JPS6337813B2 - - Google Patents

Info

Publication number
JPS6337813B2
JPS6337813B2 JP56005151A JP515181A JPS6337813B2 JP S6337813 B2 JPS6337813 B2 JP S6337813B2 JP 56005151 A JP56005151 A JP 56005151A JP 515181 A JP515181 A JP 515181A JP S6337813 B2 JPS6337813 B2 JP S6337813B2
Authority
JP
Japan
Prior art keywords
copolymer
weight
solution
resin composition
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56005151A
Other languages
Japanese (ja)
Other versions
JPS57119921A (en
Inventor
Shuhei Imon
Tomohide Yokoo
Kenji Ema
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP515181A priority Critical patent/JPS57119921A/en
Publication of JPS57119921A publication Critical patent/JPS57119921A/en
Publication of JPS6337813B2 publication Critical patent/JPS6337813B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】 本発明は成形材料、積層材料、塗料、接着剤等
広汎な用途に利用可能な硬化性樹脂組成物に関す
る。 さらに詳しくは、硬化性が良好であり、成形時
の作業性がすぐれ、しかも、耐熱性、接着性、寸
法安定性にすぐれた硬化物を与える熱硬化性樹脂
組成物に関する。 従来、エポキシ樹脂にフエノール性水酸基を有
する化合物を配合してなる熱硬化性樹脂組成物は
公知である。例えば、エポキシ樹脂にノボラツク
型フエノール樹脂を配合してなる熱硬化性樹脂組
成物は、成形材料、積層材料、塗料等の分野に利
用されている。しかし、硬化物の寸法安定性が悪
く、寸法精度の要求される電子工業材料等には使
用できないという欠点があつた。また、耐熱性、
とくに熱変形温度が100℃前後と低く、電気部品、
機械部品、自動車、航空機、車両等の産業機器へ
のいわゆるエンジニアリングプラスチツクとして
の利用が困難であつた。 しかるに、近年、パライソプロペニルフエノー
ル重合体、パラビニルフエノール重合体とエポキ
シ樹脂を配合してなる熱硬化性樹脂組成物が開発
されている。この組成物よりなる硬化物は、従来
のエポキシ樹脂とノボラツク型フエノール樹脂と
を配合してなる硬化物に比し、耐熱性、寸法安定
性はすぐれているものの次のような欠点があるた
め、用途面で制約を受けていた。すなわち、接着
性が悪く、例えばガラスクロスをベースとする銅
張積層板に使用した場合、接着強度が十分でない
ため、ガラスクロス間の層間はくりを生じ、さら
に銅はくと積層材との間に別に接着剤を必要とす
る欠点があつた。さらに耐熱性では200℃以下で
使用する場合、機械強度等の諸物性の強度保持率
は十分であるが300℃以上の高温下では、硬化物
が熱分解を受け物性低下をもたらすため、このよ
うな条件下で使用する用途には使用できない欠点
がある。 また、上記ノボラツク型フエノール樹脂、パラ
イソプロペニルフエノール重合体およびパラビニ
ルフエノール重合体のようなフエノール性水酸基
を有する化合物は、エポキシ樹脂を配合して硬化
させる場合、通常、第3級アミン等の硬化促進剤
を用いて硬化時間を短縮させる方法がとられてい
る。この場合、硬化は速くなるが配合時または成
型作業時にアミンが一部揮発し悪臭をもたらしさ
らには揮発したアミン蒸気に接触すると皮膚炎症
を起すなど作業上の問題がある。さらに、得られ
た硬化物も接着性が悪くなるという物性面での問
題もある。 本発明者らは以上のような欠点を解決すべく鋭
意検討した結果、エポキシ樹脂に、塩基性基を有
する重合性単量体とアルケニルフエノールを必須
成分とする共重合体(以下「A共重合体」と略
称)を配合してなる熱硬化性樹脂組成物が硬化性
が良好であり、成形時の作業性がすぐれ、しか
も、耐熱性、接着性、寸法安定性にすぐれた硬化
物を与えることを見出し、本発明を完成するに到
つたものである。 本発明の熱硬化性樹脂組成物を用いることによ
り、耐熱性にすぐれ、寸法精度の高い成形体が得
られ、また、成型体の熱時剛性が高く、成型後の
金型からの取りはずしが容易になり成型能率を一
段と向上させることができる。 積層材料に用いた場合には、接着強度が大きく
銅張積層板の場合、紙、ガラスなどの基材間の層
間はくり強度が極めて大であり、また、銅はくと
積層材との間の銅はく引きはがし強度も極めて大
きい。 本発明の熱硬化性樹脂組成物はまた、第3級ア
ミン等の硬化促進剤を用いずに、硬化促進剤を用
いた場合と同等以上の十分な硬化速度得られると
いう特徴を有しているため、低温で短時間で硬化
させるという要求を十分満たし、さらに、アミン
の揮発による悪臭や、皮膚障害などが全くないと
いうすぐれた作業性を有している。 また、得られた硬化物の接着強度が大きいた
め、塗料、接着剤に用いた場合、広汎な用途の拡
大が期待できる。 さらに、本発明の熱硬化性樹脂組成物の特徴
は、A共重合体中のアルケニルフエノール成分の
含有量を変えることにより幅広い熱変形温度をも
つ硬化物を得ることができ、また可撓性に富んだ
ものから、剛性の高いものまで任意に製造できる
ことにある。しかも、耐熱性、特に、熱分解開始
温度を例にとると、アルケニルフエノール成分の
量によらず、すべて350℃付近以上という高い値
を示すというすぐれた特徴を有している。 本発明に用いるA共重合体中の塩基性基を有す
る重合性単量体としては、例えば、アクリル酸
N,N−ジメチルアミノエチル、アクリル酸N,
N−ジメチルアミノプロピル、アクリル酸N,N
−ジエチルアミノエチルなどのアクリル酸N,N
−ジアルキルアミノアルキルエステル類、メタク
リル酸N,N−ジメチルアミノエチル、メタクリ
ル酸N,N−ジエチルアミノエチル、メタクリル
酸N,N−ジメチルアミノプロピルなどのメタク
リル酸N,N−ジアルキルアミノアルキルエステ
ル類、ビニルアニリン、イソプロペニルアニリ
ン、N−ビニルジメチルアミン、N−ビニルジエ
チルアミン、N−ビニルジフエニルアミン、N−
ビニルピロール、N−ビニルインドール、N−ビ
ニルカルバゾール、N−ビニルイミダゾール、N
−ビニルピロリドン、2−メチルN−ビニルイミ
ダゾール、2−ビニルキノリン、3−ビニルピペ
リジン、N−メチル−3−ビニルピペリジン、ビ
ニルピラジン、2−ビニルピリジン、3−ビニル
ピリジン、4−ビニルピリジン、2−メチル−5
−ビニルピリジン、5−エチル−2−ビニルピリ
ジン、N−(2−ジメチルアミノメチル)アクリ
ルアミド、N−(2−ジメチルアミノエチル)ア
クリルアミド、N−(3−ジメチルアミノプロピ
ル)アクリルアミド、N−(2−ジエチルアミノ
エチル)アクリルアミド、N−(2−モルフオリ
ノエチル)アクリルアミド、N−(2−ジメチル
アミノメチル)メタアクリルアミド、N−(2−
ジエチルアミノエチル)メタアクリルアミド、N
−(2−ジブチルアミノメチル)メタアクリルア
ミドなどがあり、これらを1種以上用いることが
できる。 A共重合体中のアルケニルフエノールとして
は、ビニルフエノール、イソプロペニルフエノー
ル、n−ブテニルフエノール、2又は3−ブテニ
ルフエノール、等があり、オルソ体、メタ体、パ
ラ体またはこれらの混合体のいずれであつてもよ
い。 本発明のA共重合体中の塩基性基を有する重合
性単量体およびアルケニルフエノールの含有量は
次の範囲のものが好ましい。 すなわち、塩基性基を有する重合性単量体につ
いては、A共重合体100重量部中0.01重量部以上
20重量部未満、好ましくは0.05重量部以上10重量
部未満がよい。 塩基性基を有する重合性単量体が、0.01重量部
未満の場合は、硬化性が悪くなり、また20重量部
以上の場合は耐熱性、接着性、寸法安定性に十分
な性能が得られない。 また、A共重合体中のアルケニルフエノールの
含有量は、A共重合体100重量部中5重量部以上
90重量部未満、好ましくは10重量部以上80重量部
未満がよい。アルケニルフエノール含有量が5重
量部未満の場合は耐熱性、寸法安定性が低下し、
90重量部以上の場合は接着性が低下してしまう。 次に、A共重合体中の塩基性基を有する重合性
単量体、アルケニルフエノールが上記範囲にあれ
ば、公知の重合性単量体、例えば、スチレン、ク
ロルスチレン、ブロムスチレン、α−メチルスチ
レン、ビニルトルエン、ビニルキシレン等のスチ
レン類、アクリル酸メチル、アクリル酸エチル、
アクリル酸n−ブチル、アクリル酸2−エチルヘ
キシル等のアクリル酸エステル類、メタクリル酸
メチル、メタクリル酸エチル、メタクリル酸n−
ブチル等のメタクリル酸エステル類、アクリロニ
トリル、メタクリロニトリル、フマロニトリル、
アクリル酸、メタクリル酸、無水マレイン酸、ア
クリルアミド、メタクリルアミド、イソプレン、
ブタジエン等を一種以上併用してもよい。 A共重合体の分子量は300以上200000未満好ま
しくは500以上50000未満のものがよい。300未満
または200000以上の場合は本発明の目的とする硬
化性、耐熱性、接着性、寸法安定性のすぐれた熱
硬化性樹脂組成物は得られなくなる。 また、本発明に使用するエポキシ樹脂は1分子
中に少なくとも2個以上のエポキシ基を有するも
のであればいずれも用いることができる。例え
ば、ビスフエノールA型、ハロゲン化ビスフエノ
ール型、レゾルシン型、ビスフエノールF型、テ
トラヒドロキシフエニルメタン型、ノボラツク
型、ポリグリコール型、グリセリントリエーテル
型、ポリオレフイン型、エポキシ化大豆油、脂環
式など各種エポキシ樹脂があり、これらを二種以
上併用してもよい。 本発明による熱硬化性樹脂組成物はエポキシ樹
脂にA共重合体を配合することにより構成される
が、その構成割合は必要に応じて種々の割合で配
合することができる。すなわち、A共重合体中の
フエノール性水酸基の数とエポキシ樹脂中のエポ
キシ基の数の比(OH基/エポキシ基比)が0.2以
上5未満好ましくは0.5以上2未満にするのがよ
い。OH基/エポキシ基比が、0.2未満および5以
上の場合は本発明の特徴とする耐熱性、接着性、
寸法安定性は得られない。 本発明による熱硬化性樹脂組成物は次のように
して使用できる。すなわちエポキシ樹脂とA共重
合体を混合後粉砕して使用するか、または混合後
80〜170℃で数分間加熱し、部分硬化させた後粉
砕して使用することもできる。さらには、エポキ
シ樹脂とA共重合体との共通溶剤、例えばメタノ
ール、エタノール、プロパノール、ベンジルアル
コール、ジアセトンアルコールなどのアルコール
類、アセトン、メチルエチルケトン、メチルイソ
ブチルケトン、シクロヘキサノンなどのケトン
類、ジオキサン、テトラヒドロフラン、メチルセ
ロソルブ、エチルセロソルブなどのエーテル類、
酢酸エチル、酢酸ブチルなどのエステル類、ジメ
チルホルムアミド、ジメチルアセトアミド、N−
メチル−2−ピロリドンなどの含窒素溶剤、ベン
ゼン、トルエン、キシレンなどの炭化水素、ジメ
チルスルホキシド等の1種以上の溶剤を使用して
ワニスの状態で使用することもできる。またワニ
スから脱溶剤の後粉砕する粉末として使用するこ
ともできる。 次に本発明による組成物の用途例について述べ
る。 成型材料とする場合には混合した粉末品、また
は、部分硬化させた粉末品を圧縮成型、トランス
フアー成型、射出成型により80〜250℃の温度で
成形体とすることができる。この場合、充填剤と
して、シリカ、炭酸カルシウム、タルク、クレ
ー、木粉、アスベスト、ガラス粉、ガラスせんい
等を加えてもよい。 積層材料とする場合は、本発明の組成物を溶剤
に溶解させたワニスを紙やガラスせんいに含浸
後、溶剤を除去しプリプレグとし、これを数枚〜
数十枚重ねて、100〜200℃の温度、20〜100Kg/
cm2の圧力により、積層板を得ることができる。積
層板はさらに必要に応じて150〜250℃で数時間ポ
ストキユアさせてもよい。 塗料に用いる場合は、本発明の組成物のワニス
を支持体に塗布し、100〜200℃で加熱乾燥するこ
とにより、または、混合した粉砕品または、部分
硬化させた粉末品を静電塗装機等により例えば鋼
板上に塗布し、100〜200℃で焼付けを行なつて厚
さの均一な塗膜を得ることができる。 また接着剤の用途には、本発明の組成物に必要
に応じフエニルグリシジルエーテル等の反応性希
釈剤、シリカ、アスベスト等の充填剤等を加え、
被着材に塗布後被着体をあてがい80〜200℃に加
熱することにより硬化、接着させることができ
る。 以下、製造例、実施例および諸物性の測定結果
により、本発明の効果を具体的に説明する。 製造例 1 2−ビニルピリジン1g、パライソプロペニル
フエノール50g、メタクリル酸メチル30g、アク
リロニトリル20g、メチルエチルケトン200g、
およびアゾビスイソブチロニトリル3.6gをフラ
スコ内に仕込み、還流温度で、10時間重合させ、
固型分濃度31重量%の共重合体溶液を得た。この
溶液を170℃の温度で4時間真空乾燥させた後、
粉砕して、共重合体粉末(1)93gを得た。この共重
合体中の2−ビニルピリジン含有量はジオキサン
溶媒中での過塩素酸標準液を用いた非水滴定によ
り測定した所、0.8重量%であつた。また、ゲル
パーミエイシヨンクロマトグラフイー(以下
GPCと略称する)による重量平均分子量は10000
であつた。 製造例 2 N−(2−ジエチルアミノエチル)アクリルア
ミド3g、パライソプロペニルフエノール50g、
メタクリル酸メチル30g、アクリロニトリル20
g、メチルエチルケトン200gおよびアゾビスイ
ソブチロニトリル3.6gをフラスコ内に仕込み、
還流温度で10時間重合させ固形分濃度31重量%の
共重合体溶液を得た。この溶液を170℃の温度で
4時間真空乾燥させた後、粉砕して共重合体粉末
(2)92gを得た。この共重合体中のN−(2−ジエ
チルアミノエチル)アクリルアミド含有量は製造
例1と同様に測定したところ2.6重量%であつた。
また、GPCによる共重合体の重量平均分子量は
10000であつた。 製造例 3 アクリル酸N,N−ジエチルアミノエチル1.5
g、パライソプロペニルフエノール70g、アクリ
ロニトリル30g、メチルエチルケトン200g、お
よびアゾビスイソブチロニトリル4gをフラスコ
内に仕込み、還流温度で10時間重合させ、固形分
濃度32重量%の共重合体溶液を得た。この溶液を
170℃の温度で4時間真空乾燥させた後粉砕して
共重合体粉末(3)97gを得た。この共重合体中のア
クリル酸ジエチルアミノエチル含有量は製造例1
と同様に測定した所、1.4重量%であつた。また、
GPCによる共重合体の重量平均分子量は8000で
あつた。 製造例 4 メタクリル酸N,N−ジメチルアミノエチル
0.5g、パライソプロペニルフエノール30g、ア
クリロニトリル30g、スチレン40g、メチルエチ
ルケトン200gおよびアゾビスイソブチロニトリ
ル4.6gをフラスコ内に仕込み、還流温度で10時
間重合させ、固型分濃度33重量%の共重合体溶液
を得た。この溶液を170℃の温度で4時間真空乾
燥させた後、粉砕して、共重合体粉末(4)98gを得
た。この共重合体中のメタクリル酸ジメチルアミ
ノエチル含有量は製造例1と同様に測定した所、
0.5重量%であつた。また、GPCによる共重合体
の重量平均分子量は5000であつた。 製造例 5 3−ビニルピペリジン1g、パライソプロペニ
ルフエノール20g、α−メチルスチレン50g、ア
クリロニトリル30g、メチルエチルケトン200g
およびアゾビスイソブチロニトリル4.6gをフラ
スコ内に仕込み、還流温度で10時間重合させ、固
型分濃度32重量%の共重合体溶液を得た。この溶
液を170℃の温度で4時間真空乾燥させた後、粉
砕して、共重合体粉末(5)95gを得た。この共重合
体中の3−ビニルピペリジン含有量は製造例1と
同様に測定した所、0.8重量%であつた。また、
GPCによる共重合体の重量平均分子量は6000で
あつた。 製造例 6 パライソプロペニルアニリン1g、パライソプ
ロペニルフエノール50g、アクリル酸メチル50
g、メチルエチルケトン200gおよびアゾビスイ
ソブチロニトリル4.6gをフラスコ内に仕込み還
流温度で10時間重合させ、固型分濃度29%の共重
合体溶液を得た。この溶液を170℃の温度で4時
間真空乾燥させた後、粉砕して、共重合体粉末(6)
90gを得た。この共重合体中のパライソプロペニ
ルアニリン含有量は製造例1と同様に測定した
所、0.9重量%であつた。また、GPCによる共重
合体の重量平均分子量は4500であつた。 本発明に使用するその他の前記塩基性基を有す
る重合性単量体およびアルケニルフエノールも製
造例1〜6に準じて同様に使用できる。 実施例 1 製造例1で得た共重合体粉末(1)59gとビスフエ
ノールA型エポキシ樹脂(シエル化学(株)製エピコ
ート828、エポキシ当量190、以下「エピコート
828」と略称)41gをアセトン100gに溶解し、均
一な溶液とした。この溶液を室温にて24時間真空
乾燥し大部分のアセトンを除去した後、熱硬化性
樹脂組成物101gを得た。 実施例 2 製造例2で得た共重合体粉末(2)59gとエピコー
ト828 41gをアセトン100gに溶解し均一な溶液
とした。この溶液を室温にて24時間真空乾燥し大
部分のアセトンを除去した後、熱硬化性樹脂組成
物100gを得た。 実施例 3 製造例3で得た共重合体粉末(3)59gとエピコー
ト828 50gをアセトン100gに溶解し、均一な溶
液とした。この溶液を室温にて24時間真空乾燥し
大部分のアセトンを除去した後、熱硬化性樹脂組
成物100gを得た。 実施例 4 製造例4で得た共重合体粉末(4)70gとエピコー
ト828 30gを60℃の温度で溶融混合した。これを
紛砕機により粉砕し、熱硬化性樹脂組成物粉末96
gを得た。 実施例 5 製造例5で得た共重合体粉末(5)78gとエピコー
ト828 22gをアセトン100gに溶解し、均一な溶
液とした。この溶液を室温にて24時間真空乾燥し
大部分のアセトンを除去した後、熱硬化性樹脂組
成物101gを得た。 実施例 6 製造例6で得た共重合体粉末(6)59gとエピコー
ト828 41gをアセトン100gに溶解し均一な溶液
とした。この溶液を室温にて24時間真空乾燥し、
大部分のアセトンを除去した後、熱硬化性樹脂組
成物102gを得た。 本発明に用いるエピコート828以外の前記エポ
キシ樹脂も実施例1〜6に準じて同様に使用でき
る。 比較例 1 軟化点92〜98℃の汎用ノボラツク型フエノール
樹脂(三井東圧化学(株)製ノボラツク2000)35g、
エピコート828 65gおよび硬化促進剤としてN,
N−ジメチルベンジルアミン0.7gをアセトン100
gに溶解し、均一な溶液とした。この溶液を室温
にて24時間真空乾燥し、大部分のアセトンを除去
した後、熱硬化性樹脂組成物99gを得た。 比較例 2 重量平均分子量10000のパライソプロペニルフ
エノール重合体59g、エピコート828 41gおよび
硬化促進剤としてトリエタノールアミン0.5gを
アセトン100gに溶解し、均一な溶液とした。こ
の溶液を室温にて24時間真空乾燥し、大部分のア
セトンを除去した後、熱硬化性樹脂組成物103g
を得た。 比較例 3 重合性単量体としてパライソプロペニルアニリ
ン1gを加えない以外は、製造例6と全く同様に
して得た重量平均分子量4500の共重合体粉末59g
とエピコート828 41gおよび硬化促進剤としてア
ニリン0.5gをアセトン100gに溶解し、均一な溶
液とした。この溶液を室温にて24時間真空乾燥
し、大部分のアセトンを除去した後熱硬化性樹脂
組成物102gを得た。 以上、実施例1〜6、比較例1〜3の熱硬化性
樹脂組成物につき、のような物性を測定した。 (A) ゲル化時間 JIS K6910に準じ、150℃の熱板上に上記各
組成物をのせ、糸引きがなくなるまでの時間。 (B) アミン臭の有無 20c.c.の試験管に上記組成物を各10gとり、
100℃の恒温槽に浸し、30分後に試験管上部に
てアミン臭の有無。 (C) 銅張積層板のはんだ耐熱性および銅はく引き
はがし強さ。 銅張積層板の作製 前記各組成物100gを夫々メチルエチルケト
ン100gに溶解し、均一な溶液とした。この溶
液即ちワニスにガラスクロス(日東紡績(株)製
WE18K104BZ−2、厚さ0.16mm)を浸漬し、
ワニスを含浸したガラスクロスを取り出し、10
分間風乾した。これを140℃の乾燥器中で5分
間乾燥し、プリプレグとした。このプリプレグ
を9枚重ね、上下両面を厚さ35μの銅はくでは
さみ、プレスにより160℃、30Kg/cm2の条件で
20分間圧縮成型した。次に、温度を170℃、圧
力を70Kg/cm2にあげさらに3時間加熱加圧を行
い、厚さ1.6mmの両面銅張積層板を得た。 はんだ耐熱性 JIS C6481によつた。 銅はく引きはがし強さ JIS C6481によつた。 (D) 成形収縮率 成形粉の作製 前記各組成物100gに対しシリカ粉末200g、
ステアリン酸マグネシウム1gを夫々加え、
100℃の熱ロールにて4分間溶融混練した。 次に粉砕機により20メツシユ以下に粉砕し成
形粉とした。 成形収縮率 前記成形粉を用い、JIS K6911に準じ、成形
収縮率を求めた。 (E) 熱分解開始温度 前記各組成物を170℃の乾燥機中で5時間加
熱硬化させた。次に熱重量分析(TGA)によ
り、この硬化物の熱分解開始温度(5%重量減
少温度)を求めた。 以上の測定の結果を第1表に示す。 この表からわかるように本発明の硬化性樹脂組
成物は、硬化性が良好で、作業性にすぐれ、しか
も耐熱性、接着性、寸法安定性にすぐれた硬化物
を与えることが示された。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a curable resin composition that can be used in a wide range of applications such as molding materials, laminated materials, paints, and adhesives. More specifically, the present invention relates to a thermosetting resin composition that has good curability, excellent workability during molding, and provides a cured product with excellent heat resistance, adhesiveness, and dimensional stability. 2. Description of the Related Art Thermosetting resin compositions made by blending an epoxy resin with a compound having a phenolic hydroxyl group are conventionally known. For example, thermosetting resin compositions made by blending novolak type phenolic resins with epoxy resins are used in fields such as molding materials, laminated materials, and paints. However, the dimensional stability of the cured product is poor and it cannot be used for electronic industrial materials that require dimensional accuracy. In addition, heat resistance,
In particular, the heat deformation temperature is low at around 100℃, and electrical parts,
It has been difficult to use them as so-called engineering plastics for industrial equipment such as mechanical parts, automobiles, aircraft, and vehicles. However, in recent years, thermosetting resin compositions containing paraisopropenylphenol polymers, paravinylphenol polymers, and epoxy resins have been developed. Although the cured product made from this composition is superior in heat resistance and dimensional stability compared to the cured product made by blending conventional epoxy resin and novolak type phenolic resin, it has the following drawbacks. There were restrictions in terms of usage. In other words, the adhesion is poor and, for example, when used on copper-clad laminates based on glass cloth, the adhesive strength is insufficient, resulting in delamination between the glass cloth and further damage between the copper foil and the laminate. However, it had the disadvantage of requiring a separate adhesive. Furthermore, in terms of heat resistance, when used at temperatures below 200°C, the strength retention rate of various physical properties such as mechanical strength is sufficient, but at high temperatures above 300°C, the cured product undergoes thermal decomposition, resulting in a decrease in physical properties. There is a drawback that it cannot be used in applications where it is used under harsh conditions. In addition, when a compound having a phenolic hydroxyl group such as the above-mentioned novolak type phenol resin, paraisopropenylphenol polymer, and paravinylphenol polymer is blended with an epoxy resin and cured, a tertiary amine or the like is usually used to accelerate the curing. A method is being used to shorten the curing time using a curing agent. In this case, although curing is faster, some of the amine volatilizes during compounding or molding operations, resulting in a bad odor and furthermore, there are operational problems such as skin irritation when the volatilized amine vapor comes into contact with it. Furthermore, the obtained cured product also has a problem in terms of physical properties, such as poor adhesion. As a result of intensive studies to solve the above-mentioned drawbacks, the present inventors have developed a copolymer (hereinafter referred to as "A copolymer") containing a polymerizable monomer having a basic group and an alkenylphenol as essential components in an epoxy resin. A thermosetting resin composition containing the compound (abbreviated as "Kogo") has good curability, has excellent workability during molding, and provides a cured product with excellent heat resistance, adhesiveness, and dimensional stability. This discovery led to the completion of the present invention. By using the thermosetting resin composition of the present invention, a molded product with excellent heat resistance and high dimensional accuracy can be obtained, and the molded product also has high rigidity when heated and can be easily removed from the mold after molding. As a result, molding efficiency can be further improved. When used in laminated materials, the adhesive strength is high, and in the case of copper-clad laminates, the interlayer peeling strength between base materials such as paper and glass is extremely high, and the peeling strength between the copper foil and the laminated material is extremely high. Its copper peeling strength is also extremely high. The thermosetting resin composition of the present invention is also characterized in that, without using a curing accelerator such as a tertiary amine, a sufficient curing rate equivalent to or higher than that obtained using a curing accelerator can be obtained. Therefore, it fully satisfies the requirement for curing at low temperatures and in a short time, and has excellent workability, with no odor or skin damage caused by amine volatilization. In addition, since the obtained cured product has high adhesive strength, it can be expected to have a wide range of applications when used in paints and adhesives. Furthermore, the thermosetting resin composition of the present invention is characterized by being able to obtain a cured product having a wide range of heat distortion temperatures by changing the content of the alkenylphenol component in the A copolymer, and also being flexible. The advantage is that it can be manufactured as desired, from those with high density to those with high rigidity. Moreover, they have an excellent heat resistance, especially the thermal decomposition initiation temperature, which shows a high value of around 350° C. or higher regardless of the amount of alkenylphenol component. Examples of the polymerizable monomer having a basic group in copolymer A used in the present invention include N,N-dimethylaminoethyl acrylate, N-acrylate,
N-dimethylaminopropyl, acrylic acid N,N
-Acrylic acid N,N such as diethylaminoethyl
-Dialkylaminoalkyl esters, N,N-dialkylaminoalkyl esters of methacrylate such as N,N-dimethylaminoethyl methacrylate, N,N-diethylaminoethyl methacrylate, N,N-dimethylaminopropyl methacrylate, vinyl Aniline, isopropenylaniline, N-vinyldimethylamine, N-vinyldiethylamine, N-vinyldiphenylamine, N-
Vinylpyrrole, N-vinylindole, N-vinylcarbazole, N-vinylimidazole, N
-vinylpyrrolidone, 2-methyl N-vinylimidazole, 2-vinylquinoline, 3-vinylpiperidine, N-methyl-3-vinylpiperidine, vinylpyrazine, 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, 2 -methyl-5
-vinylpyridine, 5-ethyl-2-vinylpyridine, N-(2-dimethylaminomethyl)acrylamide, N-(2-dimethylaminoethyl)acrylamide, N-(3-dimethylaminopropyl)acrylamide, N-(2-dimethylaminoethyl)acrylamide, N-(2-dimethylaminopropyl)acrylamide, -diethylaminoethyl)acrylamide, N-(2-morpholinoethyl)acrylamide, N-(2-dimethylaminomethyl)methacrylamide, N-(2-
diethylaminoethyl)methacrylamide, N
-(2-dibutylaminomethyl)methacrylamide and the like, and one or more of these can be used. The alkenylphenols in copolymer A include vinylphenol, isopropenylphenol, n-butenylphenol, 2- or 3-butenylphenol, etc., including ortho-, meta-, para-, or mixtures thereof. It can be either. The content of the polymerizable monomer having a basic group and the alkenylphenol in the copolymer A of the present invention is preferably within the following range. That is, for polymerizable monomers having basic groups, 0.01 parts by weight or more in 100 parts by weight of A copolymer.
Less than 20 parts by weight, preferably 0.05 parts by weight or more and less than 10 parts by weight. If the amount of the polymerizable monomer having a basic group is less than 0.01 parts by weight, curability will be poor, and if it is more than 20 parts by weight, sufficient performance in heat resistance, adhesiveness, and dimensional stability will not be obtained. do not have. In addition, the content of alkenylphenol in copolymer A is 5 parts by weight or more based on 100 parts by weight of copolymer A.
It is preferably less than 90 parts by weight, preferably 10 parts by weight or more and less than 80 parts by weight. If the alkenylphenol content is less than 5 parts by weight, heat resistance and dimensional stability will decrease,
If the amount exceeds 90 parts by weight, the adhesiveness will decrease. Next, if the polymerizable monomer having a basic group in copolymer A, alkenylphenol, is within the above range, a known polymerizable monomer such as styrene, chlorstyrene, bromstyrene, α-methyl Styrene, vinyl toluene, vinyl xylene and other styrenes, methyl acrylate, ethyl acrylate,
Acrylic acid esters such as n-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-methacrylate
Methacrylic acid esters such as butyl, acrylonitrile, methacrylonitrile, fumaronitrile,
Acrylic acid, methacrylic acid, maleic anhydride, acrylamide, methacrylamide, isoprene,
One or more types of butadiene etc. may be used in combination. The molecular weight of copolymer A is preferably 300 or more and less than 200,000, preferably 500 or more and less than 50,000. If it is less than 300 or more than 200,000, a thermosetting resin composition with excellent curability, heat resistance, adhesiveness, and dimensional stability, which is the object of the present invention, cannot be obtained. Moreover, any epoxy resin used in the present invention can be used as long as it has at least two or more epoxy groups in one molecule. For example, bisphenol type A, halogenated bisphenol type, resorcin type, bisphenol type F, tetrahydroxyphenylmethane type, novolak type, polyglycol type, glycerin triether type, polyolefin type, epoxidized soybean oil, alicyclic type. There are various epoxy resins such as formulas, and two or more of these may be used in combination. The thermosetting resin composition according to the present invention is constructed by blending the A copolymer with an epoxy resin, but the constituent proportions thereof can be blended in various proportions as necessary. That is, the ratio of the number of phenolic hydroxyl groups in the A copolymer to the number of epoxy groups in the epoxy resin (OH group/epoxy group ratio) is preferably 0.2 or more and less than 5, preferably 0.5 or more and less than 2. When the OH group/epoxy group ratio is less than 0.2 and 5 or more, the characteristics of the present invention such as heat resistance, adhesiveness,
Dimensional stability cannot be achieved. The thermosetting resin composition according to the present invention can be used as follows. In other words, the epoxy resin and the A copolymer are mixed and then pulverized, or after mixing,
It can also be used by heating at 80-170°C for several minutes to partially cure it and then crushing it. Furthermore, common solvents for the epoxy resin and copolymer A, such as alcohols such as methanol, ethanol, propanol, benzyl alcohol, and diacetone alcohol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, dioxane, and tetrahydrofuran are also used. , ethers such as methyl cellosolve, ethyl cellosolve,
Esters such as ethyl acetate and butyl acetate, dimethylformamide, dimethylacetamide, N-
It can also be used in the form of a varnish using one or more solvents such as nitrogen-containing solvents such as methyl-2-pyrrolidone, hydrocarbons such as benzene, toluene, and xylene, and dimethyl sulfoxide. It can also be used as a powder to be crushed after removing the solvent from the varnish. Next, examples of uses of the composition according to the present invention will be described. When used as a molding material, a mixed powder product or a partially cured powder product can be made into a molded body by compression molding, transfer molding, or injection molding at a temperature of 80 to 250°C. In this case, silica, calcium carbonate, talc, clay, wood flour, asbestos, glass powder, glass fiber, etc. may be added as fillers. When making a laminated material, paper or glass fiber is impregnated with a varnish prepared by dissolving the composition of the present invention in a solvent, and then the solvent is removed to form a prepreg, which is made into several sheets or more.
Stack several dozen sheets at a temperature of 100 to 200℃, 20 to 100 kg/
With a pressure of cm 2 it is possible to obtain a laminate. The laminate may be further post-cured at 150-250° C. for several hours if necessary. When used as a paint, the varnish of the composition of the present invention is applied to a support and heated and dried at 100 to 200°C, or the mixed pulverized product or partially cured powder product is coated with an electrostatic coating machine. For example, it can be applied onto a steel plate and baked at 100 to 200°C to obtain a coating film with a uniform thickness. In addition, for use as an adhesive, reactive diluents such as phenyl glycidyl ether, fillers such as silica, asbestos, etc. may be added to the composition of the present invention as necessary.
After being applied to an adherend, it can be cured and bonded by applying the adhesive to the adherend and heating it to 80 to 200°C. Hereinafter, the effects of the present invention will be specifically explained using production examples, examples, and measurement results of various physical properties. Production example 1 2-vinylpyridine 1g, paraisopropenylphenol 50g, methyl methacrylate 30g, acrylonitrile 20g, methyl ethyl ketone 200g,
and 3.6 g of azobisisobutyronitrile were placed in a flask and polymerized at reflux temperature for 10 hours.
A copolymer solution with a solid content concentration of 31% by weight was obtained. After vacuum drying this solution at a temperature of 170°C for 4 hours,
It was ground to obtain 93 g of copolymer powder (1). The content of 2-vinylpyridine in this copolymer was determined to be 0.8% by weight by non-aqueous titration using a perchloric acid standard solution in dioxane solvent. In addition, gel permeation chromatography (hereinafter referred to as
Weight average molecular weight according to GPC (abbreviated as GPC) is 10000
It was hot. Production example 2 N-(2-diethylaminoethyl)acrylamide 3g, paraisopropenylphenol 50g,
Methyl methacrylate 30g, acrylonitrile 20g
g, 200 g of methyl ethyl ketone and 3.6 g of azobisisobutyronitrile were placed in a flask,
Polymerization was carried out at reflux temperature for 10 hours to obtain a copolymer solution with a solid content concentration of 31% by weight. This solution was vacuum dried at a temperature of 170°C for 4 hours, and then ground to form a copolymer powder.
(2) 92g was obtained. The N-(2-diethylaminoethyl)acrylamide content in this copolymer was measured in the same manner as in Production Example 1 and was found to be 2.6% by weight.
In addition, the weight average molecular weight of the copolymer by GPC is
It was 10,000. Production example 3 N,N-diethylaminoethyl acrylate 1.5
g, 70 g of paraisopropenylphenol, 30 g of acrylonitrile, 200 g of methyl ethyl ketone, and 4 g of azobisisobutyronitrile were charged into a flask and polymerized at reflux temperature for 10 hours to obtain a copolymer solution with a solid content concentration of 32% by weight. This solution
After vacuum drying at a temperature of 170° C. for 4 hours, the mixture was pulverized to obtain 97 g of copolymer powder (3). The diethylaminoethyl acrylate content in this copolymer was determined in Production Example 1.
When measured in the same manner as above, it was 1.4% by weight. Also,
The weight average molecular weight of the copolymer by GPC was 8,000. Production example 4 N,N-dimethylaminoethyl methacrylate
0.5 g, paraisopropenylphenol 30 g, acrylonitrile 30 g, styrene 40 g, methyl ethyl ketone 200 g and azobisisobutyronitrile 4.6 g were charged into a flask and polymerized at reflux temperature for 10 hours to produce a copolymer with a solid content concentration of 33% by weight. A solution was obtained. This solution was vacuum dried at a temperature of 170° C. for 4 hours and then ground to obtain 98 g of copolymer powder (4). The content of dimethylaminoethyl methacrylate in this copolymer was measured in the same manner as in Production Example 1.
It was 0.5% by weight. Furthermore, the weight average molecular weight of the copolymer by GPC was 5,000. Production example 5 3-vinylpiperidine 1g, paraisopropenylphenol 20g, α-methylstyrene 50g, acrylonitrile 30g, methyl ethyl ketone 200g
and 4.6 g of azobisisobutyronitrile were charged into a flask and polymerized at reflux temperature for 10 hours to obtain a copolymer solution with a solid content concentration of 32% by weight. This solution was vacuum dried at a temperature of 170° C. for 4 hours and then ground to obtain 95 g of copolymer powder (5). The 3-vinylpiperidine content in this copolymer was measured in the same manner as in Production Example 1, and was found to be 0.8% by weight. Also,
The weight average molecular weight of the copolymer by GPC was 6000. Production example 6 Paraisopropenylaniline 1g, paraisopropenylphenol 50g, methyl acrylate 50g
g, 200 g of methyl ethyl ketone and 4.6 g of azobisisobutyronitrile were charged into a flask and polymerized at reflux temperature for 10 hours to obtain a copolymer solution with a solid content concentration of 29%. After vacuum drying this solution at a temperature of 170°C for 4 hours, it was pulverized to form a copolymer powder (6).
Obtained 90g. The content of paraisopropenylaniline in this copolymer was measured in the same manner as in Production Example 1, and was found to be 0.9% by weight. Furthermore, the weight average molecular weight of the copolymer by GPC was 4,500. Other polymerizable monomers having basic groups and alkenylphenols used in the present invention can also be used in the same manner as in Production Examples 1 to 6. Example 1 59 g of copolymer powder (1) obtained in Production Example 1 and bisphenol A type epoxy resin (Epicoat 828 manufactured by Ciel Chemical Co., Ltd., epoxy equivalent 190, hereinafter referred to as "Epicoat")
828'') was dissolved in 100 g of acetone to form a homogeneous solution. This solution was vacuum-dried at room temperature for 24 hours to remove most of the acetone, and 101 g of a thermosetting resin composition was obtained. Example 2 59 g of the copolymer powder (2) obtained in Production Example 2 and 41 g of Epicoat 828 were dissolved in 100 g of acetone to form a uniform solution. This solution was vacuum-dried at room temperature for 24 hours to remove most of the acetone, and 100 g of a thermosetting resin composition was obtained. Example 3 59 g of the copolymer powder (3) obtained in Production Example 3 and 50 g of Epicote 828 were dissolved in 100 g of acetone to form a uniform solution. This solution was vacuum-dried at room temperature for 24 hours to remove most of the acetone, and 100 g of a thermosetting resin composition was obtained. Example 4 70 g of the copolymer powder (4) obtained in Production Example 4 and 30 g of Epicoat 828 were melt-mixed at a temperature of 60°C. This is pulverized using a crusher to form a thermosetting resin composition powder of 96%.
I got g. Example 5 78 g of the copolymer powder (5) obtained in Production Example 5 and 22 g of Epicote 828 were dissolved in 100 g of acetone to form a uniform solution. This solution was vacuum-dried at room temperature for 24 hours to remove most of the acetone, and 101 g of a thermosetting resin composition was obtained. Example 6 59 g of the copolymer powder (6) obtained in Production Example 6 and 41 g of Epicoat 828 were dissolved in 100 g of acetone to form a uniform solution. This solution was vacuum dried at room temperature for 24 hours,
After removing most of the acetone, 102 g of a thermosetting resin composition was obtained. The above-mentioned epoxy resins other than Epicoat 828 used in the present invention can also be used in the same manner as in Examples 1 to 6. Comparative Example 1 35 g of general-purpose novolac type phenolic resin (Novolac 2000 manufactured by Mitsui Toatsu Chemical Co., Ltd.) with a softening point of 92 to 98°C,
65g of Epicoat 828 and N as a curing accelerator.
0.7 g of N-dimethylbenzylamine to 100 g of acetone
g to make a homogeneous solution. This solution was vacuum dried at room temperature for 24 hours to remove most of the acetone, and 99 g of a thermosetting resin composition was obtained. Comparative Example 2 59 g of paraisopropenylphenol polymer having a weight average molecular weight of 10,000, 41 g of Epicoat 828, and 0.5 g of triethanolamine as a hardening accelerator were dissolved in 100 g of acetone to form a uniform solution. After vacuum drying this solution at room temperature for 24 hours to remove most of the acetone, 103g of thermosetting resin composition was obtained.
I got it. Comparative Example 3 59 g of copolymer powder with a weight average molecular weight of 4500 obtained in exactly the same manner as Production Example 6 except that 1 g of paraisopropenylaniline was not added as a polymerizable monomer.
41 g of Epikote 828 and 0.5 g of aniline as a curing accelerator were dissolved in 100 g of acetone to form a uniform solution. This solution was vacuum dried at room temperature for 24 hours to remove most of the acetone, yielding 102 g of a thermosetting resin composition. As mentioned above, the following physical properties were measured for the thermosetting resin compositions of Examples 1 to 6 and Comparative Examples 1 to 3. (A) Gel time According to JIS K6910, each of the above compositions is placed on a hot plate at 150°C, and the time until stringiness disappears. (B) Presence or absence of amine odor Place 10 g of each of the above compositions in a 20 c.c. test tube,
Immerse it in a constant temperature bath at 100℃, and after 30 minutes check for amine odor at the top of the test tube. (C) Soldering heat resistance and copper peeling strength of copper-clad laminates. Preparation of copper-clad laminate 100 g of each of the above compositions was dissolved in 100 g of methyl ethyl ketone to form a uniform solution. Glass cloth (manufactured by Nitto Boseki Co., Ltd.) was added to this solution, i.e., varnish.
WE18K104BZ-2, thickness 0.16mm) was immersed,
Take out the glass cloth impregnated with varnish and 10
Air dried for a minute. This was dried for 5 minutes in a dryer at 140°C to obtain a prepreg. Nine sheets of this prepreg were stacked, the top and bottom sides were sandwiched between 35μ thick copper foils, and pressed at 160℃ and 30Kg/ cm2 .
Compression molded for 20 minutes. Next, the temperature was increased to 170° C. and the pressure was increased to 70 Kg/cm 2 , and heating and pressurization was further performed for 3 hours to obtain a double-sided copper-clad laminate with a thickness of 1.6 mm. Soldering heat resistance: Based on JIS C6481. Copper peeling strength: Conformed to JIS C6481. (D) Molding shrinkage rate Preparation of molding powder 200g of silica powder for 100g of each of the above compositions,
Add 1g of magnesium stearate to each
The mixture was melt-kneaded for 4 minutes using a heated roll at 100°C. Next, it was ground into 20 meshes or less using a grinder to form a molded powder. Mold Shrinkage Rate Using the molding powder described above, the molding shrinkage rate was determined according to JIS K6911. (E) Thermal decomposition initiation temperature Each of the above compositions was heated and cured in a dryer at 170°C for 5 hours. Next, the thermal decomposition onset temperature (5% weight loss temperature) of this cured product was determined by thermogravimetric analysis (TGA). The results of the above measurements are shown in Table 1. As can be seen from this table, the curable resin composition of the present invention was shown to have good curability, excellent workability, and gave a cured product with excellent heat resistance, adhesiveness, and dimensional stability. 【table】

Claims (1)

【特許請求の範囲】 1 エポキシ樹脂に、塩基性基を有する重合性単
量体0.05〜10重量部とアルケニルフエノール5〜
90重量部を必須成分とする共重合体を配合してな
る硬化性樹脂組成物において、 (1) 該共重合体中のフエノール性水酸基の数とエ
ポキシ樹脂中のエポキシ基の数の比(OH基/
エポキシ基比)が0.2〜5であり、 (2) 該共重合体中の塩基性基を有する重合性単量
体がアクリル酸N、N−ジアルキルアミノア
ルキルエステル類、メタクリル酸N、N−ジ
アルキルアミノアルキルエステル類、アルケ
ニルアニリン類、ビニルピリジン類、ビニ
ルピペリジン類、N−ジアルキルアミノアル
キルアクリルアミド類、よりなる群より選ばれ
たものであることを特徴とする硬化性樹脂組成
物。
[Scope of Claims] 1. In an epoxy resin, 0.05 to 10 parts by weight of a polymerizable monomer having a basic group and 5 to 10 parts by weight of an alkenylphenol.
In a curable resin composition formed by blending a copolymer containing 90 parts by weight as an essential component, (1) the ratio of the number of phenolic hydroxyl groups in the copolymer to the number of epoxy groups in the epoxy resin (OH Base/
(2) the polymerizable monomer having a basic group in the copolymer is an acrylic acid N, N-dialkylaminoalkyl ester, a methacrylic acid N, N-dialkyl A curable resin composition characterized in that it is selected from the group consisting of aminoalkyl esters, alkenylanilines, vinylpyridines, vinylpiperidines, and N-dialkylaminoalkylacrylamides.
JP515181A 1981-01-19 1981-01-19 Curable resin composition Granted JPS57119921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP515181A JPS57119921A (en) 1981-01-19 1981-01-19 Curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP515181A JPS57119921A (en) 1981-01-19 1981-01-19 Curable resin composition

Publications (2)

Publication Number Publication Date
JPS57119921A JPS57119921A (en) 1982-07-26
JPS6337813B2 true JPS6337813B2 (en) 1988-07-27

Family

ID=11603267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP515181A Granted JPS57119921A (en) 1981-01-19 1981-01-19 Curable resin composition

Country Status (1)

Country Link
JP (1) JPS57119921A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0197524A3 (en) * 1985-04-11 1988-11-17 Ppg Industries, Inc. Curable epoxy-acrylamide compositions
US5179172A (en) * 1988-10-06 1993-01-12 Henkel Research Corporation Epichlorohydrin or chlorine-containing vinyl or acrylate (co)polymer-modified amines
JP4752131B2 (en) 2001-05-16 2011-08-17 味の素株式会社 Latent curing agent for epoxy resin and curable epoxy resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114900A (en) * 1977-03-15 1978-10-06 Cosmo Co Ltd Polyalkenyl phenolic resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114900A (en) * 1977-03-15 1978-10-06 Cosmo Co Ltd Polyalkenyl phenolic resin composition

Also Published As

Publication number Publication date
JPS57119921A (en) 1982-07-26

Similar Documents

Publication Publication Date Title
CN112204105B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
TWI830741B (en) Resin compositions and their applications
DE60201097T2 (en) Curable resin composition and its use
WO1999042524A1 (en) Hybrid materials employing ppe/polystyrene/curable epoxy mixtures
TW202022042A (en) Halogen-free low dielectric resin composition, and pre-preg, metal-clad laminate, and printed circuit board prepared using the same
JPS60212417A (en) Composition for laminate
JPH0211626B2 (en)
JP2016538363A (en) Curable composition for forming interpenetrating polymer networks
AU2014411038A1 (en) Thermoset resin composition, and prepreg and laminated board made of same
JP2002317085A (en) Thermosetting resin composition and use thereof
JPH02113020A (en) Curable epoxy resin composition
JPS6337813B2 (en)
TW202030235A (en) Random copolymer compound, terminal-modified polymer compound and resin composition containing these compounds
CN112236464A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
CN109071738B (en) Radically curable resin composition and cured product thereof
US4623578A (en) Epoxy crosslinked copolymers of polyanhydrides and laminates therefrom
JP2004307761A (en) Thermosetting resin composition, and prepreg, metal-clad laminate and printed wiring board all using the same
US4587162A (en) Resin composition and laminate produced therefrom comprising a cyclized polybutadiene and a prepolymer of a isocyanuric or cyanuric acid derivative
GB2103621A (en) Thermosetting resin composition
JPS6337814B2 (en)
JPH0431464A (en) Curing resin composition for circuit and metal foil-clad resin board
JPH0324491B2 (en)
KR910005695B1 (en) Resin composition and electric laminate obtained therefrom
EP3252101B1 (en) Resin composition for printed wiring board, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JPH01215815A (en) Thermosetting resin composition and metal-clad laminate thereof