JPH03245875A - Application of coating solution - Google Patents

Application of coating solution

Info

Publication number
JPH03245875A
JPH03245875A JP4159990A JP4159990A JPH03245875A JP H03245875 A JPH03245875 A JP H03245875A JP 4159990 A JP4159990 A JP 4159990A JP 4159990 A JP4159990 A JP 4159990A JP H03245875 A JPH03245875 A JP H03245875A
Authority
JP
Japan
Prior art keywords
coated
film thickness
coating liquid
evaporation
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4159990A
Other languages
Japanese (ja)
Other versions
JP2697226B2 (en
Inventor
Atsushi Aya
淳 綾
Kenji Marumoto
健二 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2041599A priority Critical patent/JP2697226B2/en
Publication of JPH03245875A publication Critical patent/JPH03245875A/en
Application granted granted Critical
Publication of JP2697226B2 publication Critical patent/JP2697226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate or reduce the thickness irregularity of a membrane in forming the membrane to a large object to be coated and to enhance yield by lowering the number of rotations of the object to be coated on and after a time when the thickness of the membrane is markedly reduced by the evaporation of a solvent after the rotation of the object to be coated is started. CONSTITUTION:An object 11 to be coated is fixed on a chuck 12 and a coating solution 14 is dripped from a nozzle 15. Subsequently, a motor 13 is driven to pre-spin the object 11 to be coated and the object 11 to be coated is continuously rotated at high speed up to the number NH of rotations. After the object 11 to be coated is rotated constant in this number NH of rotations for predetermined time, the rotational speed thereof is lowered to low speed NL at the time t1 when the evaporation of a solvent begins to dominate film thickness. When the number of rotations is lowered at the time t1 when the reduction of film thickness due to the evaporation of the solvent begins to become marked, turbulent flow is made hard to generate in the vicinity of the surface of the object to be coated. Therefore, the generation of difference in film thickness between the outer peripheral part and center part of the object 11 to be coated is suppressed and a membrane having almost uniform thickness can be formed to the entire surface of the object to be coated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば半導体ウェハの表面にレジスト等を回
転塗布する塗布液の塗布方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a coating liquid coating method for spin coating a resist or the like onto the surface of a semiconductor wafer, for example.

〔従来の技術] 従来、半導体ウェハ(以下、これを単にウェハという。[Conventional technology] Conventionally, semiconductor wafers (hereinafter simply referred to as wafers) are used.

)等の被塗布体上に膜厚の均一な薄膜を形成する手法と
して回転塗布がある。これは、文献(株式会社工業調査
会、昭和63年12月13日発行、「電子材料J 19
89年12月号別冊、P78−83)に記載されている
ように、レジスト液が塗布されたウェハを高速回転させ
、レジスト液をウェハ上に遠心力によって広げると共に
レジスト液中の溶媒を蒸発させてレジスト膜を形成する
ものである。これを第4図および第5図によって説明す
る。
) is a technique for forming a thin film of uniform thickness on an object to be coated, such as spin coating. This is based on the literature (Kogyo Kenkyukai Co., Ltd., published December 13, 1986, "Electronic Materials J 19
As described in the December 1989 special issue, pages 78-83), a wafer coated with a resist solution is rotated at high speed, and the resist solution is spread over the wafer by centrifugal force, and the solvent in the resist solution is evaporated. This process forms a resist film. This will be explained with reference to FIGS. 4 and 5.

第4図は従来の回転塗布法に使用するスピンコーターを
示す概略構成図、第5図は従来の回転塗布法における回
転開始から回転終了までの間の被塗布体回転数の変化を
示すグラフである。これらの図において、1はウェハ等
の被塗布体、2はこの被塗布体1を真空吸着等の方法に
よって固定するチャックで、このチャック2はモータ3
によって高速回転されるように構成されている。4はレ
ジスト液等の塗布液、5は塗布液4を被塗布体1上に供
給するためのノズルである。
Fig. 4 is a schematic configuration diagram showing a spin coater used in the conventional spin coating method, and Fig. 5 is a graph showing changes in the rotational speed of the object to be coated from the start of rotation to the end of rotation in the conventional spin coating method. be. In these figures, 1 is an object to be coated such as a wafer, 2 is a chuck that fixes the object 1 to be coated by a method such as vacuum suction, and this chuck 2 is connected to a motor 3.
It is configured to rotate at high speed. 4 is a coating liquid such as a resist liquid, and 5 is a nozzle for supplying the coating liquid 4 onto the object 1 to be coated.

このように構成された従来のスピンコーターによって被
塗布体1上にレジスト膜等の薄膜を形成するには、先ず
、被塗布体1をチャック2上に圃定し、塗布液4をノズ
ル5から被塗布体1上に滴下させる。次いで、第5図に
示すようにモータ3を駆動させて被塗布体1をブリスピ
ンさせ、引き続きチャック2と共に一定時間高速回転さ
せる。
In order to form a thin film such as a resist film on the object 1 to be coated using the conventional spin coater configured as described above, first, the object 1 to be coated is positioned on the chuck 2, and the coating liquid 4 is applied from the nozzle 5. Drop onto the object 1 to be coated. Next, as shown in FIG. 5, the motor 3 is driven to cause the object to be coated 1 to bliss spin, and then to rotate at high speed together with the chuck 2 for a certain period of time.

このように被塗布体1を高速回転させると、塗布液4が
遠心力により被塗布体1の上面に全面にわたって拡がり
、塗布液4の厚みが減少する。その後、塗布液4に含ま
れる溶媒が暴発することによる膜凍りが著しくなるが、
同時に塗布液4の粘性が増加し、膜減りに関して遠心力
の寄与はさらに少なくなる。最後には液相内拡散係数の
減少により膜中での溶媒の移動が困難になり、気液界面
から蒸発できなくなって膜厚減少が停止する。このよう
にして被塗布体l上に薄膜が形成されることになる。
When the object to be coated 1 is rotated at high speed in this manner, the coating liquid 4 is spread over the entire upper surface of the object to be coated 1 due to centrifugal force, and the thickness of the coating liquid 4 is reduced. After that, the film freezes significantly due to the explosion of the solvent contained in the coating liquid 4.
At the same time, the viscosity of the coating liquid 4 increases, and the contribution of centrifugal force to film reduction further decreases. Finally, the decrease in the diffusion coefficient within the liquid phase makes it difficult for the solvent to move within the film, making it impossible to evaporate from the gas-liquid interface, and the film thickness decrease stops. In this way, a thin film is formed on the object 1 to be coated.

ところで、通常の雰囲気ガス(空気)中で大型ウェハ(
例えば直径8インチのもの)を用いて塗布した場合、従
来の回転数(4000rpm〜6000rpm)ではウ
ェハ外周部で膜厚が厚くなり、ウェハ面内で膜厚分布が
生しること、そして、これが溶媒蒸発の面内不均一によ
り起こることを発明者らは実験的・理論的に確認してい
る。以下ではその理論について第6図および第7図(a
L(b)を用いて説明する。
By the way, large wafers (
For example, when coating is performed using a wafer (with a diameter of 8 inches), at conventional rotation speeds (4000 rpm to 6000 rpm), the film thickness becomes thicker at the outer periphery of the wafer, resulting in a film thickness distribution within the wafer surface. The inventors have experimentally and theoretically confirmed that this occurs due to in-plane non-uniformity of solvent evaporation. The theory is explained below in Figures 6 and 7 (a
This will be explained using L(b).

第6図は従来の回転塗布法に使用するスピンコーターに
よって回転されているウェハの表面近傍の気流を示す模
式図、第7図(a)、 (b)は従来の回転塗布法によ
ってウェハ上に形成された薄膜の膜厚分布を示すグラフ
で、同図(a)は良品を示し、同図(b)は不良品を示
す。第6図において6はウェハたる被塗布体1の表面近
傍の気流(表面気流)を示す。また、第6図および第7
図においてlで示す範囲は表面気流が層流となる層流域
、11で示す範囲は表面気流が層流から乱流へ遷移する
遷移域、iiiで示す範囲は表面気流が乱流となる乱流
域を示す。被塗布体1を回転させると、表面気流6はウ
ェハ外周部r、の位置で層流から遷移流へ、さらに、r
tの位置で遷移流から乱流へ変化する。
Figure 6 is a schematic diagram showing the airflow near the surface of a wafer being rotated by a spin coater used in the conventional spin coating method, and Figures 7 (a) and (b) are This is a graph showing the film thickness distribution of the formed thin film, where (a) shows a non-defective product and (b) shows a defective product. In FIG. 6, reference numeral 6 indicates an airflow near the surface of the object to be coated 1, which is a wafer (surface airflow). Also, Figures 6 and 7
In the figure, the range indicated by l is the laminar region where the surface airflow becomes laminar, the range indicated by 11 is the transition region where the surface airflow transitions from laminar to turbulent, and the range indicated by iii is the turbulent region where the surface airflow becomes turbulent. shows. When the object 1 to be coated is rotated, the surface airflow 6 changes from a laminar flow to a transition flow at the wafer outer circumference r, and then changes to a transition flow r.
At the position t, the transition flow changes to turbulent flow.

その条件は式(1)に示されるレイノルズ数で表すこと
ができる。
The condition can be expressed by the Reynolds number shown in equation (1).

r;半径位置(cm )ω;角速度(rad/s)ν;
動粘性係数(cd= / s ) 層流から遷移流へ移る条件(臨界レイノルズ数Re、)
および遷移流から乱流に移る条件(遷移レイノルズ数R
et)は以下に示すものである。
r; radial position (cm ) ω; angular velocity (rad/s) ν;
Kinematic viscosity coefficient (cd=/s) Condition for transition from laminar flow to transition flow (critical Reynolds number Re,)
and the conditions for transitioning from transition flow to turbulence (transition Reynolds number R
et) is shown below.

Re、=0.88X10’  ・−・−−・(21Re
t−3,20X105 ・・・・−13)ところで、レ
ジスト液膜厚の減少は■遠心力による流れと、■溶媒薄
発により起こる。表面気流の遷移流・乱流化は■溶媒草
発に大きく影響を及ぼし、その蒸発量も半径位置により
変化する。すなわち、■乱流域の物質伝達率α。は半径
位置依存性を有し、半径位置が大きくなると蒸発量が増
加し、蒸発むらを生じる。一方、■層流域のそれば半径
位置依存性をもたず、蒸発むらは生じない。
Re, = 0.88X10' ・−・−−・(21Re
t-3, 20X105...-13) By the way, the decrease in the resist liquid film thickness is caused by (1) flow due to centrifugal force and (2) solvent thinning. Transition flow and turbulence of surface air flow have a large influence on ■solvent formation, and the amount of evaporation also changes depending on the radial position. In other words, ■ Mass transfer rate α in the turbulent region. has radial position dependence, and as the radial position increases, the amount of evaporation increases, causing uneven evaporation. On the other hand, in the laminar region, there is no radial position dependence and uneven evaporation does not occur.

これより、ウェハ全面の表面気流が層流域の場合、蒸発
むらもなく第7図(a)に示すように膜厚が均一な塗布
液4の膜(以下、これを良品という。)となる。高回転
で塗布したり、大型ウェハを使用した場合、ウェハ面内
の表面気流は内側より層流(0<r<ri)  ・遷移
流(r、くrくrt)乱流(rt<r)となる。この時
、塗布液が内側(層流域■)から外側(乱流域ii )
に流れて行くと、そこでは内側より蒸発量が多く、液の
粘性が高くなり、液が堆積し、中心部より膜厚が厚くな
る。この膜厚分布の不均一な塗布液4の膜(以下、これ
を不良品という。)を第7図(b)によって説明する。
Accordingly, when the surface airflow over the entire surface of the wafer is in a laminar region, a film of the coating liquid 4 with a uniform thickness as shown in FIG. 7(a) without evaporation unevenness is obtained (hereinafter referred to as a good product). When coating at high rotation speeds or using large wafers, the surface airflow within the wafer surface is laminar from the inside (0<r<ri), transitional flow (r, rt), and turbulent flow (rt<r). becomes. At this time, the coating liquid flows from the inside (laminar region ■) to the outside (turbulent region ii).
As it flows towards the center, the amount of evaporation is greater there than on the inside, the viscosity of the liquid increases, the liquid accumulates, and the film thickness becomes thicker than in the center. This film of the coating liquid 4 with non-uniform film thickness distribution (hereinafter referred to as a defective product) will be explained with reference to FIG. 7(b).

層流域(i)では膜厚は均一であるが、r、を越えた遷
移域(ii )では徐々に、rlを越えた乱流域(ii
i )では急激に塗布膜厚が厚くなる。
In the laminar region (i), the film thickness is uniform, but in the transition region (ii) beyond r, it gradually changes to the turbulent region (ii) beyond rl.
In i), the coating film thickness increases rapidly.

この状態で露光工程・現像工程のパターン線幅グを行な
うとパターン線幅のむらを生じる。その箇所は不良品と
なるため、歩留りが悪くなる。
If pattern line width checking in the exposure and development steps is carried out in this state, uneven pattern line widths will occur. Since the parts become defective, the yield rate decreases.

ところで、上述したようにレジスト液の回転塗布では、
液膜厚の減少は■遠心力による流れと、■溶媒蒸発とに
よって生じる。この様子を第8図に示す。
By the way, as mentioned above, in the spin coating of resist liquid,
The decrease in liquid film thickness is caused by (1) flow due to centrifugal force and (2) solvent evaporation. This situation is shown in FIG.

第8図は従来の回転塗布法によって塗布された塗布液の
膜厚の変化を示すグラフで、横軸に時間むの対数値、縦
軸に膜厚δの対数値が示されている。なお、第8図にお
いては被塗布体1の中心部の膜厚の変化を実線によって
示し、外周部の膜厚変化を破線によって示した。そして
、第7図では時間に対する膜厚の変化を4つの領域(I
〜■)に分けている。領域Iは回転開始直後であって加
速度を受は膜厚が急激に減少する領域である。領域■で
は一定回転数下で膜厚が時間に対しである一定の関係(
δ、ct−17Z)で減少している。このことは、この
領域■では■遠心力流れにより膜厚が減少していること
を示している。そして、ある時刻(領域■)においてこ
の関係が崩れ、膜厚は再び急激に減少する。これは、こ
の領域■において■遠心力流れに較べて■溶媒蒸発によ
る膜減りが顕著になったためである。そして、最後に領
域■では、領域■での溶媒1発により液の粘性が急激に
増大することに起因して塗布液が流れ難(なり、かつ液
膜表面に溶媒濃度の低いレジストの層ができて溶媒の蒸
発を妨げることにより膜厚の減少がほとんど見られなく
なっている。以上より、ウェハ表面気流の乱流化が膜厚
分布に大きな影響を及ぼすのは領域■以降であることが
分かる。すなわち、第8図に示すように、主として遠心
流れによって膜厚が減少している初期(領域I−領領域
)には外周部と中心部とでは膜厚差はほとんどみられな
いが、膜厚減少が溶媒蒸発によって支配されるようにな
る(領域■)と、中心部(実線)と外周部(破線)とで
膜厚分布をもつようになる。
FIG. 8 is a graph showing changes in the film thickness of a coating liquid applied by the conventional spin coating method, in which the horizontal axis shows the logarithm of time and the vertical axis shows the logarithm of film thickness δ. In FIG. 8, the change in film thickness at the center of the object 1 to be coated 1 is shown by a solid line, and the change in film thickness at the outer periphery is shown by a broken line. Figure 7 shows the change in film thickness over time in four regions (I
~■). Region I is a region immediately after the start of rotation, where the film thickness rapidly decreases when subjected to acceleration. In region ■, the film thickness has a certain relationship with time under a constant rotation speed (
δ, ct-17Z). This indicates that in this region (2), the film thickness is reduced due to (1) centrifugal flow. Then, at a certain time (region ■), this relationship breaks down and the film thickness decreases rapidly again. This is because in this region (2), film thinning due to (2) solvent evaporation was more pronounced than in (1) centrifugal force flow. Finally, in area ■, the coating liquid becomes difficult to flow due to the rapid increase in the viscosity of the liquid due to one shot of the solvent in area ■, and a layer of resist with a low solvent concentration is formed on the surface of the liquid film. By preventing the evaporation of the solvent, there is almost no decrease in the film thickness.From the above, it can be seen that the turbulence of the air flow on the wafer surface has a large effect on the film thickness distribution after region ①. In other words, as shown in Fig. 8, at the initial stage (region I-region) when the film thickness is decreasing mainly due to centrifugal flow, there is almost no difference in film thickness between the outer periphery and the center. When the thickness decrease comes to be dominated by solvent evaporation (region ■), the film has a thickness distribution between the center (solid line) and the outer periphery (dashed line).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の塗布方法においては、大型ウェハを使用
した場合には、ウェハ表面気流がウェハ外周部で乱流に
遷移するため、そこと中央部とで溶媒蒸発量に差が生じ
、形成された塗布液膜の膜厚が異なる。このため、塗布
工程以降の処理工程でエツチング処理した場合等に被塗
布体を均質に加工することができないという問題点があ
った。
In the conventional coating method described above, when a large wafer is used, the airflow on the wafer surface transitions to turbulence at the periphery of the wafer, resulting in a difference in the amount of solvent evaporation between there and the center, resulting in the formation of The thickness of the coating liquid film is different. For this reason, there is a problem in that the object to be coated cannot be uniformly processed when etching is performed in a treatment step after the coating step.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る塗布液の塗布方法は、被塗布体の回転開始
後であって溶媒蒸発によって膜厚が著しく減少する時以
降回転数を低下させるものである。
In the method for applying a coating liquid according to the present invention, the rotational speed is decreased after the rotation of the object to be coated is started and the film thickness is significantly reduced due to solvent evaporation.

〔作 用〕[For production]

本発明による塗布液の塗布方法によれば、溶媒蒸発によ
る膜減りが顕著となる時には回転数が低くなるから、こ
の時に被塗布体表面近傍に乱流を生じ難くすることがで
きる。
According to the method for applying a coating liquid according to the present invention, since the rotational speed is lowered when film thinning due to solvent evaporation becomes significant, it is possible to prevent turbulence from occurring near the surface of the object to be coated at this time.

〔実施例] 以下、本発明の一実施例を第1図ないし第3図によって
詳細に説明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to FIGS. 1 to 3.

第1図は本発明に係る塗布液の塗布方法に使用するスピ
ンコーターを示す概略構成図、第2図は本発明に係る塗
布液の塗布方法によって回転される被塗布体の回転開始
から回転終了までの間の回転数変化を示すグラフ、第3
図は本発明に係る塗布液の塗布方法によって塗布された
塗布液の回転開始から回転終了までの間の膜厚変化を示
すグラフである。第1図において11はウェハ等の被塗
布体、12はこの被塗布体lを真空吸着等の方法によっ
て固定するチャック、13はこのチャック12を高速回
転さ(るモータ、14はレジスト液等の塗布液、15は
塗布液4を被塗布体1上に供給するためのノズルで、こ
のスピンコーターは従来のものと同一のものである。
FIG. 1 is a schematic configuration diagram showing a spin coater used in the method for applying a coating liquid according to the present invention, and FIG. 2 is a diagram showing the start and end of rotation of the object to be coated, which is rotated by the method for applying a coating liquid according to the present invention. Graph showing the change in rotation speed up to 3rd
The figure is a graph showing changes in film thickness from the start of rotation to the end of rotation of the coating liquid applied by the coating liquid coating method according to the present invention. In FIG. 1, 11 is an object to be coated such as a wafer, 12 is a chuck that fixes the object to be coated by a method such as vacuum suction, 13 is a motor that rotates this chuck 12 at high speed, and 14 is a motor that rotates the chuck 12 at high speed. The coating liquid 15 is a nozzle for supplying the coating liquid 4 onto the object 1 to be coated, and this spin coater is the same as a conventional one.

次に、本発明の塗布液の塗布方法について説明する。被
塗布体11上にレジスト膜等の薄膜を形成するには、先
ず、被塗布体11をチャック12上に固定し、塗布液1
4をノズル15がら被塗布体11上に滴下させる。次い
で、第2図に示すようにモータ13を駆動させて被塗布
体11をプリスピンさせ、引き続き回転数NKまで高速
回転させる。そして、被塗布体11をこの回転数NHで
所定時間一定回転させた後、その回転数を時刻t1で低
速度NLに低下させる。前記時刻t1は、溶媒蒸発が膜
減りを支配し始める時刻であって、この時刻1.は予め
実験等によって計測しておく。
Next, a method for applying the coating liquid of the present invention will be explained. To form a thin film such as a resist film on the object 11 to be coated, first, the object 11 to be coated is fixed on the chuck 12, and the coating liquid 1 is applied.
4 onto the object 11 to be coated through the nozzle 15. Next, as shown in FIG. 2, the motor 13 is driven to pre-spin the object 11 to be coated, and then to continue to rotate at a high speed up to the rotational speed NK. After the object to be coated 11 is rotated for a predetermined period of time at this rotational speed NH, the rotational speed is reduced to a low speed NL at time t1. The time t1 is the time when solvent evaporation starts to dominate film thinning, and the time t1 is the time when solvent evaporation starts to dominate film thinning. is measured in advance through experiments or the like.

また、回転数N、は、本実施例では被塗布体11の表面
近傍に乱流が生しないような回転数に設定されている。
Further, in this embodiment, the rotation speed N is set to such a speed that no turbulent flow occurs near the surface of the object 11 to be coated.

なお、この回転数NLは遷移流すらも生じないような回
転数とすることが望ましい。
Note that this rotational speed NL is desirably set to a rotational speed at which even transitional flow does not occur.

この回転数N、は弐(1,)、 (2)および(3)を
用い、かつ20℃の空気の動粘性係数を代入して整理す
ると、480000/R”  Crprr+]以下、望
ましくは、130000/R2[r pm)以下の回転
数とすることができる。なお、Rは被塗布体11の半径
(an)を示す。
This rotational speed N is 480,000/R" Crprr+] or less, preferably 130,000, using 2(1,), (2) and (3) and substituting the kinematic viscosity coefficient of air at 20°C. /R2 [r pm) or less. Note that R indicates the radius (an) of the object 11 to be coated.

したがって、上述したように溶媒蒸発による膜厚減少が
顕著になり始める時刻t1で回転数を低下させると、こ
の時に被塗布体表面近傍に乱流を生じ難くすることがで
きる。このため、被塗布体11の外周部と中心部とで膜
厚に差が生じるようなことを抑え、第3図に示すように
塗布面全面にねたり略均−な膜厚をもつ薄膜を形成する
ことができる。
Therefore, as described above, if the rotational speed is lowered at time t1 when the decrease in film thickness due to solvent evaporation becomes noticeable, it is possible to make it difficult to generate turbulent flow near the surface of the object to be coated at this time. Therefore, the difference in film thickness between the outer periphery and the center of the object 11 to be coated can be suppressed, and a thin film with a substantially uniform thickness can be formed over the entire surface to be coated, as shown in FIG. can be formed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る塗布液の塗布方法は、
被塗布体の回転開始後であって溶媒蒸発によって膜厚が
著しく減少する時以降回転数を低下させるため、溶媒蒸
発による膜減りが顕著となる時には回転数が低くなり、
この時に被塗布体表面近傍に乱流を生じ難くすることが
できる。したがって、大型の被塗布体に薄膜を形成する
にあたり膜厚むらを無くす、あるいは減らすことができ
、歩留まりを向上させて加工費、材料費等を低く抑える
ことができる。
As explained above, the method for applying the coating liquid according to the present invention is as follows:
The rotation speed is lowered after the coating object starts rotating and the film thickness is significantly reduced due to solvent evaporation, so the rotation speed is lowered when the film thickness decreases significantly due to solvent evaporation.
At this time, it is possible to make it difficult to generate turbulent flow near the surface of the object to be coated. Therefore, when forming a thin film on a large object to be coated, unevenness in film thickness can be eliminated or reduced, yield can be improved, and processing costs, material costs, etc. can be kept low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る塗布液の塗布方法に使用するスピ
ンコーターを示す概略構成図、第2図は本発明に係る塗
布液の塗布方法によって回転される被塗布体の回転開始
から回転終了までの間の回転数変化を示すグラフ、第3
図は本発明に係る塗布液の塗布方法によって塗布された
塗布液の回転開始から回転終了までの間の膜厚変化を示
すグラフである。第4図は従来の回転塗布法に使用する
スピンコーターを示す概略構成図、第5図は従来の回転
塗布法における回転開始から回転終了までの間の被塗布
体回転数の変化を示すグラフである。 第6図は従来の回転塗布法に使用するスピンコーターに
よって回転されているウェハの表面近傍の気流を示す模
式図、第7図(a)、 (b)は従来の回転塗布法によ
ってウェハ上に形成された薄膜の膜厚分布を示すグラフ
で、同図(a)は良品を示し、同図(b)は不良品を示
す。第8図は従来の回転塗布法によって塗布された塗布
液の膜厚の変化を示すグラフである。 1・・・・被塗布体、 2・・・・チャック・ 4・・ ・・塗布液。 代 理 人 大 石 増 雄 第 図 第 図 IlG’間t 第 3 図 1 11Iusxt 第 図 第 図 口)団 第 図 第 図 第 図 fog を 手 甑 補 正 意 (自発) 平成 0 年 月 日
FIG. 1 is a schematic configuration diagram showing a spin coater used in the method for applying a coating liquid according to the present invention, and FIG. 2 is a diagram showing the start and end of rotation of the object to be coated, which is rotated by the method for applying a coating liquid according to the present invention. Graph showing the change in rotation speed up to 3rd
The figure is a graph showing changes in film thickness from the start of rotation to the end of rotation of the coating liquid applied by the coating liquid coating method according to the present invention. Fig. 4 is a schematic configuration diagram showing a spin coater used in the conventional spin coating method, and Fig. 5 is a graph showing changes in the rotational speed of the object to be coated from the start of rotation to the end of rotation in the conventional spin coating method. be. Figure 6 is a schematic diagram showing the airflow near the surface of a wafer being rotated by a spin coater used in the conventional spin coating method, and Figures 7 (a) and (b) are This is a graph showing the film thickness distribution of the formed thin film, where (a) shows a non-defective product and (b) shows a defective product. FIG. 8 is a graph showing changes in film thickness of a coating liquid applied by a conventional spin coating method. 1...Object to be coated, 2...Chuck, 4...Coating liquid. Agent Masuo Oishi 11Iusxt 11Iusxt 11Iusxt 11Iusxt 11Iusxt 11Iusxt 11Iusxt 11Iusxt 11Iusxt 11Iusxt 3D

Claims (1)

【特許請求の範囲】[Claims] 塗布液が滴下された被塗布体を回転させ、前記塗布液中
の溶媒を蒸発させて被塗布体の表面に塗布液膜を形成す
る塗布液の塗布方法において、前記被塗布体の回転開始
後であって溶媒蒸発によって膜厚が著しく減少する時以
降回転数を低下させることを特徴とする塗布液の塗布方
法。
In a method for applying a coating liquid, in which an object to be coated onto which a coating liquid has been dropped is rotated to evaporate a solvent in the coating liquid to form a coating liquid film on the surface of the object to be coated, after the rotation of the object to be coated is started. A method for applying a coating liquid, characterized in that the rotational speed is reduced after the film thickness is significantly reduced due to solvent evaporation.
JP2041599A 1990-02-21 1990-02-21 How to apply coating liquid Expired - Fee Related JP2697226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2041599A JP2697226B2 (en) 1990-02-21 1990-02-21 How to apply coating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2041599A JP2697226B2 (en) 1990-02-21 1990-02-21 How to apply coating liquid

Publications (2)

Publication Number Publication Date
JPH03245875A true JPH03245875A (en) 1991-11-01
JP2697226B2 JP2697226B2 (en) 1998-01-14

Family

ID=12612858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2041599A Expired - Fee Related JP2697226B2 (en) 1990-02-21 1990-02-21 How to apply coating liquid

Country Status (1)

Country Link
JP (1) JP2697226B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251487B1 (en) 1998-09-04 2001-06-26 Nec Corporation Method for coating a resist film
JP2003234278A (en) * 2002-02-08 2003-08-22 Toshiba Corp Liquid film treatment method and device thereof
JP2008306220A (en) * 2008-09-22 2008-12-18 Renesas Technology Corp Manufacturing method of semiconductor integrated circuit device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750573A (en) * 1980-09-11 1982-03-25 Sanyo Electric Co Ltd Method for coating resist
JPS58207631A (en) * 1982-05-28 1983-12-03 Toshiba Corp Resist coating method
JPS63313160A (en) * 1987-06-16 1988-12-21 Dainippon Printing Co Ltd Method for coating resist to substrate for photomask or the like

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750573A (en) * 1980-09-11 1982-03-25 Sanyo Electric Co Ltd Method for coating resist
JPS58207631A (en) * 1982-05-28 1983-12-03 Toshiba Corp Resist coating method
JPS63313160A (en) * 1987-06-16 1988-12-21 Dainippon Printing Co Ltd Method for coating resist to substrate for photomask or the like

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251487B1 (en) 1998-09-04 2001-06-26 Nec Corporation Method for coating a resist film
JP2003234278A (en) * 2002-02-08 2003-08-22 Toshiba Corp Liquid film treatment method and device thereof
JP2008306220A (en) * 2008-09-22 2008-12-18 Renesas Technology Corp Manufacturing method of semiconductor integrated circuit device

Also Published As

Publication number Publication date
JP2697226B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JP2005046694A (en) Coated film forming method and coater
JPH08229499A (en) Method for spin coating
JPH03245875A (en) Application of coating solution
CN111905989A (en) Gluing method of high-viscosity photoresist
US20030003760A1 (en) Photoresist coating method and apparatus
JPH05259063A (en) Semiconductor substrate spin coating method
JPH0556847B2 (en)
JPH02219213A (en) Resist applying apparatus
JP2003093955A (en) Method and device for coating thin film
JPH05123632A (en) Method for applying liquid coating material
JPH0378777B2 (en)
JPH0656832B2 (en) Resist coating method
JPH05259049A (en) Spin coating on semiconductor substrate
JPH05115828A (en) Coating device
JPH11128809A (en) Solvent coater and its use
JP2001319851A (en) Method for coating photoresist
JP4648443B2 (en) Manufacturing method of semiconductor integrated circuit device
JPH04340217A (en) Resist coating method
JPS5914890B2 (en) Rotary coating method
JPS60189934A (en) Applying method of viscous liquid
JPH0845923A (en) Semiconductor coating film forming method
JPH04253320A (en) Spin coating device
JP2823448B2 (en) How to apply resist material
JPS5855976Y2 (en) spin coater
JPH022611A (en) Resist applying apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees