JPH03243764A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPH03243764A
JPH03243764A JP4059690A JP4059690A JPH03243764A JP H03243764 A JPH03243764 A JP H03243764A JP 4059690 A JP4059690 A JP 4059690A JP 4059690 A JP4059690 A JP 4059690A JP H03243764 A JPH03243764 A JP H03243764A
Authority
JP
Japan
Prior art keywords
target
substrate
vacuum chamber
magnetic
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4059690A
Other languages
Japanese (ja)
Other versions
JP2906163B2 (en
Inventor
Haruo Sugiyama
春男 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP4059690A priority Critical patent/JP2906163B2/en
Publication of JPH03243764A publication Critical patent/JPH03243764A/en
Application granted granted Critical
Publication of JP2906163B2 publication Critical patent/JP2906163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To provide the sputtering device which does not generate fluctuations in the magnetic characteristics of the thin films formed on each of substrates of a long sized shape, many of which are held to a rectangular strip shape on a substrate holder by forming the device in such a manner that a part or above of magnetic lines of force are so formed as to be parallel on a target surface. CONSTITUTION:A sputtering gas is introduced into a vacuum chamber 1 evacuated to a vacuum and the inside of the chamber 1 is maintained under 10<-1> to 10<-3> Torr. A voltage is thereafter impressed from a high-frequency power source 8 to a cathode 5 to generate plasma between a substrate electrode 2 and the cathode. The ions in the plasma are sputtered over the entire area of the target 6 by the effect of the magnetic lines of force paralleled on the surface of the target 6 to form the thin film on the substrate 4. The generation of the fluctuations in the magnetic characteristics of the thin films formed on the respective substrates 4 is prevented even if the holding positions and holding directions of the substrates 4 of the long-sized shape, many pieces of which are held in the rectangular strip shape on the substrate holder 4, vary with each of the respective substrates 4 of the long-sized shape.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はスパッタリング装置に関するものであって、
特に、磁気記録体用磁気ヘッドを製造するために用いら
れるものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a sputtering device,
In particular, it is used for manufacturing magnetic heads for magnetic recording media.

(従来の技術) 従来のスパッタリング装置は第7図に示されており、同
図において、真空槽1内上部の基板電極2には基板ホル
ダ3が取り付けられ、その基板ホルダ3には第8図に示
されるように2〜3 asX 30〜50@−の長尺形
状の基板4が短冊状に多数保持され、また、真空槽l内
下部のカソード5には磁性薄膜作成用のターゲット6が
取り付けられ、基板4とターゲット6とが真空槽l内で
所定の間隔をおいて対向している。真空槽l外には、こ
れを囲むようにヘルムホルツコイル7が巻かれ、このヘ
ルムホルツコイル7によって、後述するプラズマ密度が
高められている。なお、第7図中、8はカソード4に接
続された高周波電源又は直流電源、9はArガス等のス
パッタガスを導入するためのガス導入弁、10は真空排
気口である。
(Prior Art) A conventional sputtering apparatus is shown in FIG. 7, in which a substrate holder 3 is attached to the substrate electrode 2 in the upper part of the vacuum chamber 1, and the substrate holder 3 is attached to the substrate electrode 2 shown in FIG. As shown in , a large number of elongated substrates 4 of 2 to 3 as The substrate 4 and the target 6 are opposed to each other with a predetermined interval in the vacuum chamber l. A Helmholtz coil 7 is wound outside the vacuum chamber 1 so as to surround it, and the plasma density, which will be described later, is increased by this Helmholtz coil 7. In FIG. 7, 8 is a high frequency power source or a DC power source connected to the cathode 4, 9 is a gas introduction valve for introducing sputtering gas such as Ar gas, and 10 is a vacuum exhaust port.

次に、このような装置を用いて基板の表面に磁性薄膜を
形成する方法について説明する。
Next, a method of forming a magnetic thin film on the surface of a substrate using such an apparatus will be described.

まず、真空槽1内を真空排気した後、ガス導入弁8を開
き、真空槽l内にA「ガス等のスパッタガスを導入し、
真空槽l内を10−’〜I03T。
First, after evacuating the inside of the vacuum chamber 1, the gas introduction valve 8 is opened, and a sputtering gas such as gas A is introduced into the vacuum chamber 1.
10-' to I03T inside the vacuum chamber l.

rrにする。Make it rr.

その後、高周波電源又は直流電源8よりカソード5に電
圧を印加し、基板電極2とカソード5との間にプラズマ
を発生させるが、プラズマはへルムホルツコイル7によ
ってその密度が高められる。
Thereafter, a voltage is applied to the cathode 5 from a high frequency power source or a DC power source 8 to generate plasma between the substrate electrode 2 and the cathode 5, and the density of the plasma is increased by the Helmholtz coil 7.

そして、密度の高いプラズマ中のイオンがターゲット6
をスパッタリングし、ターゲ・ノド粒子が基板4に付着
して、そこに薄膜が形成されるようになる。だが、この
とき、ターゲット6のスパッタリングされる領域は密度
の高いプラズマに対応した部分となるため、ターゲット
6の全面ではなく、局部になる。
Then, the ions in the high-density plasma reach the target 6.
is sputtered, the target particles adhere to the substrate 4, and a thin film is formed thereon. However, at this time, the region of the target 6 to be sputtered corresponds to a high-density plasma, so it is not the entire surface of the target 6 but a local region.

(発明が解決しようとする課題) 従来のスパッタリング装置は、上記のように密度の高い
プラズマ中のイオンがターゲット6をスパッタリングし
、ターゲット粒子が基板4に付着して、そこに薄膜が形
成されるようになるが、ターゲット6のスパッタリング
される領域は密度の高いプラズマに対応した部分となる
ため、それはターゲット6の全面ではなく、局部になる
。そのため、ターゲット粒子はスパッタリングされるタ
ーゲット6の局部領域より多く飛散されるようになる。
(Problems to be Solved by the Invention) In the conventional sputtering apparatus, as described above, ions in a high-density plasma sputter the target 6, target particles adhere to the substrate 4, and a thin film is formed there. However, since the area of the target 6 to be sputtered corresponds to high-density plasma, it is not the entire surface of the target 6 but a local area. Therefore, more target particles are scattered than in the local area of the target 6 to be sputtered.

しかしながら、基板ホルダ3には長尺形状の基板4が短
冊状に多数保持され、しかも、長尺形状の基板4の保持
位置および保持方向が各長尺形状の基板4ごとに異なっ
ている。
However, the substrate holder 3 holds a large number of elongated substrates 4 in the form of strips, and the holding positions and holding directions of the elongated substrates 4 are different for each elongated substrate 4.

そのため、ターゲット6の局部領域より飛散したターゲ
ット粒子が各長尺形状の基板4に入射付着角度等の条件
を同一にして均等に付着することことができなくなり、
長尺形状の基板4に形成される薄膜の磁気特性が各長尺
形状の基板4ごとに異なり、バラツキが起きる問題が起
きた。即ち、第8図に示されるように長尺形状の基板4
を基板ホルダ3に短冊状に多数保持したとき、その保持
位置を符号a −bで示ず各長尺形状の基板4に形成さ
れる薄膜の磁気特性の一つである保磁率は第9図に示さ
れるように保持位置ごとに異なっていた。
Therefore, the target particles scattered from the local area of the target 6 cannot be evenly attached to each elongated substrate 4 under the same conditions such as the incident attachment angle.
A problem occurred in that the magnetic properties of the thin film formed on the elongated substrate 4 differed for each elongated substrate 4, resulting in variations. That is, as shown in FIG.
When a large number of strips are held in the substrate holder 3, the holding positions are not indicated by symbols a-b, and the coercivity, which is one of the magnetic properties of the thin film formed on each long substrate 4, is as shown in FIG. It was different for each holding position as shown in .

この発明の目的は、従来の問題を解決して、基板ホルダ
に短冊状に多数保持された長尺形状の基板ごとに形成さ
れる剤膜の磁気特性にバラツキを起こさせないスパッタ
リング装置を提供することにある。
An object of the present invention is to provide a sputtering apparatus that solves the conventional problems and does not cause variations in the magnetic properties of the agent film formed on each long substrate held in the form of a plurality of strips on a substrate holder. It is in.

(課題を解決するための手段) 上記目的を達成するために、第1発明は、基板と、カソ
ードに取り付けられたターゲットとを真空槽内で所定の
間隔をおいて対向させ、真空槽内で発生したプラズマ中
のイオンによりターゲットをスパッタリンクして、基板
に薄膜を形成するスパッタリング装置において、上記タ
ーゲットがψ間に位置するように一対の磁石を上記真空
槽外で間隔をおいて配設し、一対の磁石の一方より発生
ずる磁界と、他方より発生ずる磁界とを反発させ、この
反発する2つの磁界の一方の磁力線の少なくとも一部を
上記ターゲットの表面においてそれと平行にさせたこと
を特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the first invention makes a substrate and a target attached to a cathode face each other at a predetermined interval in a vacuum chamber, and In a sputtering device that sputter-links a target with ions in generated plasma to form a thin film on a substrate, a pair of magnets are arranged at a distance outside the vacuum chamber so that the target is located between ψ. , characterized in that a magnetic field generated by one of the pair of magnets and a magnetic field generated by the other are repelled, and at least a part of the line of magnetic force of one of the two repelling magnetic fields is made parallel to the line of force on the surface of the target. That is.

また、第2発明は、基板と、カソードに取り付けられた
ターゲットとを真空槽内で所定の間隔をおいて対向させ
、真空槽内で発生したプラズマ中のイオンによりターゲ
ットをスパッタリングして、基板に薄膜を形成するスパ
ッタリング装置において、上記ターゲットの左右の上記
真空槽外に磁石をそれぞれ配設し、これらの磁石によっ
て形成される磁力線の少なくとも一部を上記ターゲット
の表面においてそれと平行にさせたことを特徴とするも
のである。
Further, in the second invention, a substrate and a target attached to a cathode are opposed to each other at a predetermined interval in a vacuum chamber, and the target is sputtered by ions in plasma generated in the vacuum chamber, thereby sputtering the target onto the substrate. In a sputtering apparatus for forming a thin film, magnets are disposed outside the vacuum chamber on the left and right sides of the target, and at least a part of the lines of magnetic force formed by these magnets are made parallel to the lines of force on the surface of the target. This is a characteristic feature.

(作用) 第1発明のスパッタリング装置においては、ターゲット
が中間に位置するように一対の磁石を真空槽外で間隔を
おいて配設し、一対の磁石の一方より発生ずる磁界と、
他方より発生ずる磁界とを反発させ、この反発する2つ
の磁界の一方の磁力線の少なくとも一部をターゲットの
表面においてそれと平行にさせているので、ターゲット
のスパッタリングされる領域はターゲット全域にわたり
、ターゲットの局部領域だけでなくなる。そのため、長
尺形状の基板が基板ホルダに短冊状に多数保持され、そ
の長尺形状の基板の保持位置および保持方向が各長尺形
状の基板ごとに異なっていても、各長尺形状の基板に形
成される薄膜の磁気特性にバラツキが起きなくなる。
(Function) In the sputtering apparatus of the first invention, a pair of magnets are arranged at intervals outside the vacuum chamber so that the target is located in the middle, and a magnetic field generated from one of the pair of magnets,
The magnetic field generated by the other magnetic field is repelled, and at least a part of the lines of magnetic force of one of the two repelling magnetic fields is made parallel to it on the surface of the target, so that the sputtering area of the target covers the entire target area and It is no longer limited to only local areas. Therefore, even if a large number of long substrates are held in the form of strips on a substrate holder, and the holding position and holding direction of the long substrates are different for each long substrate, each long substrate There will be no variation in the magnetic properties of the thin film formed.

また、第2発明のスパッタリング装置においても、ター
ゲットの左右の真空槽外にそれぞれ配設された磁石によ
って形成される磁力線の少なくとも一部がターゲットの
表面においてそれと平行になるから、上記第1発明と同
様の作用がなされ、各長尺形状の基板に形成される薄膜
の磁気特性にバラツキが起きなくなる。
Also, in the sputtering apparatus of the second invention, at least a part of the magnetic lines of force formed by the magnets disposed outside the vacuum chamber on the left and right sides of the target are parallel to the lines of force on the surface of the target. A similar effect is achieved, and there is no variation in the magnetic properties of the thin films formed on each elongated substrate.

(実施例) 以下、この発明の実施例について図面を参照しながら説
明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は第1発明の実施例を示しており、同図において
、真空槽l向上部の基板電極2には基板ホルダ3が取り
付けられ、その基板ホルダ3には第2図に示されるよう
に2〜3 +*mX 30〜50mmの長尺形状の基板
4が短冊状に多数保持され、また、真空槽l内下部のカ
ソード5には磁性薄膜作成用のターゲット6が取り付け
られ、基板4とターゲット6とが真空槽l内で所定の間
隔をおいて対向している。真空槽l外には一対の電磁石
11a。
FIG. 1 shows an embodiment of the first invention, in which a substrate holder 3 is attached to the substrate electrode 2 of the upper part of the vacuum chamber l, and the substrate holder 3 is attached as shown in FIG. A large number of long substrates 4 of 2 to 3 + * m x 30 to 50 mm are held in the form of strips, and a target 6 for forming a magnetic thin film is attached to the cathode 5 at the bottom of the vacuum chamber l. and target 6 are opposed to each other with a predetermined interval in the vacuum chamber l. A pair of electromagnets 11a are provided outside the vacuum chamber l.

11bがその中間にターゲット6を位置させるように間
隔をおいて上下に配設され、上方の電磁石11aより発
生ずる磁界と、下方の電磁石11bより発生ずる磁界と
が反発して、この反発する2つの磁界の一方の磁力線の
少なくとも一部をターゲット6の表面においてそれと平
行にさせている。
11b are arranged vertically at intervals so that the target 6 is located between them, and the magnetic field generated by the upper electromagnet 11a and the magnetic field generated by the lower electromagnet 11b repel, and this repulsive 2 At least a portion of one of the lines of magnetic force of the two magnetic fields is made parallel to the surface of the target 6.

第3図は上方の電磁石11aより発生ずる磁界と、下方
の電磁石11bより発生ずる磁界とが反発している状態
を示している。なお、第1図中、8はカソード4に接続
された高周波電源又は直流電源、9はArガス等のスパ
ッタガスを導入するためのガス導入弁、10は真空排気
口である。
FIG. 3 shows a state in which the magnetic field generated by the upper electromagnet 11a and the magnetic field generated by the lower electromagnet 11b are repelled. In FIG. 1, 8 is a high frequency power source or a DC power source connected to the cathode 4, 9 is a gas introduction valve for introducing sputtering gas such as Ar gas, and 10 is a vacuum exhaust port.

次に、上記実施例を用いて基板の表面に薄膜を形成する
方法について説明する。
Next, a method for forming a thin film on the surface of a substrate using the above embodiment will be described.

まず、真空槽l内を真空排気した後、ガス導入弁8を開
き、真空槽1内にArガス等のスパッタガスを導入し、
真空槽l内をl O−’−10−3T。
First, after evacuating the inside of the vacuum chamber 1, the gas introduction valve 8 is opened, and a sputtering gas such as Ar gas is introduced into the vacuum chamber 1.
Inside the vacuum chamber l O-'-10-3T.

rrにする。Make it rr.

その後、高周波電源又は直流電源8よりカソード5に電
圧を印加し、基板電極2とカソード5との間にプラズマ
を発生させる。このとき、ターゲット6の表面において
それと平行になった磁力線が存在しているため、この磁
力線の作用によりプラズマ中のイオンはターゲット6の
全域にわたってスパッタリングして、基板4に薄膜を形
成するようになる。その場合、長尺形状の基板4が基板
ホルダ3に短冊状に多数保持され、その長尺形状の基板
4の保持位置および保持方向が各長尺形状の基板4ごと
に異なっていても、各長尺形状の基板4に形成される薄
膜の磁気特性にバラツキが起きなくなる。第4図はセメ
ダスト(Fe−Lf −5i−Cr合金)をターゲット
として用いたときの第1発明の実施例によって形成され
た薄膜の磁気特性と、従来の装置によって形成された薄
膜の磁気特性とを示すグラフで、縦軸に磁気特性の一つ
である保磁力、横軸に基板の保持位置を示すために基板
ホルダのψ央からの距離をとっている。第4図より第1
発明の実施例によって形成された薄膜の磁気特性の一つ
である保磁力は0.37〜0.58で、実用上問題のな
いバラツキ範囲であるのに対し、従来の装置によって形
成された薄膜の保磁力は高く、0.48〜1.01で、
この1.01は0゜48の2倍以上 となり、バラツキ
範囲が大きくなる。
Thereafter, a voltage is applied to the cathode 5 from a high frequency power source or a DC power source 8 to generate plasma between the substrate electrode 2 and the cathode 5. At this time, since there are magnetic lines of force parallel to the surface of the target 6, the ions in the plasma are sputtered over the entire area of the target 6 due to the action of these lines of force, forming a thin film on the substrate 4. . In that case, a large number of elongated substrates 4 are held in a rectangular shape by the substrate holder 3, and even if the holding position and holding direction of the elongated substrates 4 are different for each elongated substrate 4, each elongated substrate 4 is There is no variation in the magnetic properties of the thin film formed on the elongated substrate 4. Figure 4 shows the magnetic properties of the thin film formed by the embodiment of the first invention and the magnetic properties of the thin film formed by the conventional apparatus when Cemedust (Fe-Lf-5i-Cr alloy) is used as a target. In this graph, the vertical axis shows coercive force, which is one of the magnetic characteristics, and the horizontal axis shows the distance from the center of the substrate holder to show the holding position of the substrate. 1 from Figure 4
The coercive force, which is one of the magnetic properties, of the thin film formed by the embodiment of the invention is 0.37 to 0.58, which is a variation range that does not pose a practical problem, whereas the thin film formed by the conventional apparatus The coercive force of is high, 0.48 to 1.01,
This value of 1.01 is more than twice that of 0°48, and the range of variation becomes large.

次に、第5図は第2発明の実施例を示しており、同図に
おいて、上記第1発明の実施例と同符号は同一のもので
あるが、第1発明の実施例と差異があるのは、ターゲッ
ト6の左右の真空槽l外にそれぞれ電磁石12a、12
bを配設した点である。
Next, FIG. 5 shows an embodiment of the second invention, in which the same symbols are the same as those in the embodiment of the first invention, but there are differences from the embodiment of the first invention. There are electromagnets 12a and 12 outside the vacuum chamber l on the left and right sides of the target 6, respectively.
This is the point where b is placed.

そのため、これらの電磁石12a、12bによって形成
される磁力線の少なくとも一部は上記第1発明の実施例
と同様にターゲット6の表面においてそれと平行になる
。第6図は電磁石12a、12bによって形成される磁
力線を示している。
Therefore, at least a portion of the magnetic lines of force formed by these electromagnets 12a and 12b are parallel to the surface of the target 6, as in the embodiment of the first invention. FIG. 6 shows lines of magnetic force formed by electromagnets 12a and 12b.

したがって、第2発明の実施例を用いて基板の表面に薄
膜を形成する方法は上記第1発明の実施例の場合と同様
につき、その説明を省略−4る。
Therefore, the method of forming a thin film on the surface of a substrate using the embodiment of the second invention is the same as that of the embodiment of the first invention, and the explanation thereof will be omitted.

ところで、上記第1および第2発明の実施例では電磁石
を使用しているが、その代わりに、永久磁石を使用して
もよい。
Incidentally, although electromagnets are used in the embodiments of the first and second inventions, permanent magnets may be used instead.

(発明の効果) 請求項1記載の第1発明および請求項2記載の第2発明
は、それぞれ上記のような構成をしていて、磁力線の少
なくとも一部がターゲットの表面においてそれと平行に
なっているので、ターゲットのスパッタリングされる領
域はターゲット全域にわたり、ターゲットの局部領域だ
けでなく4る。
(Effects of the Invention) The first invention recited in claim 1 and the second invention recited in claim 2 each have the above configuration, and at least a part of the magnetic lines of force are parallel to the surface of the target. Therefore, the area of the target to be sputtered covers the entire target area, not just local areas of the target.

そのため、長尺形状の基板が基板ホルダに短冊状に多数
保持され、その長尺形状の基板の保持位置および保持方
向が各長尺形状の基板ごとに異なっていても、各長尺形
状の基板に形成される薄膜の磁気特性にバラツキが起き
なくなる。それゆえ、長尺形状の基板を基板ホルダの中
央部だけでなく、基板ホルダの周縁部にも保持しうるよ
うになるので、生産能率が向上するようになる。
Therefore, even if a large number of long substrates are held in the form of strips on a substrate holder, and the holding position and holding direction of the long substrates are different for each long substrate, each long substrate There will be no variation in the magnetic properties of the thin film formed. Therefore, the elongated substrate can be held not only at the center of the substrate holder but also at the periphery of the substrate holder, thereby improving production efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はm1発明の実施例を示す説明図、第2図は第1
発明の実施例に用いられる基板ホルダに長尺形状の基板
を短冊状に多数保持したときの説明図、第3図は第1発
明の実施例に用いられる電磁石による磁力線を示す斜視
図、第4図は第1発明の実施例によって形成された薄膜
の保磁力と、従来の装置によって形成された薄膜の保磁
力との比較をしめずグラフである。第5図は第2発明の
実施例を示す説明図、第6図は第2発明の実施例に用い
られる電磁石による磁力線を示す斜視図である。第7図
は従来のスパッタリング装置を示す説明図、第8図は従
来のスパッタリング装置に用いられる基板ホルダに長尺
形状の基板を短冊状に多数保持したときの説明図、第9
図は従来のスパッタリング装置に用いて長尺形状の基板
に薄膜を形成したとき、その薄膜の保磁率を示すグラフ
である。 図ψ、 l・・・・・・真空槽 4・・・・・・基板 5・・・・・・カソード 6・・・・・・ターゲット 11& ・・・・・電磁石 11b ・・・・・電磁石 12a ・・・・・電磁石 12b ・・・・・電磁石 図中、同一符号は同一または相当部分を示している。 第1図 第2図
Figure 1 is an explanatory diagram showing an embodiment of the m1 invention, and Figure 2 is an explanatory diagram showing an embodiment of the m1 invention.
An explanatory diagram when a large number of elongated substrates are held in the form of strips in a substrate holder used in an embodiment of the invention, FIG. 3 is a perspective view showing lines of magnetic force due to an electromagnet used in an embodiment of the first invention, and FIG. The figure is a graph showing a comparison between the coercive force of the thin film formed by the embodiment of the first invention and the coercive force of the thin film formed by the conventional apparatus. FIG. 5 is an explanatory view showing an embodiment of the second invention, and FIG. 6 is a perspective view showing lines of magnetic force due to an electromagnet used in the embodiment of the second invention. FIG. 7 is an explanatory diagram showing a conventional sputtering apparatus, FIG. 8 is an explanatory diagram when a large number of long substrates are held in the form of strips in a substrate holder used in the conventional sputtering apparatus, and FIG. 9 is an explanatory diagram showing a conventional sputtering apparatus.
The figure is a graph showing the coercivity of a thin film formed on a long substrate using a conventional sputtering apparatus. Figure ψ, l...Vacuum chamber 4...Substrate 5...Cathode 6...Target 11&...Electromagnet 11b...Electromagnet 12a...Electromagnet 12b...Electromagnet In the diagrams, the same reference numerals indicate the same or corresponding parts. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] 1.基板と、カソードに取り付けられたターゲットとを
真空槽内で所定の間隔をおいて対向させ、真空槽内で発
生したプラズマ中のイオンによりターゲットをスパッタ
リングして、基板に薄膜を形成するスパッタリング装置
において、上記ターゲットが中間に位置するように一対
の磁石を上記真空槽外で間隔をおいて配設し、一対の磁
石の一方より発生する磁界と、他方より発生する磁界と
を反発させ、この反発する2つの磁界の一方の磁力線の
少なくとも一部を上記ターゲットの表面においてそれと
平行にさせたことを特徴とするスパッタリング装置。
1. A sputtering device in which a substrate and a target attached to a cathode face each other at a predetermined distance in a vacuum chamber, and the target is sputtered with ions in plasma generated in the vacuum chamber to form a thin film on the substrate. , a pair of magnets are arranged at intervals outside the vacuum chamber so that the target is located in the middle, and the magnetic field generated from one of the pair of magnets is repelled by the magnetic field generated from the other. A sputtering apparatus characterized in that at least a part of one of the lines of magnetic force of one of the two magnetic fields is made parallel to the surface of the target.
2.基板と、カソードに取り付けられたターゲットとを
真空槽内で所定の間隔をおいて対向させ、真空槽内で発
生したプラズマ中のイオンによりターゲットをスパッタ
リングして、基板に薄膜を形成するスパッタリング装置
において、上記ターゲットの左右の上記真空槽外に磁石
をそれぞれ配設し、これらの磁石によって形成される磁
力線の少なくとも一部を上記ターゲットの表面において
それと平行にさせたことを特徴とするスパッタリング装
置。
2. A sputtering device in which a substrate and a target attached to a cathode face each other at a predetermined distance in a vacuum chamber, and the target is sputtered with ions in plasma generated in the vacuum chamber to form a thin film on the substrate. A sputtering apparatus characterized in that magnets are respectively disposed outside the vacuum chamber on the left and right sides of the target, and at least a part of the lines of magnetic force formed by these magnets are made parallel to the lines of force on the surface of the target.
JP4059690A 1990-02-20 1990-02-20 Sputtering equipment Expired - Lifetime JP2906163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4059690A JP2906163B2 (en) 1990-02-20 1990-02-20 Sputtering equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4059690A JP2906163B2 (en) 1990-02-20 1990-02-20 Sputtering equipment

Publications (2)

Publication Number Publication Date
JPH03243764A true JPH03243764A (en) 1991-10-30
JP2906163B2 JP2906163B2 (en) 1999-06-14

Family

ID=12584889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4059690A Expired - Lifetime JP2906163B2 (en) 1990-02-20 1990-02-20 Sputtering equipment

Country Status (1)

Country Link
JP (1) JP2906163B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917463B1 (en) * 2003-01-15 2009-09-14 삼성전자주식회사 Magnetron cathode and magnetron sputtering apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917463B1 (en) * 2003-01-15 2009-09-14 삼성전자주식회사 Magnetron cathode and magnetron sputtering apparatus

Also Published As

Publication number Publication date
JP2906163B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
US4507364A (en) Perpendicular magnetic recording medium
US6444100B1 (en) Hollow cathode sputter source
KR19980064471A (en) Sputtering apparatus, sputtering film-forming apparatus, and manufacturing method of magnetoresistive head element
JPS61221363A (en) Sputtering apparatus
JPH03243764A (en) Sputtering device
JP3254782B2 (en) Double-sided sputter film forming method and apparatus, and sputter film forming system
US5609739A (en) Sputtering apparatus
JPH0360916B2 (en)
JPS58199862A (en) Magnetron type sputtering device
JPH031810B2 (en)
JPH024966A (en) Sputtering device
JPH07157874A (en) Magnetron sputtering device
JPH03260067A (en) Sputtering device
JPH046792B2 (en)
JPS5813622B2 (en) Magnetron type sputtering equipment
JPH0633454B2 (en) Sputtering device
JPS62264432A (en) Manufacture of magnetic recording medium provided with sputtered protecting layer
JPH01283372A (en) Magnetron sputtering device
JPS5831081A (en) Opposed target type sputtering device
JPH06136533A (en) Sputtering target
JP2016128597A (en) Magnet sheet, film deposition method using the same, and touch panel
JP2002004044A (en) Sputtering system
KR100444011B1 (en) Method for fabricating uniform silicide layer by improving s puttering apparatus using ferromagnetic target
JPH0445267A (en) Sputtering system
JPH0610347B2 (en) Tripolar spatling source

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

EXPY Cancellation because of completion of term