JPH03245457A - Fine porous membrane for separator of non-aqueous electrolyte battery - Google Patents

Fine porous membrane for separator of non-aqueous electrolyte battery

Info

Publication number
JPH03245457A
JPH03245457A JP2039710A JP3971090A JPH03245457A JP H03245457 A JPH03245457 A JP H03245457A JP 2039710 A JP2039710 A JP 2039710A JP 3971090 A JP3971090 A JP 3971090A JP H03245457 A JPH03245457 A JP H03245457A
Authority
JP
Japan
Prior art keywords
battery
fine porous
microporous membrane
separator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2039710A
Other languages
Japanese (ja)
Other versions
JP2951679B2 (en
Inventor
Koichi Yasugata
安形 公一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2039710A priority Critical patent/JP2951679B2/en
Publication of JPH03245457A publication Critical patent/JPH03245457A/en
Application granted granted Critical
Publication of JP2951679B2 publication Critical patent/JP2951679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance safety and reliability by forming at least one fine porous membrane of a bridged polyethylene raw material for a support body of a separator consisting of two or more layered fine porous membranes made of a thermoplastic resin. CONSTITUTION:In a layer of two or more fine porous membranes, at least one of the fine porous membranes is formed of a bridged polyethylene raw material while at least one of the membranes is formed of a thermoplastic resin such as a polyethylene resin. In this constitution, since a melting point of the polyethylene resin is lower than that of an active material of a negative electrode, conversion to non-porosity is commenced at a temperature lower than the melting point of the active material to increase electric resistance and suppress temperature rise inside a battery. Consequently, even when the temperature is raised inside the battery due to an external short circuit and the like, the non-porosity state is maintained and chemical reaction inside the battery is certainly suppressed so as to enhance safety and reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、電池用のセパレータに関し、さらに詳しくは
非水電解液電池セパレータ用微多孔膜に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a separator for batteries, and more particularly to a microporous membrane for separators for non-aqueous electrolyte batteries.

〔従来技術〕[Prior art]

電池用セパレータには、種々の物が知られており、例え
ば、特開昭60−23954号公報に見られるようなポ
リプロピレンまたはポリエチレン製の微細孔を有するフ
ィルムが提案されており、より安全性を高める目的で、
特開平1−258358号公報に見られるような多孔性
支持材の片面に、融点120°C以下の低融点樹脂から
なる微多孔膜を張合わせたセパレータが提案されている
Various types of battery separators are known, and for example, a polypropylene or polyethylene film with micropores has been proposed, as seen in Japanese Patent Laid-Open No. 60-23954. For the purpose of increasing
A separator has been proposed in which a microporous membrane made of a low melting point resin having a melting point of 120 DEG C. or lower is laminated on one side of a porous support material, as seen in JP-A-1-258358.

一般的にコンパクトで起電力が高く、大きな電流が長期
間取り出せるエネルギー密度の高い電池が望まれており
、高い起電力が得られるリチウムやナトリウムなどの金
属元素を負極の活物質として用い、大きな電流が長期間
取り出せるよう活物質の量を増加するために、負極の活
物質と正極の活物質の間にセパレータを介した状態で海
苔巻状に巻いた電池が開発されている。
In general, a battery with high energy density that is compact, has a high electromotive force, and can draw a large current for a long period of time is desired. In order to increase the amount of active material so that it can be extracted for a long period of time, a battery has been developed in which the active material of the negative electrode and the active material of the positive electrode are wrapped in seaweed with a separator interposed between them.

しかしながら、負極の活物質としてリチウムなどの軽金
属元素が使われる非水電解液電池では、外部短絡などに
よって、電池的温度が上昇し、電解液の分解によるガス
が発生して電池の発火・爆発等の危険性があるため、特
開昭60−23954号公報には、従来使われてきたポ
リプロピレン製の不織布に安全性の点で問題のあること
が指摘されており、ポリエチレン製あるいはポリプロピ
レン製の微多孔膜がセパレータとして通していることが
述べられている。
However, in non-aqueous electrolyte batteries that use light metal elements such as lithium as the active material of the negative electrode, external short circuits can cause the temperature of the battery to rise, and the decomposition of the electrolyte can generate gas, causing battery fires and explosions. Because of the risk of It is stated that a porous membrane is used as a separator.

また、特開平1−258358号公報では、不織布の欠
点を補いかつ、安全性を高めるために低融点の微多孔膜
すなわち、ポリエチレン類またはポリプロピレン製の微
多孔膜と不織布の2枚張合わせのセパレータが提案され
ている。
In addition, in JP-A-1-258358, in order to compensate for the shortcomings of non-woven fabrics and to improve safety, a separator is disclosed in which a microporous membrane with a low melting point, that is, a microporous membrane made of polyethylene or polypropylene, and a non-woven fabric are laminated together. is proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、特開昭60−23954号公報に開示さ
れているように、大きな孔を有する不織布から成るセパ
レータでは、電池としての安全性に問題があり゛微細孔
を有する微多孔膜が通しているとの考え方は妥当である
ように思われるが、安全性に関わる信転性については言
及されておらず、信幀性の高い電池用セパレータとして
は疑問があった。
However, as disclosed in Japanese Patent Application Laid-Open No. 60-23954, separators made of nonwoven fabric with large pores have a safety problem as batteries. Although this idea seems to be valid, there was no mention of reliability related to safety, and there were doubts as to whether it could be used as a highly reliable battery separator.

また、特開平1−258358号公報に開示されている
ように、不織布をセパレータとして用いること自体に問
題があり、低融点素材の微多孔膜を用いたとしても、高
温下でのセパレータとしての信輔性には、疑問がある。
Furthermore, as disclosed in JP-A-1-258358, there are problems in using nonwoven fabric as a separator, and even if a microporous membrane made of a low-melting point material is used, it cannot be used as a separator at high temperatures. There are questions about gender.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するために、次の如き構成を
有する微多孔膜である。
In order to achieve the above object, the present invention is a microporous membrane having the following configuration.

すなわち、本発明は、熱可塑性樹脂からなる微多孔膜を
2枚以上貼り合わせてなる非水電解液電池のセパレータ
において、支持体として少なくとも一枚の該微多孔膜が
架橋されたポリエチレン素材からなることを特徴とする
That is, the present invention provides a separator for a non-aqueous electrolyte battery that is formed by bonding together two or more microporous membranes made of thermoplastic resin, in which at least one of the microporous membranes is made of a crosslinked polyethylene material as a support. It is characterized by

本発明の微多孔膜の素材としては、熱可塑性樹脂であれ
ばよく、安全性、耐酸化性、耐有機溶剤性の点からポリ
オレフィン樹脂が好ましく、ポリプロピレンもしくはポ
リエチレンが更に好ましい。
The material for the microporous membrane of the present invention may be any thermoplastic resin, preferably polyolefin resin from the viewpoint of safety, oxidation resistance, and organic solvent resistance, and more preferably polypropylene or polyethylene.

微多孔膜の孔は、当然のことながら連通状態にあり、平
均孔径は0.01μm〜3μm、好ましくは0.02μ
m〜1.0μmであり、通気性や電解液の浸透性を考慮
したとき、0.1μm〜1.0μmが更に好ましい。
The pores of the microporous membrane are naturally in communication, and the average pore diameter is 0.01 μm to 3 μm, preferably 0.02 μm.
m to 1.0 μm, and more preferably 0.1 μm to 1.0 μm in consideration of air permeability and electrolyte permeability.

また、最大孔径は、加熱溶融時に閉塞しうる程度の微小
さが必要であり、かつ内部短絡を引起こさない孔径であ
る必要があり、最大孔径としては5μm以下、好ましく
は1.0μm以下である。
In addition, the maximum pore diameter must be so small that it can close when heated and melted, and must not cause internal short circuits, and the maximum pore diameter is 5 μm or less, preferably 1.0 μm or less. .

そして、少なくとも一枚の微多孔膜は、スポンジ構造を
有していることが好ましい。本発明に於けるスポンジ構
造とは、該微多孔膜のどの断面においても、孔が複数個
ある構造を言う。
Preferably, at least one microporous membrane has a sponge structure. The sponge structure in the present invention refers to a structure in which a plurality of pores are present in any cross section of the microporous membrane.

ここで孔とは、空孔を言い樹脂のない部分である。Here, pores refer to voids and are areas without resin.

孔が複数個あると言う事は、すなわち孔と孔の間に樹脂
が介在して、孔同士がつながっていることを指す。しか
しながら、全ての孔同士がつながっている必要はなく、
透気度及び気孔率が本発明で開示している条件を満たし
ていれば問題ない。
The presence of multiple holes means that the resin is interposed between the holes and the holes are connected to each other. However, it is not necessary that all holes are connected;
There is no problem as long as the air permeability and porosity satisfy the conditions disclosed in the present invention.

また、孔の形状や孔径の均一性は問わない。例えば、微
多孔膜の膜厚方向に対して孔の形状や大きさが変化して
いても差し支えない。
Moreover, the uniformity of the shape and diameter of the pores does not matter. For example, the shape and size of the pores may vary in the thickness direction of the microporous membrane.

好ましくは、均質な三次元網目構造を有した微多孔膜で
ある。
Preferably, it is a microporous membrane having a homogeneous three-dimensional network structure.

膜厚については、薄ければ薄いほど好ましいが、内部短
絡を起こさない適度な膜厚が必要であり、10μm〜5
0um、好ましくは15μm〜40μmである。
Regarding the film thickness, the thinner it is, the better, but an appropriate film thickness that does not cause internal short circuits is required, and is 10 μm to 5 μm.
0 um, preferably 15 μm to 40 μm.

透気度は、通気性及び電気抵抗の観点から60秒/ 1
00 cc〜280秒/ 100 cc、好ましくは2
00秒/ 100 cc以下である。
Air permeability is 60 seconds/1 from the viewpoint of air permeability and electrical resistance.
00 cc~280 seconds/100 cc, preferably 2
00 seconds/100 cc or less.

周知のように、セパレータは、正極と負極の間に介在し
て捲回されるため、捲回時に破れ等の欠陥が発生しない
強度が必要であり、−殻内な微多孔膜の有する強度、例
えば30kg/cm”程度あれば充分である。
As is well known, since the separator is wound between the positive electrode and the negative electrode, it must have strength to prevent defects such as tearing during winding. For example, about 30 kg/cm" is sufficient.

本発明で最も重要である構成は、支持体として架橋され
たポリエチレン素材からなる微多孔膜を用いることであ
り、この構成がセパレータの信幀性を高めることに大き
く貢献する。
The most important configuration of the present invention is the use of a microporous membrane made of crosslinked polyethylene material as a support, and this configuration greatly contributes to increasing the reliability of the separator.

すなわち、非水電解液電池が外部短絡等によって電池内
部温度が上昇し、微多孔膜素材の融点あるいは融点以上
の温度に達した時、微多孔膜が無孔化することによって
、電池内部での化学反応を抑制し、非水電解液電池内部
の温度上昇を抑制する。また、非水電解液電池内部の温
度は急激に低下すること無く、徐々に下がる傾向を示す
。このことは、融点近傍の温度に微多孔膜が長時間置か
れ、かつ挟持状態にあることから、無孔化しないか、無
孔化しても短時間の内に微多孔膜に欠陥が生し、再度化
学反応が始まり、電池内部温度が再度上昇して、電解液
がガス化して、発火・爆発に至る可能性があり、従来の
セパレータは信頼性が充分であるとは言えない物であっ
たが、本発明で開示するように支持体として架橋された
ポリエチレン素材からなる微多孔膜を用いれば、融点以
上の温度に於ても長期間に渡って欠陥が生じることなく
、安全かつ信頼性の高いコンパクトな電池を造ることが
できる。
In other words, when the internal temperature of a non-aqueous electrolyte battery increases due to an external short circuit, etc., and reaches the melting point of the microporous membrane material or a temperature higher than the melting point, the microporous membrane becomes non-porous and the internal temperature of the battery increases. Suppresses chemical reactions and suppresses temperature rise inside non-aqueous electrolyte batteries. Furthermore, the temperature inside the non-aqueous electrolyte battery does not drop suddenly, but tends to drop gradually. This means that because the microporous membrane is kept at a temperature close to its melting point for a long time and is held in a sandwiched state, it may not become porous, or even if it becomes nonporous, defects may occur in the microporous membrane within a short period of time. , the chemical reaction will start again, the internal temperature of the battery will rise again, and the electrolyte will gasify, potentially leading to ignition and explosion. Conventional separators cannot be said to have sufficient reliability. However, if a microporous membrane made of cross-linked polyethylene material is used as a support as disclosed in the present invention, it will be safe and reliable without any defects for a long period of time even at temperatures above the melting point. It is possible to build a compact battery with high performance.

理由は定かではないが、架橋されたポリエチレン素材か
らなる微多孔膜−枚だけのセパレータでは、ポリエチレ
ン素材の融点以上の温度に達しても無孔化度が低く、非
水電解液電池の安全性に関わるセパレータとしての役割
を充分に果せない。
The reason is not clear, but with a separator made of only one microporous membrane made of cross-linked polyethylene material, the degree of non-porosity is low even when the temperature reaches the melting point of the polyethylene material, and the safety of non-aqueous electrolyte batteries is compromised. cannot fully fulfill its role as a separator.

しかしながら、本発明で開示するように、支持体として
架橋されたポリエチレン素材からなる微多孔膜を用いる
ことにより、安全性に関わる信頼性を高めることができ
る。
However, as disclosed in the present invention, by using a microporous membrane made of a crosslinked polyethylene material as a support, reliability regarding safety can be improved.

架橋されたポリエチレンからなる支持体用の微多孔膜の
特性は、上述した微多孔膜と同様であることが好ましい
が、特に限定されるものではない。
The characteristics of the microporous membrane for the support made of crosslinked polyethylene are preferably similar to those of the microporous membrane described above, but are not particularly limited.

2枚以上の微多孔膜の重ね合わせに於て、少なくとも一
枚の微多孔膜が架橋されたポリエチレン素材からなる微
多孔膜であり、少なくとも一枚の微多孔膜が、熱可塑性
樹脂からなる微多孔膜であるが、熱可塑性樹脂としては
ポリエチレン樹脂が最も好ましい。
In the superposition of two or more microporous membranes, at least one microporous membrane is a microporous membrane made of a crosslinked polyethylene material, and at least one microporous membrane is a microporous membrane made of a thermoplastic resin. Although it is a porous membrane, polyethylene resin is most preferable as the thermoplastic resin.

これは、ポリエチレン樹脂の融点が、負極の活物質、例
えばリチウム金属の融点である181°Cより45゛C
も低い温度から無孔化が始まり、電池内部の電気抵抗を
高めるため、電池内部の温度上昇をより低温から抑制で
きる為、リチウムの融点に到達する可能性が低く、電池
の安全性及び信軌性を高めることができる。
This means that the melting point of polyethylene resin is 45°C higher than 181°C, which is the melting point of the active material of the negative electrode, such as lithium metal.
Since porosity starts to become non-porous at a low temperature and increases the electrical resistance inside the battery, the temperature rise inside the battery can be suppressed from a lower temperature, so the possibility of reaching the melting point of lithium is low, improving the safety and reliability of the battery. You can increase your sexuality.

本発明は、熱可塑性樹脂に樹脂の溶剤、可塑剤、無機微
粉体等を混合、成形後抽出及び乾燥し、さらに延伸する
ことにより微多孔膜を製造する。
In the present invention, a microporous membrane is manufactured by mixing a thermoplastic resin with a resin solvent, a plasticizer, an inorganic fine powder, etc., molding, extracting, drying, and further stretching.

例えば、熱可塑性樹脂、無機微粉体、有機液状体の混合
組成をそれぞれ5〜70容量%、10〜55容量%、2
0〜75容量%とし、ヘンシェルミキサー等の通常の混
合機で混合したのち、押し出線等の溶融混練装置により
混練し、得られた混練物を押出し成形等により50μm
〜450μmの厚さに成形する。さらに、該成形物から
有機液状体の溶剤を用いて有機液状体を抽出し、続いて
無機微粉体の抽出溶剤にて、無機微粉体を抽出し多孔質
膜を得る。
For example, the mixed composition of thermoplastic resin, inorganic fine powder, and organic liquid is 5 to 70% by volume, 10 to 55% by volume, and 2% by volume, respectively.
0 to 75% by volume, mixed with a normal mixer such as a Henschel mixer, then kneaded with a melt kneading device such as an extrusion wire, and the obtained kneaded product is extruded to a size of 50 μm.
Mold to a thickness of ~450 μm. Furthermore, the organic liquid is extracted from the molded product using an organic liquid solvent, and then the inorganic fine powder is extracted using an inorganic fine powder extraction solvent to obtain a porous membrane.

さらに、必要に応じて所定厚さまで、−軸あるいは二輪
延伸機により延伸し、膜厚を調整する。
Further, if necessary, the film is stretched to a predetermined thickness using a -axis or two-wheel stretching machine to adjust the film thickness.

支持体は、熱可塑性樹脂としてポリエチレン樹脂を選定
し、上述の方法と同様の方法で微多孔膜を製造し、得ら
れた微多孔膜をT線処理して得られる。
The support is obtained by selecting polyethylene resin as the thermoplastic resin, producing a microporous membrane in the same manner as described above, and subjecting the obtained microporous membrane to T-ray treatment.

さらに、2枚重ね合わせる方法としては、単に2枚を重
ね合わせてロールに巻く方法や重ね合わせた後二ツブロ
ールによりわずかながら押し潰して、ロールに巻取る方
法などがある。
Further, as a method for overlapping two sheets, there are a method of simply overlapping two sheets and winding them into a roll, and a method of overlapping them and then slightly crushing them with two rolls and winding them into a roll.

〔作用〕[Effect]

上記構成によれば、外部短絡等によって電池内部温度が
上昇し、融点近傍の温度に達し、その温度に保たれてい
る状態が続くか、その温度が穏やかに低下しても、膜に
欠陥が生じることなく、すなわち無孔化状態を維持して
いる為、電池内部での化学反応が確実に抑制され、安全
性が高く、がつ信頼性の高い電池が得られる。
According to the above configuration, if the internal temperature of the battery rises due to an external short circuit, reaches a temperature close to the melting point, and continues to be maintained at that temperature, or even if the temperature gently decreases, defects may occur in the film. Since no porosity occurs, that is, a non-porous state is maintained, chemical reactions inside the battery are reliably suppressed, resulting in a highly safe and highly reliable battery.

〔実施例〕〔Example〕

以下、本発明を実施例により説明するが、本発明は実施
例に限定されるものではない。なお、測定方法及び評価
方法を下記にまとめて示す。
EXAMPLES Hereinafter, the present invention will be explained with reference to examples, but the present invention is not limited to the examples. Note that the measurement method and evaluation method are summarized below.

(1)膜厚 株式会社尾崎製作所製ダイヤルゲージ(商品名、 PE
ACOCK Nα25)にて測定した。
(1) Dial gauge manufactured by Ozaki Seisakusho Co., Ltd. (product name, PE
ACOCK Nα25).

(2)平均孔径 ASTM  F−316−70に準拠したハーフドライ
法によって求めた。
(2) Average pore diameter Determined by a half-dry method in accordance with ASTM F-316-70.

(3)最大孔径 ASTM  E−128−61に準拠し、エタノール中
でのバブルポイントから算出した。
(3) Maximum pore diameter Calculated from the bubble point in ethanol in accordance with ASTM E-128-61.

(4)通気度 JIS−P−8117に準拠。(4) Air permeability Compliant with JIS-P-8117.

(5)無孔化 無孔化の程度は、下式で定義した。(5) Non-porous The degree of nonporous formation was defined by the following formula.

無孔化度=(A/常温での通気度) A;6cmX6cmのサンプルが変形しないように四隅
を固定し、所定温度に設定されたギヤーオーブン中に3
0分間放置した後、速やかにギヤーオーブンから取り出
し、空冷あるいは水冷して得たサンプルの中央部の通気
度 また、無孔化度かのとは、前述の通気度の測定方法に於
て、透気度の測定を開始してから、10分間経過した時
点に於て、通気量が25cc以下である場合を言う。
Degree of nonporousity = (A/air permeability at room temperature) A: A 6 cm x 6 cm sample was fixed at its four corners to prevent deformation, and placed in a gear oven set at a predetermined temperature for 30 minutes.
After being left for 0 minutes, the sample was immediately removed from the gear oven and cooled in air or water. This refers to the case where the ventilation amount is 25 cc or less 10 minutes after the start of air temperature measurement.

実施例 微粉珪酸19重量%とジオクチルフタレート47重量%
をヘンシェルミキサーで混合し、これにポリエチレン樹
脂(旭化成工業株式会社製、5UNFINESH−80
0)34重量%を添加し、再度ヘンシェルミキサーで混
合した。
Example 19% by weight of finely divided silicic acid and 47% by weight of dioctyl phthalate
were mixed with a Henschel mixer, and polyethylene resin (manufactured by Asahi Kasei Corporation, 5UNFINESH-80) was added to this.
0) 34% by weight was added and mixed again using the Henschel mixer.

該混合物を30m/mφ二軸押出機に450mZm幅の
Tダイを取り付けたフィルム製造装置で厚さ95μmの
膜状に成形した。
The mixture was molded into a film with a thickness of 95 μm using a film manufacturing device equipped with a 30 m/mφ twin screw extruder and a T-die with a width of 450 mZm.

成形された膜は、LL、1− トリクロルエタン中に1
0分間浸漬し、ジオクチルフタレートを抽出した後乾燥
し、さらに60°Cの25%苛性ソーダ中に60分間浸
漬して、微粉珪酸を抽出した後乾燥した。
The formed membrane was formed by LL, 1 in 1-trichloroethane.
The sample was immersed for 0 minutes to extract dioctyl phthalate and then dried, and further immersed in 25% caustic soda at 60°C for 60 minutes to extract finely divided silicic acid and then dried.

さらに、該微多孔膜を114’Cに加熱されたロール延
伸機により膜厚が34μmになるように延伸し、118
°Cの雰囲気下で5秒間熱処理を行なった。
Further, the microporous membrane was stretched to a film thickness of 34 μm using a roll stretching machine heated to 114'C.
Heat treatment was performed for 5 seconds in an atmosphere of °C.

得られた膜は、スポンジ構造を有し、その特性を第1表
に示す。
The obtained membrane had a sponge structure, and its properties are shown in Table 1.

ここで得られた微多孔膜を5メガradOT線下に20
分間放置して架橋した。引き続き、架橋していない該微
多孔膜と架橋した該微多孔膜とを重ね合わせた。
The microporous membrane obtained here was placed under the 5M radOT line for 20 minutes.
It was left to stand for a minute to crosslink. Subsequently, the non-crosslinked microporous membrane and the crosslinked microporous membrane were superimposed.

次に、この2枚重ね合わせた微多孔膜の無孔化度を測定
した。その結果を第2表に示す。
Next, the degree of non-porosity of the two superimposed microporous membranes was measured. The results are shown in Table 2.

比較例1 実施例における架橋していない微多孔膜2枚を用いる以
外は、実施例と同様に実施した。その結果を第2表に示
す。
Comparative Example 1 Comparative example 1 was carried out in the same manner as in the example except that two non-crosslinked microporous membranes were used. The results are shown in Table 2.

比較例2 実施例における架橋された微多孔膜1枚を用いる以外は
、実施例と同様に行った。その結果を第2表に示す。
Comparative Example 2 The same procedure as in Example was carried out except that one crosslinked microporous membrane was used. The results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、無孔化度の高い温度範囲が広く、つま
り電池内部での化学反応を抑制できる温度範囲が広くか
つ、長時間安定して化学反応を抑制できる為、電池の安
全性が高いばかりでなく、信顛性の高い電池が得られる
According to the present invention, the temperature range in which the degree of non-porosity is high is wide, that is, the temperature range in which the chemical reaction inside the battery can be suppressed is wide, and the chemical reaction can be suppressed stably for a long time, so the safety of the battery is improved. A battery that is not only expensive but also highly reliable can be obtained.

また、滅菌用包装材としても適している。It is also suitable as a packaging material for sterilization.

第 表 第 2 表No. table No. 2 table

Claims (1)

【特許請求の範囲】[Claims] 1、熱可塑性樹脂からなる微多孔膜を2枚以上重ね合わ
せてなる非水電解液電池用セパレータにおいて、支持体
として少なくとも1枚の該微多孔膜が架橋されたポリエ
チレン素材からなることを特徴とする非水電解液電池の
セパレータ用微多孔膜。
1. A separator for non-aqueous electrolyte batteries consisting of two or more microporous membranes made of thermoplastic resin stacked together, characterized in that at least one of the microporous membranes as a support is made of a crosslinked polyethylene material. Microporous membrane for separators in non-aqueous electrolyte batteries.
JP2039710A 1990-02-22 1990-02-22 Microporous membrane for separator of non-aqueous electrolyte battery Expired - Fee Related JP2951679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2039710A JP2951679B2 (en) 1990-02-22 1990-02-22 Microporous membrane for separator of non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2039710A JP2951679B2 (en) 1990-02-22 1990-02-22 Microporous membrane for separator of non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH03245457A true JPH03245457A (en) 1991-11-01
JP2951679B2 JP2951679B2 (en) 1999-09-20

Family

ID=12560548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2039710A Expired - Fee Related JP2951679B2 (en) 1990-02-22 1990-02-22 Microporous membrane for separator of non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2951679B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127438A (en) * 1995-03-03 2000-10-03 Asahi Kasei Kogyo Kabushiki Kaisha Polyethylene microporous film and process for producing the same
WO2001075991A1 (en) * 2000-03-31 2001-10-11 Yuasa Corporation Battery-use separator, battery-use power generating element and battery
JP2003059477A (en) * 2001-08-20 2003-02-28 Sony Corp Battery
US7332531B2 (en) 2004-06-11 2008-02-19 Sk Corporation Microporous high density polyethylene film
US7435761B2 (en) 2004-07-06 2008-10-14 Sk Energy Co., Ltd. Microporous polyethylene film and method of producing the same
US8057718B2 (en) 2005-04-06 2011-11-15 Sk Innovation Co., Ltd. Microporous polyethylene film having excellent physical properties, productivity, and quality consistency, and method of producing same
KR20190086208A (en) * 2018-01-12 2019-07-22 한화토탈 주식회사 Production method of microporous film in high temperature shrinkage property

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127438A (en) * 1995-03-03 2000-10-03 Asahi Kasei Kogyo Kabushiki Kaisha Polyethylene microporous film and process for producing the same
WO2001075991A1 (en) * 2000-03-31 2001-10-11 Yuasa Corporation Battery-use separator, battery-use power generating element and battery
JP4632015B2 (en) * 2000-03-31 2011-02-16 株式会社Gsユアサ Battery separator and lithium secondary battery
JP2003059477A (en) * 2001-08-20 2003-02-28 Sony Corp Battery
US7332531B2 (en) 2004-06-11 2008-02-19 Sk Corporation Microporous high density polyethylene film
US7947752B2 (en) 2004-06-11 2011-05-24 Sk Energy Co., Ltd. Method of producing microporous high density polyethylene film
US7435761B2 (en) 2004-07-06 2008-10-14 Sk Energy Co., Ltd. Microporous polyethylene film and method of producing the same
US8057718B2 (en) 2005-04-06 2011-11-15 Sk Innovation Co., Ltd. Microporous polyethylene film having excellent physical properties, productivity, and quality consistency, and method of producing same
KR20190086208A (en) * 2018-01-12 2019-07-22 한화토탈 주식회사 Production method of microporous film in high temperature shrinkage property

Also Published As

Publication number Publication date
JP2951679B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
US9620754B2 (en) Polyolefin microporous membrane and separator for lithium ion secondary battery
JP2883726B2 (en) Manufacturing method of battery separator
JP5528361B2 (en) Microporous film and method for producing the same
JP4753446B2 (en) Polyolefin microporous membrane
US8003261B2 (en) Polyolefin microporous membrane
JP4931911B2 (en) Polyolefin microporous membrane
JP5546144B2 (en) Polyolefin microporous membrane
JP5325405B2 (en) Polyolefin microporous membrane
WO2006025323A1 (en) Microporous polyolefin film and separator for storage cell
JP3497569B2 (en) Polyethylene microporous membrane for non-aqueous battery separator
JPWO2004089627A1 (en) Polyolefin microporous membrane
WO1996027633A1 (en) Microporous polyethylene film and process for producing the film
JP2009143060A (en) Multi-layer porous film
JP3917721B2 (en) Method for producing microporous membrane
KR102264032B1 (en) Method for producing polyolefin microporous membrane and polyolefin microporous membrane
JP4573284B2 (en) Polyethylene microporous membrane
JPWO2018216819A1 (en) Polyolefin microporous membrane, power storage device separator, and power storage device
JP2009269941A (en) Microporous polyolefin membrane
JP5235324B2 (en) Polyolefin microporous membrane
JP5592745B2 (en) Polyolefin microporous membrane
JPH03245457A (en) Fine porous membrane for separator of non-aqueous electrolyte battery
KR101942640B1 (en) Separator for energy storage device
JPH11268118A (en) Polyolefin porous film, production thereof, and separator film for battery
JP3486785B2 (en) Battery separator and method of manufacturing the same
JP4713441B2 (en) Method for producing polyolefin microporous membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees