【発明の詳細な説明】[Detailed description of the invention]
本発明はイソプロペニルフエノールを一成分と
する共重合体とフエノール樹脂とを混合してなる
新規な熱硬化性樹脂組成物に関する。さらに詳し
くは、硬化性にすぐれ、耐熱性、可撓性、寸法安
定性にすぐれた硬化物を与える熱硬化性樹脂組成
物に関する。
従来、フエノール樹脂は硬化性、成形性などが
比較的良好であり、その硬化物は耐熱性、電気特
性、機械的特性などバランスのとれた材料とし
て、成形材料、積層材料、結合材等に広く利用さ
れている。しかし、フエノール樹脂の最大の欠点
として、可撓性に乏しく、大型の成形品を得よう
とすると割れやすく、また、金属をインサートし
た成形体では金属と成形体との間にクラツクを生
じやすいという問題があつた。また、積層板の分
野では可撓性が乏しいため、低温では打抜加工が
出来ないなど多くの問題を生じていた。さらに、
フエノール樹脂は寸法安定性に欠けるため、高い
信頼性を要求される電気機器、機械部品、自動車
部品等いわゆる構造部材への用途に多くの制限を
受けていた。
このような状況のもと、本発明者らは、先に、
パラ−イソプロペニルフエノールを一成分とする
共重合体とホルムアルデヒド発生化合物からなる
熱硬化性樹脂組成物が、可撓性、耐熱寸法安定性
にすぐれた硬化物を与えることを見出した(特開
昭56−59859)。しかしながら、パラ−イソプロペ
ニルフエノールを一成分とする共重合体は他の重
合性単量体と共重合しているため、フエノール樹
脂に比べてOH価が小さく、したがつて、ホルム
アルデヒド発生化合物との硬化性に問題があつ
た。
本発明者らは、以上のような欠点を解決すべ
く、鋭意検討した結果イソプロペニルフエノール
を一成分とする共重合体(以下、P共重合体と略
する)とフエノール樹脂を混合してなる熱硬化性
樹脂組成物が硬化性がすぐれ、しかも、硬化物の
耐熱性がすぐれ、フエノール樹脂の最大の欠点で
あつた可撓性および寸法安定性が大巾に改良され
ることを見出し、本発明に到つたものである。
本発明の組成物に用いられるP共重合体とは、
イソプロペニルフエノールと他の重合性単量体の
一種以上を共重合した共重合体である。このP共
重合体を製造するための他の重合性単量体とし
て、次のようなものがあげられる。
例えば、スチレン、クロルスチレン、ブロムス
チレン、α−メチルスチレン、ビニルトルエン、
ビニルキシレン等のスチレン類、アクリル酸メチ
ル、アクリル酸エチル、アクリル酸−n−ブチ
ル、アクリル酸−2−エチルヘキシル等のアクリ
ル酸エステル類、メタクリル酸メチル、メタクリ
ル酸エチル、メタクリル酸−n−ブチル等のメタ
クリル酸エステル類、アクリロニトリル、メタク
リロニトリル、フマロニトリル、アクリル酸、メ
タクリル酸、無水マレイン酸、アクリルアミド、
メタクリルアミド、イソプレン、ブタジエン、ジ
シクロペンタジエン等の共重合可能な重合性単量
体がある。
また、このP共重合体に用いられるイソプロペ
ニルフエノールは、オルソ体、メタ体、パラ体ま
たはこれらの混合体のいずれであつてもよい。
本発明の組成物に用いるP共重合体中のイソプ
ロペニルフエノールの含有量は、P共重合体中5
〜90重量%、好ましくは、10〜80重量%である。
イソプロペニルフエノールの含有量が5重量%未
満では、組成物の硬化性が悪く、耐熱性のすぐれ
た硬化物は得られにくい。また、90重量%を越え
ると、硬化物の可撓性、寸法安定性が悪くなる。
P共重合体を製造する際には、ラジカル重合、
イオン重合、電荷移動重合等のいずれによつても
重合可能であるが、好ましくはラジカル重合開始
剤を用いたラジカル重合が反応の制御の容易さの
観点からすぐれている。ラジカル重合開始剤とし
ては、アゾビスイソブチロニトリル、アゾビス−
2,4−ジメチルバレロニトリル、アゾビスシク
ロヘキサンカルボニトリル、アゾビス−2−アミ
ジノプロパン・HCl塩などのアゾ系開始剤、過酸
化ベンゾイル、過酸化ラウロイル、過酸化アセチ
ルクメンヒドロペルオキシド、t−ブチルヒドロ
ペルオキシド、ジ−t−ブチルヒドロペルオキシ
ドなどの過酸化物系開始剤、過酸化ベンゾイル−
N,N−ジメチルアニリン、ペルオキソ二硫酸塩
−亜硫酸水素ナトリウムなどのレドツクス系開始
剤などがある。開始剤の使用量はP共重合体の原
料となる各種単量体の合計量に対し、0.01〜10重
量%が好ましい。重合方法として公知の方法、す
なわち、溶液重合、懸濁重合、乳化重合塊状重合
等を用いればP共重合体が容易に製造出来る。
P共重合体の重量平均分子量は500〜50000、好
ましくは、1000〜30000のものが用いられる。500
未満または50000を越えると本発明の目的とする
耐熱性、可撓性、寸法安定性のすぐれた硬化物を
与える熱硬化性樹脂組成物は得られなくなる。本
発明の組成物に用いられるフエノール樹脂はノボ
ラツク型樹脂でも使用可能である。ノボラツク型
樹脂は一般に酸を触媒として、フエノール、クレ
ゾール、キシレノール、レゾルシノール等のフエ
ノール類と、ホルムアルデヒド水溶液、パラホル
ムアルデヒド、トリオキサン等のホルムアルデヒ
ド類とをフエノール類のモル数が過剰の状態で反
応させて得られる。レゾール型樹脂は、一般にア
ルカリを触媒として、前記フエノール類とホルム
アルデヒド類とをホルムアルデヒド類のモル数が
過剰の状態で反応させて得られる。
本発明の熱硬化性樹脂組成物はP共重合体とフ
エノール樹脂とを混合することにより構成される
が、その構成割合は、必要に応じて種々の割合で
混合することができ、P共重合体とフエノール樹
脂の重量比で0.05〜20、好ましくは0.1〜10がよ
い。P共重合体とフエノール樹脂の重量比が0.05
未満および20を越えると硬化性がすぐれ、しかも
耐熱性、可撓性、寸法安定性にすぐれた硬化物を
与える熱硬化性樹脂組成物は得られなくなる。
次に本発明の熱硬化性樹脂組成物は、必要に応
じてパラホルムアルデヒド、ヘキサメチレンテト
ラミン等の硬化剤を用いて硬化させることができ
る。また本発明の熱硬化性樹脂組成物において、
P共重合体とフエノール樹脂とを混合する場合、
粉砕により粒体状で混合するかまたは80〜170℃
の温度で数分間加熱し、溶融させて混合するかあ
るいは、P共重合体とフエノール樹脂との共通溶
剤、例えばメタノール、エタノール、プロペノー
ル、ベンジルアルコール、ジアセトンアルコール
などのアルコール類、アセトン、メチルエチルケ
トン、メチルイソブチルケトン、シクロヘキサノ
ンなどのケトン類、ジオキサン、テトラヒドロフ
ラン、メチルセロソルブ、エチルセロソルブなど
のエーテル類、酢酸エチル、酢酸ブチルなどのエ
ステル類等の一種以上の溶剤に溶解して混合して
もよい。
本発明の熱硬化性樹脂組成物は硬化性が良好
で、しかもその硬化性が耐熱性、可撓性、寸法安
定性が優れるといつたバランスのとれた性能を有
しているため、電気部品、機械部品、自動車部品
などの成形材料、銅張積層板などの積層材料、ブ
レーキ、レジノイド砥石、シエルモールドなどの
結合材料、塗料、接着材料など広汎な用途に極め
て有用なものである。
次に本発明による組成物の各用途例について述
べる。成形材料の用途には、本発明の組成物に更
に木粉、タルク、シリカ、クレー、炭酸カルシウ
ム、ガラス繊維などの充填剤、滑剤、着色剤等を
添加し、ロール、ニーダーなどにより、80℃〜
170℃の温度で混練した後、冷却、粉砕して成形
材料とすることができる。このようにして得られ
た成形材料は、圧縮成形機、トランスフアー成形
機、射出成形機などにより、120℃〜250℃の温度
および30〜500Kg/cm2の圧力で成型することがで
きる。得られた成型体は、耐熱性に優れ、とくに
熱時剛性が高く、しかも可撓性にすぐれ長期の熱
履歴による寸法安定性も極めてすぐれている。
また、積層材料の用途には、本発明の組成物を
前記共通溶剤に溶解してワニスとし、これをコツ
トンリンター紙等の積層板用基材に含浸し乾燥
後、積層し、加熱、加圧成形し、積層板を得る。
得られた積層板は耐熱性とくに熱時の強度が大き
く、また、低温での打抜加工が出来るなど可撓性
が良好であり、そり、ねじれなどが全く見られ
ず、高い信頼性を示している。また、結合材、例
えばレジノイド砥石の用途には、本発明の組成物
を砥粒と混合し、圧縮成形機により、加熱加工を
行い成形し、砥石を得る。得られた砥石は、熱時
の強度が高く、しかも可撓性にすぐれたものとな
る。
また、塗料に用いる場合、本発明の組成物を前
記溶剤に溶解してワニスとし、被着体に塗布し、
加熱乾燥して硬化させることにより、耐熱性、可
撓性にすぐれた塗膜を得ることができる。以下、
製造例、実施例、試験例にて本発明の効果を具体
的に説明する。
製造例 1
撹拌器、コンデンサー付きのフラスコに、パラ
イソプロペニルフエノール(以下PIPEと略称)
10部、アクリル酸n−ブチル90部、メチルエチル
ケトン(以下MEKと略称)233部およびアゾビス
イソブチロニトリル(以下AIBNと略称)4.8部
を一括して仕込み、撹拌下に加熱、還流させ4時
間重合させた。さらにAIBN2.4部を添加して4
時間加熱還流させ、固型分濃度28.0の共重合体溶
液を得た。この溶液を170℃で2時間減圧乾燥し
てP共重合体(1)91部を得た。
ゲルパーミエイシヨンクロマトグラフ(以下
GPCと略称)によるこの共重合体の重量平均分
子量は、11000であり、アセチル化法によるOH
価は44mgKOH/gであつた。
製造例 2
撹拌器、コンデンサー付きのフラスコに、
PIPE30部、メタクリル酸メチル70部、MEK100
部およびAIBN4.8部を一括して仕込み撹拌下に
加熱、還流させて4時間重合させた。AIBN2.4
部を添加して、4時間加熱、還流させ、固型分濃
度43.0%の共重合体溶液を得た。この溶液を170
℃で2時間減圧乾燥し、共重合体(2)84部を得た。
GPCによるこの共重合体の重量平均分子量は
6200であり、アセチル化法によるOH価は137mg
KOH/gであつた。
製造例 3
撹拌器、コンデンサー付きのフラスコに、
PIPE50部、スチレン50部、MEK70部、および
AIBN4.8部を一括して仕込み、撹拌下に加熱、
還流させ4時間重合させた。さらにAIBN2.4部
を添加して、4時間加熱、還流を続け、固型分濃
度49.5%の共重合体溶液を得た。この溶液を170
℃で2時間減圧乾燥し共重合体(3)84.5部を得た。
GPCによるこの共重合体の重量平均分子量は、
5300であり、アセチル化法によるOH価は195mg
KOH/gであつた。
製造例 4
撹拌器、コンデンサー付きのフラスコに、
PIPE60部、アクリル酸エチル以下EAと略称40
部、MEK233部およびAIBN4.8部を一括して仕
込み、撹拌下に加熱、還流させ4時間重合させ
た。さらにAIBN2.4部を添加して、4時間加熱、
還流させ、固型分濃度28.4%の共重合体溶液を得
た。この溶液を170℃で2時間減圧乾燥して、共
重合体(4)92部を得た。GPCによるこの共重合体
の重量平均分子量は8600であり、アセチル化法に
よるOH価は、237mgKOH/gであつた。
製造例 5
撹拌器、コンデンサー付きのフラスコに
PIPE65部、EA25部、アクリロニトリル(以下
ANと略称)10部およびAIBN4.8部を一括して仕
込み、撹拌下に加熱、還流させ4時間重合させ
た。さらにAIBN2.4部を添加して4時間加熱、
還流させ、固型分濃度29.0%の共重合体溶液を得
た。この溶液を170℃で2時間減圧乾燥して、共
重合体(5)93部を得た。GPCによるこの共重合体
の重量平均分子量は8900であり、アセチル化法に
よるOH価は270mgKOH/gであつた。
製造例 6
撹拌器、コンデンサー付きのフラスコに、
PIPE75部、AN25部、MEK233部、および
AIBN4.8部を一括して仕込み、撹拌下に加熱、
還流させ、4時間重合させた。さらにAIBN2.4
部を添加して、4時間加熱還流させ、固型分濃度
28.0%の共重合体溶液を得た。この溶液を170℃
で2時間減圧乾燥し、共重合体(6)92部を得た。
GPCによるこの共重合体の重量平均分子量は
9500であり、アセチル化法によるOH価は185mg
KOH/gであつた。
製造例 7
撹拌器付きのオートクレーブ中にPIPE70部、
ブタジエン30部、MEK233部およびAIBN4.8部
を仕込み、撹拌下に80℃に加熱し、8時間重合さ
せ固形分濃度14.8%の共重合体溶液を得た。この
溶液を170℃で2時間乾燥させ、共重合体(7)48部
を得た。GPCによるこの共重合体の重重平均分
子量は3200であり、アセチル化法によるOH価は
290mgKOH/gであつた。
製造例 8
撹拌器付きのオートクレーブ中にp−イソプロ
ペニルフエノールオリゴマー70部、ブタジエン30
部、MEK233部およびAIBN4.8部を仕込み、撹
拌下に80℃に加熱し、8時間重合させ、固形分濃
度11.0%の共重合体溶液を得た。この溶液を170
℃で2時間乾燥させ、共重合体(8)32部を得た。
GPCによるこの共重合体の重重平均分子量は
2000であり、アセチル化法によるOH価は320mg
KOH/gであつた。
製造例 9
撹拌器、コンデンサー付きのフラスコに、P−
イソプロペニルフエノールオリゴマー60部、
EA40部、MEK233部およびAIBN4.8部を一括し
て仕込み、撹拌下に加熱、還流させ4時間重合さ
せた。さらにAIBN2.4部を添加して、4時間加
熱、還流させ固形分濃度18.0%の共重合体溶液を
得た。この溶液を170℃で2時間減圧乾燥して、
共重合体(9)58部を得た。GPCによるこの共重合
体の重量平均分子量は2800であり、アセチル化法
によるOH価は210mgKOH/gであつた。
実施例 1
製造例1で得た共重合体(1)10部、ノボラツク樹
脂(三井東圧化学(株)製ノボラツク#2000、軟化点
92〜98℃、以下ノボラツク#2000と略称)90部お
よび硬化剤としてヘキサメチレンテトラミン12部
を粉砕機にて粉砕して混合し、熱硬化性樹脂組成
物Aを得た。
実施例 2
製造例1で得た共重合体(1)10部および、レゾー
ル樹脂(三井東圧化学(株)製PL−265、濃度40%以
下レゾールPL−265と略称)225部をメタノール
50部、アセトン50部よりなる溶剤に溶解後、室温
にて24時間減圧乾燥して、熱硬化性樹脂組成物B
を得た。
実施例 3
製造例2で得た共重合体(2)40部ノボラツク
#2000 60部および硬化剤としてヘキサメチレン
テトラミン12部を粉砕機にて粉砕して混合し、熱
硬化性樹脂組成物Cを得た。
実施例 4
製造例3で得た共重合体(3)30部およびレゾール
PL−265 175部をメタノール50部、アセトン50部
よりなる溶剤に溶解後、室温にて24時間減圧乾燥
して、熱硬化性樹脂組成物Dを得た。
実施例 5
製造例4で得た共重合体(4)70部ノボラツク
#2000 30部および硬化剤としてヘキサメチレン
テトラミン12部を粉砕機にて粉砕して混合し、熱
硬化性樹脂組成物Eを得た。
実施例 6
製造例5で得た共重合体(5)60部およびレゾール
PL−265 100部をメタノール50部、アセトン50部
よりなる溶剤に溶解後、室温にて24時間減圧乾燥
して、熱硬化性樹脂組成物Fを得た。
実施例 7
製造例6で得た共重合体(6)40部、ノボラツク
#2000 60部および硬化剤としてヘキサメチレン
テトラミン12部を粉砕機にて粉砕して混合し、熱
硬化性樹脂組成物Gを得た。
実施例 8
製造例7で得た共重合体(7)40部、ノボラツク
#2000 60部および硬化剤としてヘキサメチレン
テトラミン12部を粉砕機にて粉砕して混合し、熱
硬化性樹脂組成物Hを得た。
比較例 1
ノボラツク#2000 100部及び硬化剤としてヘキ
サメチレンテトラミン12部を粉砕機にて粉砕して
混合し、熱硬化性樹脂組成物Hを得た。
比較例 2
レゾールPL−265を室温にて24時間減圧乾燥
し、熱硬化性の乾燥物を得た。
比較例 3
製造例4で得た共重合体(4)100部、および硬化
剤としてヘキサメチレンテトラミン12部を粉砕機
にて粉砕して混合し熱硬化性樹脂組成物Jを得
た。
比較例 4
製造例8で得た共重合体(8)40部、ノボラツク
#2000 60部および硬化剤としてヘキサメチレン
テトラミン12部を粉砕機にて粉砕して混合し、熱
硬化性樹脂組成物Iを得た。
比較例 5
製造例9で得た共重合体(9)70部、ノボラツク
#2000 30部および硬化剤としてヘキサメチレン
テトラミン12部を粉砕機にて粉砕して混合し、熱
硬化性樹脂組成物Jを得た。
実施例1〜8および比較例1〜5で得た各熱硬
化性樹脂組成物につき、次の試験を行つた。
試験法
(A) ゲル化時間
JIS K6910に準じ、150℃の熱板上に各組成
物をのせ、糸引きがなくなるまでの時間
(B) 成型体の熱時バーコール硬度、シヤルピー衝
撃値、寸法変化率、
成形体の作製
各組成物100部に対し、木粉80部、炭酸カ
ルシウム30部、ステアリン酸1部を加え、
120℃の熱ロールにて3分間混練後、粉砕し、
成形粉とした。この成形粉を圧縮成形機によ
り、温度170℃、圧力100Kg/cm2で5分間圧縮
することにより成形体を得、各試験に供し
た。
熱時バーコール硬度
成形体を160℃の熱風循環式乾燥器中に10
分間放置してから取り出し、10秒後のバーコ
ール硬度をバーコール硬度計にて測定。
シヤルピー衝撃値
JISK 6911によつた。
加熱寸法変化率
成形体を170℃の熱風循環式乾燥器中で所
定時間加熱した後、取出し、室温まで冷却
後、寸法変化(収縮)率を測定。
(C) 積層板の熱時曲げ強度、打抜加工性、そり、
ねじれ、
積層板の作製
各組成物100部に対し、メタノール70部、
MEK40部なる混合溶剤に溶解し、ワニスと
した。含浸用基材としてコツトンリンター紙
にこのワニスを含浸させ、乾燥後樹脂分50%
の積層材を得た。次にこの積層材を所定枚数
重ねて150℃、80Kg/cm2の条件で、30分間加
熱加工して厚さ1.5mmの積層板を得た。
熱時曲げ強度
JIS C−6481に準じ、150℃における曲げ
強度を測定。
打抜加工性
ASTM D−167−44に準じ、常温、およ
び50℃における打抜加工性を判定。
それ、ねじれ
JIS C 6481に準じ、で得た各組成物の
積層板のそり、ねじれの状態を目視により判
定。
〇…そり、ねじれが全くない。
×…そり、ねじれがある。
試験例 1
実施例1、3、5、7、8および比較例1、
3、4、5の各組成物を用い、硬化性を調べるた
め試験法(A)によりゲル化時間を測定した。また、
試験法(B)−により成形体を作製し、成形体の耐
熱性、可撓性、寸法安定性を調べるため、試験法
(B)−〜により、熱時バーコール硬度、シヤル
ピー衝撃値、加熱寸法変化率を測定した。結果を
表−1に示した。
The present invention relates to a novel thermosetting resin composition formed by mixing a copolymer containing isopropenylphenol as one component and a phenol resin. More specifically, the present invention relates to a thermosetting resin composition that has excellent curability and provides a cured product with excellent heat resistance, flexibility, and dimensional stability. Conventionally, phenolic resins have relatively good curability and moldability, and their cured products are widely used as molding materials, laminated materials, bonding materials, etc. as materials with well-balanced heat resistance, electrical properties, and mechanical properties. It's being used. However, the biggest drawback of phenolic resin is that it lacks flexibility, making it easy to break when trying to make large molded products, and cracks tend to occur between the metal and the molded product when molded products are inserted with metal. There was a problem. Furthermore, in the field of laminates, many problems have arisen, such as the inability to punch them at low temperatures due to their poor flexibility. moreover,
Because phenolic resin lacks dimensional stability, it has been subject to many limitations in its application to so-called structural members such as electrical equipment, mechanical parts, and automobile parts that require high reliability. Under these circumstances, the present inventors first
It has been discovered that a thermosetting resin composition consisting of a copolymer containing para-isopropenylphenol as one component and a formaldehyde-generating compound provides a cured product with excellent flexibility and heat-resistant dimensional stability (Japanese Patent Application Laid-Open No. 56−59859). However, since copolymers containing para-isopropenylphenol as one component are copolymerized with other polymerizable monomers, their OH value is lower than that of phenolic resins, and therefore, they have a lower OH value than phenolic resins, and therefore have a lower OH value than formaldehyde-generating compounds. There was a problem with hardenability. In order to solve the above-mentioned drawbacks, the inventors of the present invention have made extensive studies and found that a copolymer containing isopropenylphenol as one component (hereinafter abbreviated as P copolymer) and a phenolic resin are mixed. He discovered that the thermosetting resin composition has excellent curability, and that the cured product has excellent heat resistance, greatly improving flexibility and dimensional stability, which were the biggest drawbacks of phenolic resins. This led to an invention. The P copolymer used in the composition of the present invention is
It is a copolymer of isopropenylphenol and one or more other polymerizable monomers. Other polymerizable monomers for producing this P copolymer include the following. For example, styrene, chlorstyrene, bromstyrene, α-methylstyrene, vinyltoluene,
Styrenes such as vinyl xylene, acrylic esters such as methyl acrylate, ethyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, etc. methacrylic acid esters, acrylonitrile, methacrylonitrile, fumaronitrile, acrylic acid, methacrylic acid, maleic anhydride, acrylamide,
There are copolymerizable monomers such as methacrylamide, isoprene, butadiene, and dicyclopentadiene. Further, the isopropenylphenol used in this P copolymer may be any of the ortho form, meta form, para form, or a mixture thereof. The content of isopropenylphenol in the P copolymer used in the composition of the present invention is 5% in the P copolymer.
-90% by weight, preferably 10-80% by weight.
If the content of isopropenylphenol is less than 5% by weight, the curability of the composition is poor and it is difficult to obtain a cured product with excellent heat resistance. Moreover, if it exceeds 90% by weight, the flexibility and dimensional stability of the cured product will deteriorate. When producing P copolymer, radical polymerization,
Polymerization can be carried out by either ionic polymerization or charge transfer polymerization, but radical polymerization using a radical polymerization initiator is preferable from the viewpoint of ease of reaction control. As the radical polymerization initiator, azobisisobutyronitrile, azobis-
Azo initiators such as 2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, azobis-2-amidinopropane/HCl salt, benzoyl peroxide, lauroyl peroxide, acetylcumene hydroperoxide peroxide, t-butyl hydroperoxide , peroxide-based initiators such as di-t-butyl hydroperoxide, benzoyl peroxide
Examples include redox initiators such as N,N-dimethylaniline and peroxodisulfate-sodium bisulfite. The amount of the initiator used is preferably 0.01 to 10% by weight based on the total amount of various monomers that are raw materials for the P copolymer. The P copolymer can be easily produced by using known polymerization methods such as solution polymerization, suspension polymerization, emulsion polymerization, and bulk polymerization. The P copolymer used has a weight average molecular weight of 500 to 50,000, preferably 1,000 to 30,000. 500
If it is less than 50,000 or more than 50,000, it will not be possible to obtain a thermosetting resin composition that provides a cured product with excellent heat resistance, flexibility, and dimensional stability, which is the object of the present invention. The phenolic resin used in the composition of the present invention can also be a novolak type resin. Novolac-type resins are generally obtained by reacting phenols such as phenol, cresol, xylenol, and resorcinol with formaldehydes such as formaldehyde aqueous solution, paraformaldehyde, and trioxane in a state in which the number of moles of the phenol is in excess using an acid as a catalyst. It will be done. Resol type resins are generally obtained by reacting the phenols and formaldehydes with an alkali as a catalyst in a state where the number of moles of formaldehyde is in excess. The thermosetting resin composition of the present invention is formed by mixing a P copolymer and a phenol resin, but the composition ratios can be varied as necessary. The weight ratio of the combined material and the phenolic resin is 0.05 to 20, preferably 0.1 to 10. The weight ratio of P copolymer and phenolic resin is 0.05
When it is less than 20 or more than 20, it becomes impossible to obtain a thermosetting resin composition that has excellent curability and provides a cured product with excellent heat resistance, flexibility, and dimensional stability. Next, the thermosetting resin composition of the present invention can be cured using a curing agent such as paraformaldehyde or hexamethylenetetramine, if necessary. Further, in the thermosetting resin composition of the present invention,
When mixing P copolymer and phenolic resin,
Mix in granular form by crushing or 80~170℃
Heat for several minutes at a temperature of It may be dissolved and mixed in one or more solvents such as ketones such as methyl isobutyl ketone and cyclohexanone, ethers such as dioxane, tetrahydrofuran, methyl cellosolve, and ethyl cellosolve, and esters such as ethyl acetate and butyl acetate. The thermosetting resin composition of the present invention has good curability, and its curability has well-balanced performance such as excellent heat resistance, flexibility, and dimensional stability. It is extremely useful for a wide range of applications, including molding materials for machine parts and automobile parts, laminated materials such as copper-clad laminates, bonding materials for brakes, resinoid grindstones, and shell molds, paints, and adhesive materials. Next, various application examples of the composition according to the present invention will be described. For use as a molding material, fillers such as wood flour, talc, silica, clay, calcium carbonate, glass fiber, lubricants, colorants, etc. are added to the composition of the present invention, and the mixture is heated at 80°C using a roll, kneader, etc. ~
After kneading at a temperature of 170°C, it can be cooled and pulverized to form a molding material. The molding material thus obtained can be molded using a compression molding machine, a transfer molding machine, an injection molding machine, etc. at a temperature of 120°C to 250°C and a pressure of 30 to 500 kg/cm 2 . The molded product obtained has excellent heat resistance, particularly high rigidity when heated, and has excellent flexibility and dimensional stability due to long-term thermal history. In addition, for use as a laminated material, the composition of the present invention is dissolved in the above-mentioned common solvent to form a varnish, and this is impregnated into a base material for a laminated board such as cotton linter paper, and after drying, the composition is laminated, heated, and Press molding to obtain a laminate.
The resulting laminate has high heat resistance, especially high strength when heated, and has good flexibility, allowing punching at low temperatures, and exhibits high reliability with no warping or twisting. ing. Further, for use as a bonding material such as a resinoid grindstone, the composition of the present invention is mixed with abrasive grains, and heated and molded using a compression molding machine to obtain a grindstone. The resulting grindstone has high strength when heated and has excellent flexibility. Further, when used in a paint, the composition of the present invention is dissolved in the above-mentioned solvent to form a varnish, and applied to an adherend,
By curing by heating and drying, a coating film with excellent heat resistance and flexibility can be obtained. below,
The effects of the present invention will be specifically explained using production examples, working examples, and test examples. Production example 1 Paraisopropenylphenol (hereinafter abbreviated as PIPE) is placed in a flask equipped with a stirrer and a condenser.
10 parts of n-butyl acrylate, 90 parts of methyl ethyl ketone (hereinafter abbreviated as MEK), and 4.8 parts of azobisisobutyronitrile (hereinafter abbreviated as AIBN) were charged all at once, and the mixture was heated under stirring and refluxed for 4 hours. Polymerized. Add 2.4 parts of AIBN to 4
The mixture was heated under reflux for a period of time to obtain a copolymer solution with a solid content concentration of 28.0. This solution was dried under reduced pressure at 170°C for 2 hours to obtain 91 parts of P copolymer (1). Gel permeation chromatograph (below)
The weight average molecular weight of this copolymer according to GPC (abbreviated as GPC) is 11000, and the OH
The value was 44 mgKOH/g. Production example 2 In a flask with a stirrer and a condenser,
30 parts of PIPE, 70 parts of methyl methacrylate, 100 parts of MEK
1 part and 4.8 parts of AIBN were added at once, heated under stirring, and refluxed to polymerize for 4 hours. AIBN2.4
The mixture was heated and refluxed for 4 hours to obtain a copolymer solution with a solid content of 43.0%. Add this solution to 170
It was dried under reduced pressure at ℃ for 2 hours to obtain 84 parts of copolymer (2).
The weight average molecular weight of this copolymer by GPC is
6200, and the OH value by the acetylation method is 137 mg.
It was KOH/g. Production example 3 In a flask equipped with a stirrer and condenser,
50 parts PIPE, 50 parts styrene, 70 parts MEK, and
Add 4.8 parts of AIBN all at once and heat while stirring.
The mixture was refluxed and polymerized for 4 hours. Furthermore, 2.4 parts of AIBN was added, and heating and refluxing were continued for 4 hours to obtain a copolymer solution with a solid content concentration of 49.5%. Add this solution to 170
It was dried under reduced pressure at ℃ for 2 hours to obtain 84.5 parts of copolymer (3).
The weight average molecular weight of this copolymer by GPC is:
5300, and the OH value by the acetylation method is 195 mg.
It was KOH/g. Production example 4 In a flask with a stirrer and condenser,
PIPE 60 parts, ethyl acrylate hereafter abbreviated as EA 40
1, 233 parts of MEK, and 4.8 parts of AIBN were charged all at once, and the mixture was heated under stirring to reflux and polymerized for 4 hours. Further add 2.4 parts of AIBN and heat for 4 hours.
The mixture was refluxed to obtain a copolymer solution with a solid content concentration of 28.4%. This solution was dried under reduced pressure at 170°C for 2 hours to obtain 92 parts of copolymer (4). The weight average molecular weight of this copolymer by GPC was 8,600, and the OH value by acetylation method was 237 mgKOH/g. Production example 5 In a flask with a stirrer and condenser
65 parts of PIPE, 25 parts of EA, acrylonitrile (hereinafter
10 parts (abbreviated as AN) and 4.8 parts of AIBN were charged all at once, and the mixture was heated under stirring to reflux and polymerized for 4 hours. Furthermore, 2.4 parts of AIBN was added and heated for 4 hours.
The mixture was refluxed to obtain a copolymer solution with a solid content of 29.0%. This solution was dried under reduced pressure at 170°C for 2 hours to obtain 93 parts of copolymer (5). The weight average molecular weight of this copolymer by GPC was 8900, and the OH value by acetylation method was 270 mgKOH/g. Production example 6 In a flask with a stirrer and a condenser,
75 parts of PIPE, 25 parts of AN, 233 parts of MEK, and
Add 4.8 parts of AIBN all at once and heat while stirring.
The mixture was refluxed and polymerized for 4 hours. Furthermore AIBN2.4
of solids and heated under reflux for 4 hours to reduce the solid concentration.
A 28.0% copolymer solution was obtained. This solution was heated to 170℃.
The mixture was dried under reduced pressure for 2 hours to obtain 92 parts of copolymer (6).
The weight average molecular weight of this copolymer by GPC is
9500, and the OH value by the acetylation method is 185 mg.
It was KOH/g. Production example 7 70 parts of PIPE in an autoclave equipped with a stirrer,
30 parts of butadiene, 233 parts of MEK, and 4.8 parts of AIBN were charged, heated to 80°C with stirring, and polymerized for 8 hours to obtain a copolymer solution with a solid content concentration of 14.8%. This solution was dried at 170°C for 2 hours to obtain 48 parts of copolymer (7). The weight average molecular weight of this copolymer by GPC is 3200, and the OH value by acetylation method is
It was 290mgKOH/g. Production Example 8 70 parts of p-isopropenylphenol oligomer and 30 parts of butadiene in an autoclave equipped with a stirrer.
233 parts of MEK and 4.8 parts of AIBN were charged, heated to 80° C. with stirring, and polymerized for 8 hours to obtain a copolymer solution with a solid content concentration of 11.0%. Add this solution to 170
It was dried at ℃ for 2 hours to obtain 32 parts of copolymer (8).
The weight average molecular weight of this copolymer by GPC is
2000, and the OH value by the acetylation method is 320 mg.
It was KOH/g. Production Example 9 In a flask with a stirrer and condenser, P-
60 parts of isopropenylphenol oligomer,
40 parts of EA, 233 parts of MEK, and 4.8 parts of AIBN were charged all at once, and the mixture was heated under stirring to reflux and polymerized for 4 hours. Further, 2.4 parts of AIBN was added, and the mixture was heated and refluxed for 4 hours to obtain a copolymer solution with a solid content concentration of 18.0%. This solution was dried under reduced pressure at 170°C for 2 hours.
58 parts of copolymer (9) was obtained. The weight average molecular weight of this copolymer by GPC was 2800, and the OH value by acetylation method was 210 mgKOH/g. Example 1 10 parts of the copolymer (1) obtained in Production Example 1, Novolac resin (Novolac #2000 manufactured by Mitsui Toatsu Chemical Co., Ltd., softening point
A thermosetting resin composition A was obtained by pulverizing and mixing 90 parts of Novolak #2000 (92 to 98°C) and 12 parts of hexamethylenetetramine as a curing agent using a pulverizer. Example 2 10 parts of the copolymer (1) obtained in Production Example 1 and 225 parts of resol resin (PL-265 manufactured by Mitsui Toatsu Chemical Co., Ltd., abbreviated as resol PL-265 with a concentration of 40% or less) were mixed with methanol.
50 parts of acetone, and dried under reduced pressure at room temperature for 24 hours to obtain thermosetting resin composition B.
I got it. Example 3 40 parts of the copolymer (2) obtained in Production Example 2, 60 parts of Novolac #2000, and 12 parts of hexamethylenetetramine as a curing agent were ground and mixed in a grinder to form thermosetting resin composition C. Obtained. Example 4 30 parts of copolymer (3) obtained in Production Example 3 and resol
175 parts of PL-265 was dissolved in a solvent consisting of 50 parts of methanol and 50 parts of acetone, and then dried under reduced pressure at room temperature for 24 hours to obtain thermosetting resin composition D. Example 5 70 parts of the copolymer (4) obtained in Production Example 4, 30 parts of Novolac #2000, and 12 parts of hexamethylenetetramine as a hardening agent were ground and mixed in a grinder to form thermosetting resin composition E. Obtained. Example 6 60 parts of copolymer (5) obtained in Production Example 5 and resol
100 parts of PL-265 was dissolved in a solvent consisting of 50 parts of methanol and 50 parts of acetone, and then dried under reduced pressure at room temperature for 24 hours to obtain thermosetting resin composition F. Example 7 40 parts of the copolymer (6) obtained in Production Example 6, 60 parts of Novolak #2000, and 12 parts of hexamethylenetetramine as a curing agent were ground and mixed in a grinder to form a thermosetting resin composition G. I got it. Example 8 40 parts of the copolymer (7) obtained in Production Example 7, 60 parts of Novolak #2000, and 12 parts of hexamethylenetetramine as a curing agent were ground and mixed in a grinder to form a thermosetting resin composition H. I got it. Comparative Example 1 100 parts of Novolac #2000 and 12 parts of hexamethylenetetramine as a curing agent were ground and mixed in a grinder to obtain a thermosetting resin composition H. Comparative Example 2 Resol PL-265 was dried under reduced pressure at room temperature for 24 hours to obtain a thermosetting dry product. Comparative Example 3 Thermosetting resin composition J was obtained by grinding and mixing 100 parts of the copolymer (4) obtained in Production Example 4 and 12 parts of hexamethylenetetramine as a curing agent using a grinder. Comparative Example 4 40 parts of the copolymer (8) obtained in Production Example 8, 60 parts of Novolak #2000, and 12 parts of hexamethylenetetramine as a curing agent were ground and mixed in a grinder to form a thermosetting resin composition I. I got it. Comparative Example 5 70 parts of the copolymer (9) obtained in Production Example 9, 30 parts of Novolac #2000, and 12 parts of hexamethylenetetramine as a curing agent were ground and mixed in a grinder to form a thermosetting resin composition J. I got it. The following tests were conducted on each of the thermosetting resin compositions obtained in Examples 1 to 8 and Comparative Examples 1 to 5. Test method (A) Gelation time According to JIS K6910, each composition is placed on a hot plate at 150℃, time until stringiness disappears (B) Barcol hardness, Charpy impact value, dimensional change of molded product when heated To 100 parts of each composition, add 80 parts of wood flour, 30 parts of calcium carbonate, and 1 part of stearic acid.
After kneading for 3 minutes with a hot roll at 120℃, pulverize,
It was made into molding powder. This molded powder was compressed using a compression molding machine at a temperature of 170° C. and a pressure of 100 kg/cm 2 for 5 minutes to obtain a molded body, which was used for each test. Barcoll hardness when heated: 10
Leave it for a minute, take it out, and measure the Barcol hardness after 10 seconds using a Barcoll hardness meter. Shyalpy impact value Based on JISK 6911. Heating dimensional change rate After heating the molded product in a hot air circulation dryer at 170℃ for a specified time, take it out, cool it to room temperature, and measure the dimensional change (shrinkage) rate. (C) Heat bending strength, punching workability, warpage,
Twisting, preparation of laminates: 70 parts of methanol for 100 parts of each composition;
It was dissolved in a mixed solvent consisting of 40 parts of MEK to make a varnish. This varnish is impregnated onto cotton linter paper as a base material for impregnation, and after drying, the resin content is 50%.
A laminated material was obtained. Next, a predetermined number of these laminates were stacked and heated at 150° C. and 80 kg/cm 2 for 30 minutes to obtain a laminate with a thickness of 1.5 mm. Bending strength under heat Measure bending strength at 150℃ according to JIS C-6481. Punching workability According to ASTM D-167-44, punching workability was determined at room temperature and 50℃. According to JIS C 6481, the state of warpage and twist of the laminates of each composition obtained was visually determined. 〇…There is no warping or twisting at all. ×…There is warpage and twisting. Test Example 1 Examples 1, 3, 5, 7, 8 and Comparative Example 1,
Using each of the compositions No. 3, 4, and 5, the gelation time was measured by test method (A) in order to examine the curability. Also,
A molded body was prepared using test method (B)-, and the test method was used to examine the heat resistance, flexibility, and dimensional stability of the molded body.
(B) The Barcoll hardness during heating, the Charpy impact value, and the heating dimensional change rate were measured. The results are shown in Table-1.
【表】
試験例 2
実施例2、4、6および比較例2の各組成物を
用い、試験法(C)−により、積層板を作製した。
この積層板の耐熱性、可撓性、寸法安定性を調べ
るため、試験法(C)−〜により熱時曲げ強度、
打抜加工性、そり、ねじれを測定した。結果を表
−2に示す。[Table] Test Example 2 Using each of the compositions of Examples 2, 4, and 6 and Comparative Example 2, a laminate was produced according to Test Method (C)-.
In order to examine the heat resistance, flexibility, and dimensional stability of this laminate, we tested the bending strength under heat using test method (C).
Punching workability, warpage, and twist were measured. The results are shown in Table-2.
【表】【table】