JPH0324625B2 - - Google Patents

Info

Publication number
JPH0324625B2
JPH0324625B2 JP57084182A JP8418282A JPH0324625B2 JP H0324625 B2 JPH0324625 B2 JP H0324625B2 JP 57084182 A JP57084182 A JP 57084182A JP 8418282 A JP8418282 A JP 8418282A JP H0324625 B2 JPH0324625 B2 JP H0324625B2
Authority
JP
Japan
Prior art keywords
eluent
check valve
suction side
side check
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57084182A
Other languages
Japanese (ja)
Other versions
JPS58200161A (en
Inventor
Katsuo Tsukada
Katsumi Hayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57084182A priority Critical patent/JPS58200161A/en
Publication of JPS58200161A publication Critical patent/JPS58200161A/en
Publication of JPH0324625B2 publication Critical patent/JPH0324625B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳細な説明】 本発明は液体クロマトグラフに係り、特に送液
部、試料注入部、分離部および検出部を備えてい
る液体クロマトグラフに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid chromatograph, and more particularly to a liquid chromatograph equipped with a liquid feeding section, a sample injection section, a separation section, and a detection section.

送液部、試料注入部、分離部および検出部を備
え、送液部は、所定の溶離液が溜められている複
数個の溶離液溜と、これらの溶離液溜に夫々接続
された電磁弁と、これらの電磁弁に吸入側逆止弁
を介して接続され、かつ吐出側逆止弁を有してい
るポンプ室を持つたポンプとから構成されている
液体クロマトグラフは、その溶離に混合溶離液の
組成を連続的に変化させる所謂グラジエント溶離
法を行なう場合、次のような問題点があり、これ
を解決するには特別な装置が必要であつた。
The liquid feeding section includes a liquid feeding section, a sample injection section, a separation section, and a detection section, and the liquid feeding section includes a plurality of eluent reservoirs in which a predetermined eluent is stored, and a solenoid valve connected to each of these eluent reservoirs. A liquid chromatograph consists of a pump having a pump chamber connected to these electromagnetic valves via a check valve on the suction side and having a check valve on the discharge side. When performing the so-called gradient elution method in which the composition of the eluent is continuously changed, there are the following problems, and special equipment is required to solve them.

すなわち例えば溶離液に水とメタノールとを選
び、水からメタノールへのグラジエント溶離法を
行なう場合に、水とメタノールとの混合により気
泡が発生する。この気泡がポンプに吸入される
と、ポンプにレシプロ型ポンプが使用されている
液体クロマトグラフの場合、ポンプの逆止弁の誤
動作を誘発し、試料注入部から分離部への送液が
不規則となり、検出部である検出器のベースライ
ンの変動、クロマトグラムの再現性不良の原因と
なる。これは液体クロマトグラフにとつて致命的
な欠陥である。溶離液である水と有機溶媒との混
合により気泡が発生するのは、有機溶媒の空気に
対する溶解度が水の空気に対する溶解度よりも大
きく、両者を混合することにより混合された混合
溶離液の空気に対する溶解度が、有機溶媒のそれ
に比べて小さくなるために有機溶媒に溶解してい
た空気が過飽和となり、気泡が発生する。従つて
予め有機溶媒中の空気を脱気しておけば混合時の
気泡発生は防止される。しかし折角脱気しても液
面が空気に接していれば、たちどころに空気が溶
解してしまうので余り効果がない。この点最も効
果的な方法として、溶解度は小さいヘリウムガス
を有機溶媒中に継続的にバブリングする方法が知
られているが、この方法はガス配管、ガスバブリ
ング装置等の特別な装置が必要であり、装置を複
雑化し、かつヘリウムガスのバブリングと共に溶
媒が蒸発し危険性を伴う。また溶媒に混合溶媒を
用いた場合には溶媒の蒸発によりその組成が変化
する懸念がある。
That is, for example, when water and methanol are selected as eluents and a gradient elution method from water to methanol is performed, bubbles are generated due to the mixing of water and methanol. When these air bubbles are sucked into the pump, in the case of liquid chromatographs that use reciprocating pumps, they can cause the pump's check valve to malfunction, causing irregular flow of liquid from the sample injection section to the separation section. This causes fluctuations in the baseline of the detector, which is the detection unit, and poor reproducibility of the chromatogram. This is a fatal flaw for liquid chromatographs. Bubbles are generated by mixing the eluent water and an organic solvent because the solubility of the organic solvent in air is greater than the solubility of water in air, and by mixing the two, the mixed eluent is less resistant to air. Since the solubility is lower than that of the organic solvent, the air dissolved in the organic solvent becomes supersaturated and bubbles are generated. Therefore, if the air in the organic solvent is removed in advance, the generation of bubbles during mixing can be prevented. However, even if you take the pains to degas it, if the liquid surface is in contact with air, the air will immediately dissolve, so it will not be very effective. The most effective method in this regard is to continuously bubble helium gas, which has low solubility, into an organic solvent, but this method requires special equipment such as gas piping and gas bubbling equipment. This complicates the equipment and poses a risk of evaporation of the solvent along with bubbling of helium gas. Furthermore, when a mixed solvent is used as the solvent, there is a concern that the composition may change due to evaporation of the solvent.

本発明は以上の点に鑑みなされたものであり、
その目的とするところは、混合時に気泡が発生す
るような溶媒系を用いても送液が円滑に行なわれ
る液体クロマトグラフを提供するにある。
The present invention has been made in view of the above points,
The purpose is to provide a liquid chromatograph in which liquid can be smoothly transferred even when using a solvent system that generates bubbles during mixing.

すなわち本発明は、第1の溶離液溜に流路を介
して接続された第1の吸入側逆止弁と第2の溶離
液溜に他の流路を介して接続された第2の吸入側
逆止弁を設け、第1および第2の吸入側逆止弁を
ポンプのポンプ室に通ずるように接続したことを
特徴とするものである。
That is, the present invention provides a first suction side check valve connected to a first eluent reservoir through a flow path, and a second suction side check valve connected to a second eluent reservoir through another flow path. The pump is characterized in that a side check valve is provided, and the first and second suction side check valves are connected so as to communicate with a pump chamber of the pump.

本発明は気泡の発生および発生した気泡が逆止
弁に与える影響について検討した結果得られたも
のである。気泡の発生は、横軸に各種溶媒の溶媒
極性指数をとり縦軸に空気の溶解度をとつて各種
溶媒の溶媒極性指数と空気の溶解度との関係を示
した第1図に示されているように、混合する溶媒
の種類によつて異なる。同図に示されているよう
に溶媒の空気に対する溶解度は溶媒の種類によつ
て異なり、一般に溶媒の極性が小さくなるほど空
気の溶解度は大きく、例えばヘキサン、メタノー
ル等の有機溶媒の空気に対する溶解度は大きく、
水のそれは有機溶媒に比べて約1/10〜1/100
と小さい。そしてこの空気に対する溶解度の差の
大きい溶媒同士、例えば水とメタノールとを混合
すると気泡が発生し、空気に対する溶解度の差の
小さい溶媒同士、例えばエタノールとメタノール
とを混合しても気泡は殆んど発生しない。すなわ
ちこの種液体クロマトグラフに最もよく使用され
る水とメタノール等の所謂極性有機溶媒との混合
の場合に気泡が発生し、有機溶媒同士あるいは水
溶液同士の混合の場合には気泡が殆んど発生しな
いことが確かめられた。
The present invention was achieved as a result of studies on the generation of air bubbles and the effects of the generated air bubbles on check valves. The generation of bubbles is explained in Figure 1, which shows the relationship between the solvent polarity index of various solvents and the solubility of air, with the horizontal axis representing the solvent polarity index and the vertical axis representing the solubility of air. It depends on the type of solvent to be mixed. As shown in the figure, the solubility of a solvent in air varies depending on the type of solvent. Generally, the lower the polarity of the solvent, the higher the solubility of air. For example, the solubility of organic solvents such as hexane and methanol in air is higher. ,
That of water is about 1/10 to 1/100 compared to organic solvents.
And small. When solvents with a large difference in solubility for air, such as water and methanol, are mixed, bubbles are generated, and even when solvents with a small difference in solubility for air, for example, ethanol and methanol are mixed, there are almost no bubbles. Does not occur. In other words, bubbles are generated when water is mixed with a so-called polar organic solvent such as methanol, which is most commonly used in this type of liquid chromatograph, and bubbles are almost always generated when organic solvents or aqueous solutions are mixed. It was confirmed that it did not.

この気泡による逆止弁の誤動作は第2図に示さ
れているようにポンプの吸入側逆止弁1の誤動作
に起因する。すなわち同図に示されているように
カム2により駆動され、図中両端矢印表示のよう
に往復運動するプランジヤー3と吸入側逆止弁1
および吐出側逆止弁4との働きにより図中矢印表
示のように混合溶離液Pの吸入、吐出動作が繰り
返され、送液が行なわれる。プランジヤー3が図
中右方向に動くと吸入側逆止弁1が開き、吐出側
逆止弁4が閉じてポンプ室5に混合溶離液Pが吸
入され、プランジヤー3が図中左方向に動くと吸
入側逆止弁1が閉じ、吐出側逆止弁4が開いてポ
ンプ室5から混合溶離液Pが吐出される。この場
合逆止弁1,4が確実に開閉動作を行なえば安定
した混合溶離液Pの送液が行なわれるが、気泡6
を吸入すると、気泡6は吸入側逆止弁1を構成し
ているボール7と弁座8との間に停滞してボール
7と弁座8との密着を妨げるので、ポンプが吐出
行程に入つた場合に吸入側逆止弁1から混合溶離
液Pが逆流してしまい、送液が不安定となる。
This malfunction of the check valve due to air bubbles is caused by the malfunction of the check valve 1 on the suction side of the pump, as shown in FIG. That is, as shown in the figure, a plunger 3 and a suction side check valve 1 are driven by a cam 2 and move back and forth as indicated by arrows at both ends in the figure.
By working with the discharge-side check valve 4, suction and discharge operations of the mixed eluent P are repeated as indicated by arrows in the figure, and the liquid is fed. When the plunger 3 moves to the right in the figure, the suction side check valve 1 opens, the discharge side check valve 4 closes, and the mixed eluent P is sucked into the pump chamber 5. When the plunger 3 moves to the left in the figure, the eluent mixture P is sucked into the pump chamber 5. The suction side check valve 1 is closed, the discharge side check valve 4 is opened, and the mixed eluent P is discharged from the pump chamber 5. In this case, if the check valves 1 and 4 are opened and closed reliably, the mixed eluent P can be stably fed, but the bubbles 6
When the air bubbles 6 are sucked in, the air bubbles 6 stagnate between the ball 7 and the valve seat 8 that make up the suction side check valve 1, and prevent the ball 7 from coming into close contact with the valve seat 8, so that the pump enters the discharge stroke. If this happens, the mixed eluent P will flow backwards from the suction side check valve 1, making the liquid feeding unstable.

ところで気泡6を吸入しても気泡6が吸入側逆
止弁1を通過してポンプ室5に入つてしまえば吐
出行程時に吸入側逆止弁1は確実に閉じるので、
ポンプ室5内は加圧され、気泡6は混合溶離液P
に溶解して吐出される。従つてポンプ室5内に入
つてからの気泡6は逆止弁1,4の動作に何等悪
影響を及ぼさないので、混合時に気泡を発生する
ような溶媒系を用いてもポンプ室5内で混合し、
ポンプ室5内で気泡を発生させるようにすればよ
いことが確かめられた。そこで本発明では、第1
の溶離液溜に流路を介して接続された第1の吸入
側逆止弁と第2の溶離液溜に他の流路を介して接
続された第2の吸入側逆止弁を設け、第1および
第2の吸入側逆止弁をポンプのポンプ室に通ずる
ように接続した。このようにすることにより、混
合時に気泡が発生するような溶媒系を用いても送
液が円滑に行なわれる液体クロマトグラフを得る
ことを可能としたものである。
By the way, even if the air bubbles 6 are inhaled, if the air bubbles 6 pass through the suction side check valve 1 and enter the pump chamber 5, the suction side check valve 1 will surely close during the discharge stroke.
The inside of the pump chamber 5 is pressurized, and the bubbles 6 are mixed with the eluent P.
It is dissolved and discharged. Therefore, the air bubbles 6 that enter the pump chamber 5 do not have any adverse effect on the operation of the check valves 1 and 4, so even if a solvent system that generates air bubbles during mixing is used, the air bubbles 6 cannot be mixed in the pump chamber 5. death,
It has been confirmed that it is sufficient to generate bubbles within the pump chamber 5. Therefore, in the present invention, the first
a first suction side check valve connected to the eluent reservoir through a flow path, and a second suction side check valve connected to the second eluent reservoir through another flow path, The first and second suction side check valves were connected to communicate with the pump chamber of the pump. By doing so, it is possible to obtain a liquid chromatograph in which liquid feeding is performed smoothly even when using a solvent system that generates air bubbles during mixing.

以下、本発明を液体クロマトグラフに適用した
実施例について説明する。第3図および第4図に
はその一実施例が示されている。なお前述の第2
図と同じ部品には同じ符号を付したので説明は省
略する。第3図における送液部14のポンプ11
は、第4図におけるカム2、プランジヤー3、吐
出側逆止弁4、ポンプ室5、逆止弁1a,1bお
よび圧力センサ13を含む。本実施例では、吸入
側逆止弁を各溶離液に対応するように少なくとも
2個1a,1b設け、所定の溶離液A,Bをポン
プの室5内で混合するようにした。このようにす
ることによりポンプ室5内で気泡が発生するよう
になつて、送液が円滑に行なわれる液体クロマト
グラフを得ることができる。
Examples in which the present invention is applied to a liquid chromatograph will be described below. One embodiment is shown in FIGS. 3 and 4. Note that the second
Components that are the same as those in the figures are given the same reference numerals, and therefore their explanations will be omitted. Pump 11 of liquid feeding section 14 in FIG.
includes the cam 2, plunger 3, discharge side check valve 4, pump chamber 5, check valves 1a and 1b, and pressure sensor 13 in FIG. In this embodiment, at least two check valves 1a and 1b on the suction side are provided so as to correspond to each eluent, and predetermined eluents A and B are mixed in the chamber 5 of the pump. By doing so, bubbles are generated within the pump chamber 5, and a liquid chromatograph in which liquid can be smoothly delivered can be obtained.

すなわち所定の溶離液A,Bが溜められている
溶離液溜9a,9b、これらの溶離液溜9a,9
bに夫々接続されている電磁弁10a,10b、
これらの電磁弁10a,10bと少なくとも2個
の吸入側逆止弁1a,1bを介してポンプ11と
ポンプ室5と接続し、ポンプ室5内で溶離液A,
Bを混合するようにしたので、溶離液溜9aの溶
離液Aは電磁弁10aから吸入側逆止弁1aを介
してポンプ室5に吸入され、溶離液溜9bの溶離
液Bは電磁弁10bから吸入側逆止弁1bを介し
てポンプ室5に吸入されて、溶離液A,Bはポン
プ室5内で混合されるようになつて、気泡はポン
プ室5で発生するようになり、吸入側逆止弁1
a,1bの誤動作を防止することができる。なお
溶離液A,Bの混合比は、電磁弁10a,10b
を交互に開閉させてその開閉時間を制御装置12
で制御することにより変えることができ、任意の
混合比が得られる。そしてポンプ室5内で発生し
た気泡は加圧されて混合溶離液中に溶解するが、
発生した気泡を圧縮、溶解する間混合溶離液の吐
出が中断され、流量が低下する。これは次のよう
にして解決できる。吐出中断時の圧力の低下を圧
力センサ13で検出し、圧力の低下と共にカム2
を急速回転させて気泡の圧縮を瞬時に行なう。気
泡消滅後には吐出が開始されて圧力が上昇するの
で、その圧力を圧力センサ13で検出し、カム2
を通常の回転数に戻してやる。このようにすれば
混合溶離液が円滑に吐出されるようになつて、混
合溶離液の吐出が中断されるのを防止することが
できる。なお第3図において14は送液部、15
は試料注入部、16は分離部(カラム)、17は
検出部(検出器)である。
That is, eluent reservoirs 9a and 9b in which predetermined eluents A and B are stored, and these eluent reservoirs 9a and 9.
Solenoid valves 10a and 10b respectively connected to
The pump 11 is connected to the pump chamber 5 via these electromagnetic valves 10a, 10b and at least two suction side check valves 1a, 1b, and the eluent A,
Since the eluent B is mixed, the eluent A in the eluent reservoir 9a is sucked into the pump chamber 5 from the solenoid valve 10a via the suction side check valve 1a, and the eluent B in the eluent reservoir 9b is sucked into the pump chamber 5 through the solenoid valve 10a. The eluents A and B are then mixed in the pump chamber 5, and bubbles are generated in the pump chamber 5, causing the suction Side check valve 1
Malfunctions of a and 1b can be prevented. The mixing ratio of eluents A and B is determined by the solenoid valves 10a and 10b.
The control device 12 alternately opens and closes the opening and closing times.
The mixing ratio can be changed by controlling the mixing ratio, and an arbitrary mixing ratio can be obtained. Then, the bubbles generated in the pump chamber 5 are pressurized and dissolved in the mixed eluent, but
While the generated bubbles are being compressed and dissolved, the ejection of the mixed eluent is interrupted and the flow rate is reduced. This can be solved as follows. The pressure sensor 13 detects the drop in pressure when the discharge is interrupted, and the cam 2
is rotated rapidly to instantly compress the air bubbles. After the bubbles disappear, discharge starts and the pressure increases, so the pressure is detected by the pressure sensor 13 and the cam 2
Return it to normal rotation speed. In this way, the mixed eluent can be smoothly discharged, and the discharge of the mixed eluent can be prevented from being interrupted. In addition, in FIG. 3, 14 is a liquid feeding part, 15
1 is a sample injection section, 16 is a separation section (column), and 17 is a detection section (detector).

第5図には本発明の他の実施例が示されてい
る。本実施例は溶離液にA,B,Cの3種が使用
された場合で、3個の吸入側逆止弁1a,1b,
1cを設け、溶離液A,B,Cをポンプ室5内で
混合するようにした。この場合には溶離液Aは吸
入側逆止弁1aから、溶離液Bは吸入側逆止弁1
bから、溶離液Cは吸入側逆止弁1cから夫々ポ
ンプ室5内に吸入され、ポンプ室5内でこれら溶
離液A,B,Cが混合されるようになつて、前述
の場合と同様な作用効果を奏することができる。
なお同図において9cは溶離液Cを溜める溶離液
溜であり、10cは電磁弁である。
Another embodiment of the invention is shown in FIG. In this example, three kinds of eluents A, B, and C are used, and three suction side check valves 1a, 1b,
1c was provided to mix the eluents A, B, and C within the pump chamber 5. In this case, the eluent A is supplied from the suction side check valve 1a, and the eluent B is supplied from the suction side check valve 1a.
From b, the eluent C is sucked into the pump chamber 5 from the suction side check valve 1c, and these eluents A, B, and C are mixed in the pump chamber 5, as in the previous case. It is possible to achieve the following effects.
In the figure, 9c is an eluent reservoir for storing the eluent C, and 10c is a solenoid valve.

第6図には本発明の更に他の実施例が示されて
いる。本実施例は溶離液にA,B,Cの3種が使
用された場合で、2個の吸入側逆止弁1a,1b
を設け、溶離液A,B,Cをポンプ室5内で混合
するようにした。この場合には溶離液Aは吸入側
逆止弁1aから、溶離液B,Cは予め混合された
のち吸入側逆止弁1bからポンプ室5内に吸入さ
れ、ポンプ室5内でこれら溶離液AとB,Cの混
合液とが混合されるようになつて、前述の場合よ
りも吸入側逆止弁の数を1個少なくすることがで
きる。
FIG. 6 shows yet another embodiment of the invention. In this example, three types of eluents A, B, and C are used, and two suction side check valves 1a and 1b are used.
was provided so that the eluents A, B, and C were mixed in the pump chamber 5. In this case, the eluent A is sucked into the pump chamber 5 from the suction side check valve 1a, and the eluents B and C are mixed in advance and then sucked into the pump chamber 5 from the suction side check valve 1b. Since the mixed liquids A, B, and C are mixed, the number of suction side check valves can be reduced by one compared to the above case.

すなわち3種の溶離液A,B,Cが使用される
場合は、3種の溶離液A,B,Cのうち1つのA
が有機溶媒、他の2つのB,Cが水溶液である
か、または1つのAが水溶液、他の2つのB,C
が有機溶媒であるかの組合わせとなるが、前述の
ように有機溶媒同士、水溶液同士の混合では殆ん
ど気泡を発生しないので、予め有機溶媒B,C同
士あるいは水溶液B,C同士を混合させてから吸
入側逆止弁1bを通すようにしたものである。
That is, when three types of eluents A, B, and C are used, one of the three types of eluents A, B, and C is
is an organic solvent and the other two B and C are aqueous solutions, or one A is an aqueous solution and the other two B and C
However, as mentioned above, mixing organic solvents or aqueous solutions hardly generates bubbles, so organic solvents B and C or aqueous solutions B and C should be mixed in advance. After that, the suction side check valve 1b is passed through.

上述のように本発明は、吸入側逆止弁を少なく
とも2個設け、ポンプ室内で溶離液を混合するよ
うにしたので、ポンプ室内で気泡が発生して気泡
による吸入側逆止弁の誤動作を防止することがで
きるようになり、混合時に気泡が発生するような
溶媒系を用いても送液が円滑に行なわれる液体ク
ロマトグラフを得ることができる。
As described above, in the present invention, at least two check valves on the suction side are provided and the eluent is mixed in the pump chamber, so that air bubbles are generated in the pump chamber and malfunction of the check valve on the suction side due to air bubbles is prevented. This makes it possible to obtain a liquid chromatograph in which liquid feeding is performed smoothly even when using a solvent system that generates air bubbles during mixing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種溶媒の溶媒極性指数と空気の溶解
度との関係を示す特性図、第2図は液体クロマト
グラフの液送時の気泡の影響を説明する説明図、
第3図は本発明の液体クロマトグラフの一実施例
の構成図、第4図は本発明の液体クロマトグラフ
の一実施例の送液部の構成図、第5図は本発明の
液体クロマトグラフの他の実施例の送液部の構成
図、第6図は本発明の液体クロマトグラフの更に
他の実施例の送液部の構成図である。 1a,1b,1c…吸入側逆止弁、4…吐出側
逆止弁、5…ポンプ室、9a,9b,9c…溶離
液溜、10a,10b,10c…電磁弁、14…
送液部、15…試料注入部、16…分離部、17
…検出部、A,B,C…溶離液。
Fig. 1 is a characteristic diagram showing the relationship between the solvent polarity index of various solvents and the solubility of air, Fig. 2 is an explanatory diagram illustrating the influence of air bubbles during liquid transfer in a liquid chromatograph,
Fig. 3 is a block diagram of an embodiment of the liquid chromatograph of the present invention, Fig. 4 is a block diagram of a liquid feeding section of an embodiment of the liquid chromatograph of the present invention, and Fig. 5 is a block diagram of the liquid chromatograph of the present invention. Fig. 6 is a block diagram of a liquid sending section of still another embodiment of the liquid chromatograph of the present invention. 1a, 1b, 1c...Suction side check valve, 4...Discharge side check valve, 5...Pump chamber, 9a, 9b, 9c...Eluent reservoir, 10a, 10b, 10c...Solenoid valve, 14...
Liquid feeding section, 15... Sample injection section, 16... Separation section, 17
...detection section, A, B, C... eluent.

Claims (1)

【特許請求の範囲】[Claims] 1 溶離液を往復動型ポンプによつて分離部に送
液する液体クロマトグラフにおいて、第1の溶離
液溜に流路を介して接続された第1の吸入側逆止
弁と第2の溶離液溜に他の流路を介して接続され
た第2の吸入側逆止弁を設け、上記第1および第
2の吸入側逆止弁を上記ポンプのポンプ室に通ず
るように接続したことを特徴とする液体クロマト
グラフ。
1. In a liquid chromatograph in which an eluent is sent to a separation section by a reciprocating pump, a first suction-side check valve and a second eluent are connected to a first eluent reservoir via a flow path. A second suction side check valve connected to the liquid reservoir via another flow path is provided, and the first and second suction side check valves are connected so as to communicate with the pump chamber of the pump. Characteristic liquid chromatograph.
JP57084182A 1982-05-18 1982-05-18 Liquid chromatograph Granted JPS58200161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57084182A JPS58200161A (en) 1982-05-18 1982-05-18 Liquid chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57084182A JPS58200161A (en) 1982-05-18 1982-05-18 Liquid chromatograph

Publications (2)

Publication Number Publication Date
JPS58200161A JPS58200161A (en) 1983-11-21
JPH0324625B2 true JPH0324625B2 (en) 1991-04-03

Family

ID=13823335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57084182A Granted JPS58200161A (en) 1982-05-18 1982-05-18 Liquid chromatograph

Country Status (1)

Country Link
JP (1) JPS58200161A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2299070A1 (en) 2009-09-03 2011-03-23 Otics Corporation Variable valve mechanism

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780315B2 (en) * 2002-12-09 2004-08-24 Waters Investments Limited Backflow prevention for high pressure gradient systems
JP5223685B2 (en) * 2009-01-05 2013-06-26 株式会社島津製作所 Mobile phase supply device and liquid chromatograph using the mobile phase supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2299070A1 (en) 2009-09-03 2011-03-23 Otics Corporation Variable valve mechanism

Also Published As

Publication number Publication date
JPS58200161A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
US9945762B2 (en) Apparatus and method for introducing sample into a separation unit of a chromatography system without disrupting a mobile phase
US20050194298A1 (en) Pressurized fluid sample injector and method of injecting fluid samples
JPH08284809A (en) Pump system keeping quantity of liquid flowed out approximately constant
US4978374A (en) Liquid hydrocarbon delivery means including means for monitoring gas content
US7951597B2 (en) Pressurized fluid sample injector and method of injecting fluid samples
US20060045810A1 (en) Sample injector for liquid analysis
EP2788639A1 (en) Select valve for liquid chromatography systems
JPH0324625B2 (en)
JPH0416220B2 (en)
JPS6378065A (en) Liquid chromatographic device
US7402250B2 (en) Equipment and method for feeding liquid gradient in nano/micro liquid chromatography
JPH06148157A (en) Sample liquid feeding device
JPH04110656A (en) Liquid feeding apparatus for liquid chromatograph
JP3243299B2 (en) Solution preparation apparatus and preparation method
JPS6115729A (en) Method and apparatus for supplying chemical solution
JP2548547Y2 (en) Two-component mixing and supply device
JP3389649B2 (en) Liquid sending device
US4902414A (en) Liquid chromatograph apparatus
JPS5997054A (en) Gradient elution apparatus
JP2833126B2 (en) High-performance liquid chromatograph
JPS61176851A (en) Ultracritical fluid chromatography device
Grob et al. Mixing in the sample loop of the loop‐type interface in coupled LC‐GC
JPS57198864A (en) Mixing device for solvent of high-speed liquid chromatograph
DE4412703A1 (en) Solvent mixt. prodn. for high pressure liq. chromatography
JP3346260B2 (en) Degassing device