガスにより、内部電極が完全に酸化され
ない酸素分圧に雰囲気を制御し、所定の温度で2時間保
持することにより行なった。
For firing, the laminate is placed in a magnesia porcelain container together with a large amount of dielectric calcined powder, and CO□, C01H2,08,
The atmosphere was controlled using a gas such as N2 to an oxygen partial pressure that would not completely oxidize the internal electrodes, and the temperature was maintained at a predetermined temperature for 2 hours.

焼成温度は、組成により異なるが、誘電体板焼粉の圧粉
体を上記と同様の条件により温度を変えて焼成し、焼結
体の密度が最大になる温度とした。
Although the firing temperature differs depending on the composition, the green compact of the dielectric plate sintered powder was fired under the same conditions as above while changing the temperature to a temperature at which the density of the sintered body was maximized.

−回の焼成で500個の素子を焼成した。得られた素子
の端面に外部電極としてCuペーストをN2中で焼き付
け、積層コンデンサ素子を得た。
500 elements were fired in - times of firing. A Cu paste was baked in N2 as an external electrode on the end face of the obtained element to obtain a multilayer capacitor element.

積層コンデンサ素子の外形は、3.2X1.6 Xo、
9胴であり、電極層の厚みは約2μm、誘電体層の厚み
は一層当たり約20μmであった。
The outer dimensions of the multilayer capacitor element are 3.2X1.6Xo,
The electrode layer had a thickness of about 2 μm, and the dielectric layer had a thickness of about 20 μm per layer.

積層コンデンサ素子の容量とtanδを、1■r+ A
HS8.1kHzの信号電圧のもとで測定した。絶縁抵
抗値は20Vの電圧を印加後1分値から求めた。
The capacitance and tanδ of the multilayer capacitor element are 1■r+A
Measurements were made under a signal voltage of HS 8.1 kHz. The insulation resistance value was determined from the value 1 minute after applying a voltage of 20V.

素子の端面を研磨し、電極の有効面積と誘電体層の厚み
を求め、誘電体層の誘電率と、絶縁抵抗率を算出した。
The end face of the element was polished, the effective area of the electrode and the thickness of the dielectric layer were determined, and the dielectric constant and insulation resistivity of the dielectric layer were calculated.

各特性は良品の平均値とした。Each characteristic was taken as the average value of non-defective products.

第1表(1) 〜(4)に誘電体の組成X、 y、Z、
a、およびb、最適焼成温度、20°Cでの誘電体層の
誘電率、tanδ、抵抗率、また誘電率の温度変化率を
示した。
Table 1 (1) to (4) shows the dielectric compositions X, y, Z,
a and b show the optimum firing temperature, the dielectric constant of the dielectric layer at 20°C, tan δ, resistivity, and temperature change rate of the dielectric constant.

以下余白 第1表 (11 階に#印があるのは請求の範囲外の比較例第1表 (2) 階に#印があるのは請求の範囲外の比較例第1表 (3) 階に#印があるのは請求の範囲外の比較例第1表 (4) 階に#印があるのは請求の範囲外の比較例第1表(1)
〜(4)に示したように、請求の範囲外の組成において
は、焼成温度が1000°C以下、誘電体層の誘電率が
2000以上、抵抗率がIQ−1tΩ1以上、および容
量の温度変化率がYB特性を満たす、という条件のうち
のいずれかを満たさなくなり、磁器コンデンサ材料とし
て実用的でなくなる。したがって、請求の範囲より除外
した。ここで特に、誘電体層におけるペロブスカイト相
のAサイト過剰量aを0以上にすることにより、焼成温
度を低下させ、かつ絶縁抵抗値を高くすることができた
Below are the margins in Table 1 (11 The # mark on the floor is Table 1 (2) of comparative examples that are outside the scope of claims. The # mark on the floor is Table 1 (3) of comparative examples that are outside the scope of claims. Those with a # mark on the floor are Table 1 (4) of comparative examples that are outside the scope of claims.The ones with a # mark on the floor are Table 1 (1) of comparative examples that are outside the scope of claims.
As shown in ~(4), in compositions outside the claimed range, the firing temperature is 1000°C or less, the dielectric constant of the dielectric layer is 2000 or more, the resistivity is IQ-1tΩ1 or more, and the capacitance changes with temperature. It no longer satisfies one of the conditions that the ratio satisfies the YB characteristic, and it is no longer practical as a material for a magnetic capacitor. Therefore, it was excluded from the scope of claims. In particular, by setting the excess A site amount a of the perovskite phase in the dielectric layer to 0 or more, it was possible to lower the firing temperature and increase the insulation resistance value.

なお、請求の範囲以外の元素の含有も容量の温度変化が
JIS規格のYB特性を満たすのであれば構わない。
Incidentally, there is no problem with the inclusion of elements other than those in the claimed range as long as the change in capacitance with temperature satisfies the YB characteristic of the JIS standard.

実施例2 本実施例は請求項(2)、および(4)に記載の発明に
対応し、誘電体層のペロブスカイト相におけるCU酸成
分一部をMnで置換することにより課題を解決したもの
である。
Example 2 This example corresponds to the invention described in claims (2) and (4), and the problem was solved by replacing a part of the CU acid component in the perovskite phase of the dielectric layer with Mn. be.

実施例1と同様の方法により、 組成式 %式% おけるCが種々の値となるように誘電体粉末を作製し、
積層コンデンサ素子を得た。特性の評価も実施例1と同
様の方法により行なった。
By the same method as in Example 1, dielectric powders were prepared so that C in the composition formula % had various values,
A multilayer capacitor element was obtained. Characteristic evaluation was also carried out in the same manner as in Example 1.

第2表に、Mn置換量C1および各特性を示した。Table 2 shows the Mn substitution amount C1 and each characteristic.

第2表 階に#印があるのは請求の範囲外の比較例第2表に示し
たように、誘電体層のペロブスカイト相に含まれるCu
成分を一部Mnに置換することにより、絶縁抵抗値を向
上することができた。
The # mark on the floor of Table 2 indicates a comparative example outside the scope of the claims, as shown in Table 2, Cu contained in the perovskite phase of the dielectric layer.
By substituting some of the components with Mn, the insulation resistance value could be improved.

しかし、Mnの量が85%より多くなると、誘電率の温
度変化が大きくなりYB特性を満たさなくなったので、
請求の範囲より除外した。なお、請求の範囲以外の元素
の含有も容量の温度変化がJIS規格のYB特性を満た
すのであれば構わない。
However, when the amount of Mn exceeds 85%, the temperature change in dielectric constant becomes large and YB characteristics are no longer satisfied.
Excluded from the scope of claims. Incidentally, there is no problem with the inclusion of elements other than those in the claimed range as long as the change in capacitance with temperature satisfies the YB characteristic of the JIS standard.

発明の効果 本発明の積層コンデンサ素子によると、Cuを内部電極
に有するため、電極材料に要する費用を大幅に削減する
ことができ、高周波回路で優れた特性を発揮できる。ま
た、Pb系誘電体を使用しているため、誘電体層の薄層
化が可能となり、小型大容量の素子を得ることができ、
電解コンデンサの置換が可能となる。しかも、容量の温
度変化率がJIS規格のY級B特性を満たすため、利用
できる回路の範囲が拡大する。
Effects of the Invention According to the multilayer capacitor element of the present invention, since the internal electrodes contain Cu, the cost required for electrode materials can be significantly reduced, and excellent characteristics can be exhibited in high frequency circuits. In addition, since a Pb-based dielectric is used, the dielectric layer can be made thinner, making it possible to obtain a small and large-capacity element.
It becomes possible to replace electrolytic capacitors. Furthermore, since the temperature change rate of the capacitance satisfies the Y class B characteristic of the JIS standard, the range of usable circuits is expanded.

【図面の簡単な説明】 図は組成式、 P b +−x+m M ex  ((Z n r7z
 N bz/s)+−y−tT i y (Cu、w、
−、)t ) o、、、 (ただし、MeはSrおよび
Baのうちより選ばれる一種以上の元素)中のXおよび
Yにおける請求の範囲を斜線で示した組成図である。
[Brief explanation of the drawings] The figure shows the composition formula, P b + - x + m M ex ((Z n r7z
Nbz/s)+-y-tT i y (Cu, w,
-,)t)o,,, (However, Me is one or more elements selected from Sr and Ba) is a composition diagram in which the claimed ranges of X and Y are indicated by diagonal lines.

Claims (1)

【特許請求の範囲】 (1)Pb_1_−_x_+_aMe_x{(Zn_1
_/_3Nb_2_/_3)_1_−_y_−_zTi
_y(Cu_bW_1_−_b)_z}O_3_+_a
で表される組成式(ただし、MeはSrおよびBaのう
ちより選ばれる一種以上の元素)におけるxおよびyが
、下記のA、B、C、D、およびEに囲まれた範囲にあ
り、かつbz、a、およびbが、 0≦a≦0.1 0.02≦b≦1.0 0.002≦bz≦0.04 を満たすことを特徴とする誘電体磁器組成物。     x    y A 0.07 0.16 B 0.07 0.09 C 0.19 0.09 D 0.24 0.22 E 0.16 0.22 (2)請求項(1)記載の誘電体磁器組成物に含まれる
Cuの85%以下の原子をMnで置換したことを特徴と
する誘電体磁器組成物。 (3)CuまたはCuを含む合金を主成分とした内部電
極層と、Pb_1_−_x_+_aMe_x{(Zn_
1_/_3NB_2_/_3)_1_−_y_−_zT
i_y(Cu_bW_1_−_b)_z}O_3_+_
aで表される組成式(ただし、MeはSrおよびBaの
うちより選ばれる一種以上の元素)におけるxおよびy
が、下記のA、B、C、D、およびEに囲まれた範囲に
あり、かつbz、a、およびbが、 0≦a≦0.1 0.02≦b≦1.0 0.002≦bz≦0.04 を満たす磁器を主成分とする誘電体層とを備えたことを
特徴とする積層コンデンサ素子。 x    y A 0.07 0.16 B 0.07 0.09 C 0.19 0.09 D 0.24 0.22 E 0.16 0.22 (4)請求項(3)記載の積層コンデンサ素子を構成す
る誘電体層の主成分である磁器に含まれるCuの85%
以下の原子をMnで置換したことを特徴とする積層コン
デンサ素子。
[Claims] (1) Pb_1_−_x_+_aMe_x{(Zn_1
_/_3Nb_2_/_3)_1_−_y_−_zTi
_y(Cu_bW_1_-_b)_z}O_3_+_a
x and y in the composition formula represented by (where Me is one or more elements selected from Sr and Ba) are in the range surrounded by A, B, C, D, and E below, and bz, a, and b satisfy the following: 0≦a≦0.1 0.02≦b≦1.0 0.002≦bz≦0.04. x y A 0.07 0.16 B 0.07 0.09 C 0.19 0.09 D 0.24 0.22 E 0.16 0.22 (2) Dielectric ceramic according to claim (1) A dielectric ceramic composition characterized in that 85% or less of Cu atoms contained in the composition are replaced with Mn. (3) An internal electrode layer mainly composed of Cu or an alloy containing Cu, and Pb_1_−_x_+_aMe_x{(Zn_
1_/_3NB_2_/_3)_1_-_y_-_zT
i_y(Cu_bW_1_-_b)_z}O_3_+_
x and y in the composition formula represented by a (where Me is one or more elements selected from Sr and Ba)
is in the range surrounded by A, B, C, D, and E below, and bz, a, and b are 0≦a≦0.1 0.02≦b≦1.0 0.002 A multilayer capacitor element comprising: a dielectric layer whose main component is ceramic that satisfies ≦bz≦0.04. x y A 0.07 0.16 B 0.07 0.09 C 0.19 0.09 D 0.24 0.22 E 0.16 0.22 (4) Multilayer capacitor element according to claim (3) 85% of Cu contained in porcelain, which is the main component of the dielectric layer that makes up the
A multilayer capacitor element characterized in that the following atoms are replaced with Mn.
JP2044912A 1989-08-17 1990-02-26 Dielectric porcelain composition and laminated capacitor element Pending JPH03246811A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2044912A JPH03246811A (en) 1990-02-26 1990-02-26 Dielectric porcelain composition and laminated capacitor element
EP90115615A EP0413321B1 (en) 1989-08-17 1990-08-16 Dielectric ceramic composition and multi-layer capacitor
DE69020260T DE69020260T2 (en) 1989-08-17 1990-08-16 Dielectric ceramic composition and multilayer capacitor.
US07/569,291 US5094987A (en) 1989-08-17 1990-08-17 Dielectric ceramic composition and multi-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2044912A JPH03246811A (en) 1990-02-26 1990-02-26 Dielectric porcelain composition and laminated capacitor element

Publications (1)

Publication Number Publication Date
JPH03246811A true JPH03246811A (en) 1991-11-05

Family

ID=12704673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2044912A Pending JPH03246811A (en) 1989-08-17 1990-02-26 Dielectric porcelain composition and laminated capacitor element

Country Status (1)

Country Link
JP (1) JPH03246811A (en)

Similar Documents

Publication Publication Date Title
JP2993425B2 (en) Multilayer ceramic capacitors
JP2010180124A (en) Dielectric ceramic and multilayer ceramic capacitor
US4985381A (en) Dielectric ceramic composition
JPH0785460B2 (en) Multilayer porcelain capacitor
JP2020043310A (en) Dielectric composition and electronic component
JP3350326B2 (en) Multilayer capacitors
JPH03246811A (en) Dielectric porcelain composition and laminated capacitor element
JP3435039B2 (en) Dielectric ceramics and multilayer ceramic capacitors
JPH04188504A (en) Dielectric porcelain composition
JPH11219844A (en) Dielectric ceramic and laminated ceramic capacitor
JPH03246812A (en) Dielectric porcelain composition and laminated capacitor element
JP2757402B2 (en) Method for producing high-permittivity dielectric ceramic composition
JPS61251563A (en) High permittivity ceramic composition
JP2006165259A (en) Dielectric porcelain and laminated electronic part
JPH07101659B2 (en) Dielectric ceramic composition and multilayer capacitor element
JP2571386B2 (en) High dielectric constant dielectric porcelain composition
JPS61101460A (en) High permittivity ceramic composition
JPH1174144A (en) Laminated ceramic capacitor
JPS63156062A (en) High permittivity ceramic composition and manufacture
JPS6226705A (en) High permeability ceramic composition
JP2694975B2 (en) Method for producing high dielectric constant porcelain composition
JP2006016225A (en) Ceramic dielectric, electronic component using the dielectric, and method for producing the component
JP2014189464A (en) Ceramic composition and ceramic electronic part
KR0165557B1 (en) Ceramic composition
JP2906530B2 (en) Dielectric porcelain composition and capacitor